
Chapter 7

UML-BASED WEB ENGINEERING

An Approach Based on Standards

Nora Koch,1,2 Alexander Knapp,1 Gefei Zhang,1 Hubert Baumeister3

1Institut für Informatik, Ludwig-Maximilians-Universität München, Germany
{kochn,knapp,zhangg}@pst.ifi.lmu.de
2F.A.S.T. GmbH, München, Germany
koch@fast.de
3Informatik og Matematisk Modellering, Danmarks Tekniske Universitet, Lyngby, Den-
mark
hub@imm.dtu.dk

7.1 Overview
UML-based Web Engineering (UWE, www.pst.ifi.lmu.de/

projekte/uwe) came up by the end of the nineties (Baumeister et al.,
1999; Wirsing et al., 1999) with the idea to find a standard way for building
analysis and design models of Web systems based on the then current methods
OOHDM (Schwabe and Rossi, 1995), RMM (Isakowitz et al., 1995), and
WSDM (de Troyer and Leune, 1998). The aim, which is still pursued, was
to use a common language or at least to define metamodel-based mappings
among the existing approaches (Koch and Kraus, 2003; Escalona and Koch,
2006).

At that time the Unified Modeling Language (UML) which evolved from
the integration of the three different modeling approaches of Booch, OOSE and
OMT seemed to be a promising approach for system modeling. Since the early
integration efforts, the UML became the “lingua franca” of (object-oriented)
software engineering (Object Management Group, 2005). A prominent feature
of UML is that it provides a set of aids for the definition of domain-specific
modeling languages (DSL) – so called extension mechanisms. Moreover the
newly defined DSLs remain UML-compliant, which allows the use of all UML
features supplemented, e.g., with Web specific extensions.

158

Both the acceptance of the UML as a standard in the development of soft-
ware systems and the flexibility provided by the extension mechanisms are the
reasons for the choice of the Unified Modeling Language instead of the use of
proprietary modeling techniques. The idea followed by UWE to adhere to stan-
dards is not limited to UML. UWE uses also XMI as model exchange format
(in the hope of future tool interoperability enabled by a truly portable XMI),
MOF for metamodeling, the model-driven principles given by OMG’s Model-
Driven Architecture (MDA) approach, the transformation language QVT, and
XML.

UWE is continuously adapting, on the one hand, to new features of Web sys-
tems, such as more transaction-based, personalized, context-dependent, and
asynchronous applications. On the other hand, UWE evolves to incorpo-
rate the state of the art of software engineering techniques, such as aspect-
oriented modeling, integration of model checking using Hugo/RT (Knapp
et al., 2002, www.pst.ifi.lmu.de/projekte/hugo), and new model
transformation languages to improve design quality.

The remainder of this chapter is structured as follows: The features distin-
guishing UWE’s development process, visual notation and tool support, are
briefly outlined below. UWE’s modeling techniques are discussed step by step
in Sect. 7.2 by means of a simple online movie database case study. The UWE
extensions of the UML metamodel are outlined in Sect. 7.3. UWE’s model-
driven process and, in particular, the model transformations integrated into the
process are described in Sect. 7.4. The CASE tool ArgoUWE which supports
the UWE notation and method is described in Sect. 7.5. Finally, we give an
outlook on future steps in the development of UWE.

7.1.1 Characteristics of the Process
The development of Web systems is subject to continuous changes in user

and technology requirements. Models built so far in any stage of the develop-
ment process have to be easily adaptable to these changes. To cope efficiently
with the required flexibility, UWE advocates a strict separation of concerns in
the early phases of the development and implements a model-driven develop-
ment process, i.e. a process based on the construction of models and model
transformations. The ultimate challenge is to support a development process
that allows fully automated generation of Web systems.

Separation of Concerns Similarly to other Web engineering methods,
the UWE process is driven by the separate modeling of concerns describing a
Web system. Models are built at the different stages of requirements engineer-
ing, analysis, design, and implementation of the development process, and are
used to represent different views of the same Web application corresponding
to the different concerns (content, navigation structure, and presentation). The

UML-Based Web Engineering 159

Views

Phases

Content

Presentation

Analysis

Adaptivity

ImplementationDesign

Navigation structure

Structure

Behavior

Aspects

Figure 7.1. Modeling dimensions in UWE (Schwinger and Koch, 2006)

content model is used to specify the concepts that are relevant to the applica-
tion domain and the relationships between these concepts. The hypertext or
navigation structure is modeled separately from the content, although it is de-
rived from the content model. The navigation model represents the navigation
paths of the Web system being modeled. Presentation specification takes into
account representation and user-machine communication tasks.

UWE proposes at least one type of UML diagram for the visualization of
each model to represent the structural aspects of the different views. How-
ever, in addition very often UML interaction diagrams or state machines are
used to represent behavioral aspects of the Web system. Figure 7.1 shows how
the scope of modeling spans these three orthogonal dimensions: development
stages, system’s views, and aspects. Another concern also handled separately
is adaptivity. Personalized and context-dependent Web systems provide the
user with more appropriate information, links, or pages by being aware of user
or contextual features. We propose to view adaptivity as a cross-cutting con-
cern and thus to use aspect-oriented techniques to model adaptive Web sys-
tems. It can be seen as a fourth dimension influencing all other Web modeling
dimensions: views, aspects, and phases. Requirements models and architec-
ture models focusing on specific Web aspects complete the specification of the
Web system. Separation of concerns offers advantages in the maintenance and
re-engineering of a Web system as well as for the generation of Web systems
for different contexts and platforms.

Development Driven by Models The model-driven development
(MDD) approach not only advocates the use of models (as those described
above) for the development of software, but also emphasizes the need of trans-
formations in all phases of the development, from requirements specification
to designs and from design models to implementations. Transformations be-

160

tween models provide a chain that enables the automated implementation of a
system in successive steps from the different models.

The development of Web systems is a field which lends itself to apply-
ing MDD due to the Web-specific separation of concerns and continuous
changes in technologies in the Web domain. Metamodel-based methods such
as OO-H (Gómez et al., 2001) and UWE constitute a good basis for the
implementation of a model-driven process for the development of Web sys-
tems. They included semi-automated model-based transformations even before
MDD concepts became well-known. For the first guidelines for a systematic
and stepwise construction of models for UWE we refer to Hennicker and Koch,
2001 and Koch, 2001.

UWE emphasizes the relevance of requirements engineering starting with
modeling activities in this early development phase (Escalona and Koch,
2006). Therefore the UWE metamodel includes a set of modeling primitives
that allows for simpler and more specific specification of the requirements of
Web systems.

7.1.2 Characteristics of the Notation
A picture is worth a thousand words. Visual models are naturally used not

only for documentation purposes but also as the crucial chain link in the soft-
ware development process. The trend is the production of domain-specific
visual models. Conversely, the importance of the selection of the modeling
language is not self-evident.

From our point of view, a modeling language has to:

1 provide powerful primitives to construct expressive, yet intuitive models;

2 offer wide CASE tool support;

3 facilitate extension;

4 provide a formal or at least a semi-formal semantics;

5 be easy to learn.

Although UML only fulfills the first three requirements, it seems that UML
is currently the best approach. UML and various UML extensions are suc-
cessfully used in many different application domains. However, there is no
formal semantics covering the whole UML and the fifth requirement can only
be satisfied, if we restrict ourselves to a subset of the modeling constructs of
UML.

Modeling with UML The distinguishing feature of UWE is its UML
compliance since the model elements of UWE are defined in terms of a UML

UML-Based Web Engineering 161

profile and as an extension of the UML metamodel (Koch and Kraus, 2002;
Koch and Kraus, 2003).

Although the UML is expressive enough to model all requirements that
arise in modeling Web systems, it does not offer Web-domain-specific ele-
ments. To ease the modeling of special aspects of Web applications, we define
in UWE special views – using UML’s extension mechanisms – graphically rep-
resented by UML diagrams, such as the navigation model and the presentation
model (Koch, 2001; Koch et al., 2001).

UML modeling techniques comprise the construction of static and dynamic
views of software systems by object and class diagrams, component and de-
ployment diagrams, use case diagrams, state and activity diagrams, sequence
and communication diagrams. The UML extension mechanisms are used to
define stereotypes that we utilize for the representation of Web constructs, such
as nodes and links. In addition, tag definitions and constraints written in OCL
(Object Constraint Language) can be used. This way we obtain a UML com-
pliant notation – a so called UML “lightweight” extension or better known as
UML profile. UWE notation is defined as such a UML profile.

The advantage of using UML diagrams is the common understanding of
these diagrams. Furthermore, the notation and the semantics of the model-
ing elements of “pure” UML, i.e., those modeling elements that comprise the
UML metamodel, are widely described in the OMG documentation (Object
Management Group, 2005). For any software designer with UML background
it is easy to understand a model based on a UML profile, such as the extension
that UWE suggests. We observe that UML extensions “inherit” the problems
of UML, e.g., the lack of a complete formal semantics covering all modeling
elements.

UWE focuses on visual modeling together with systematic design and auto-
matic generation. The aim is to cover the entire development life cycle of Web
systems providing techniques and notations to start with requirements models,
moving through design models as well as including architecture and aspect
models. All these models are visualized using UML diagrammatic techniques.

Metamodeling Metamodeling plays a fundamental role in CASE tool
construction and is as well the core of the model-driven process. A metamodel
is a precise definition of the elements of a modeling language, their relation-
ships and the well-formedness rules needed for creating syntactically correct
models.

Tool-supported design and model-based system generation is becoming es-
sential in the development process of Web systems due to the need of rapid
production of new Web presences and Web applications. CASE tools have to
be built on a precisely specified metamodel of the modeling constructs used
in the design activities, providing more flexibility if modeling requirements

162

change. Metamodels are essential for the definition of model transformations
and automatic code generation.

The UWE metamodel is defined as a conservative extension of the UML
metamodel (Koch and Kraus, 2003). It is the basis for the UWE notation and
UWE tool support. Conservative means that the modeling elements of the
UML metamodel are not modified, e.g., by adding additional features or as-
sociations to the UML modeling element Class. OCL constraints are used to
specify additional static semantics (analogous to the well-formedness rules in
the UML specification). By staying thereby compatible with the MOF inter-
change metamodel we can take advantage of metamodeling tools based on the
corresponding XML interchange format (XMI).

In addition, the UWE metamodel is “profileable” (Baresi et al., 2002),
which means that it is possible to map the metamodel to a UML profile. A
UML profile consists of a hierarchy of stereotypes and a set of constraints.
Stereotypes are used for representing instances of metaclasses and are written
in guillemets, like �menu� or �anchor�. The definition of a UML profile
has the advantage that it is supported by nearly every UML CASE tool either
automatically, by a tool plug-in or passively when the model is saved and then
checked by an external tool. The UWE metamodel could be also used as basis
for building a common metamodel (or ontology) of the concepts needed for
the design in the Web domain (cf. Koch and Kraus, 2003; Escalona and Koch,
2006). Using for this purpose the standardized OMG metamodeling architec-
ture would facilitate the construction of meta CASE tools.

7.1.3 Characteristics of the Tool Environment
The UML compliance of UWE has an important advantage: all CASE tools

which support the Unified Modeling Language can be used to build UWE mod-
els. For this purpose it is sufficient to name stereotypes after the names of the
UWE modeling concepts. Many tools offer additional support with an import
functionality of pre-defined UML profiles. In such a case the profile model
elements can be used in the same way as the built-in UML model elements.

CASE Tool Support A wider developer support is achieved by the open
source plug-in ArgoUWE (www.pst.ifi.lmu.de/projekte/uwe) for
the open source CASE tool ArgoUML (www.argouml.org). In addition to
providing an editor for the UWE notation, ArgoUWE checks the consistency
of models and supports the systematic transformation techniques of the UWE
method. Using the UWE profile, models designed with other UML CASE tools
can be exchanged with ArgoUWE. The use of tools that support not only the
modeling itself but also a model-driven approach shortens development cycles
and facilitates re-engineering of Web systems.

UML-Based Web Engineering 163

Model Consistency Check ArgoUWE also checks the consistency of
models according to the OCL constraints specified for the UWE metamodel.
Consistency checking is embedded into the cognitive design critics feature of
ArgoUML and runs in a background thread. Thus, model deficiencies and
inconsistencies are gathered during the modeling process but the designer is
not interrupted. The designer obtains feedback at any time by taking a look at
this continuously updated list of design critiques, which is shown in the to-do
pane of the tool.

In the following, we exemplify how UWE’s model-driven process, notation,
and tool support are used to develop Web applications.

7.2 Method by Case Study
We use a simple online movie database example that allows users to explore

information about movies and persons related to the production of the movies.
This example is inspired by www.imdb.org and named the “Movie UWE
Case study” (MUC). Movies are characterized, among others, by their genre,
the cast, memorable quotes, trailers, and a soundtrack. Persons related to the
movie production are the director, producer, composer, and the actors. The
user interested in watching a movie can access information on theaters that
show the movie. Registered users – identified by an email and a password –
can provide comments, rate comments, vote movies, manage “their movies”,
and buy tickets in theaters of their preference. The MUC online movie database
personalizes the application giving some recommendations about movies and
providing personalized news to the user.

The focus in the following is on the models built for the different views
of the analysis and design phases (see Fig. 7.1). Model transformations are
described as part of the model-driven process in Sect. 7.4.

7.2.1 Starting with Requirements Specification
The first step towards developing a Web system is the identification of the

requirements for such an application that are specified in UWE with a require-
ments model. Requirements can be documented at different levels of detail.
UWE proposes two levels of granularity when modeling Web system require-
ments. First, a rough description of the functionalities is produced, which are
modeled with UML use cases. In a second step, a more detailed description
of the use cases is developed, e.g., by UML activity diagrams that depict the
responsibilities and actions of the stakeholders.

Overview of Use Cases Use case diagrams are built with the UML el-
ements Actor and UseCase. Actors are used to model the users of the Web

164

system. Typical users of Web systems are the anonymous user (called User)
in the MUC case study, the registered user (RegisteredUser) and the Web sys-
tem administrator. Use cases are used to visualize the functionalities that the
system will provide. The use case diagram depicts use cases, actors, and asso-
ciations among them showing the roles the actors play in the interaction with
the system, e.g., triggering some use cases.

In addition to the UML features, UWE distinguishes between three types
of use cases: navigation, process and personalized use cases. Navigation use
cases are used to model typical user behavior when interacting with a Web ap-
plication, such as browsing through the Web application content or searching
information by keywords. The use case model of Fig. 7.2 for example includes
the �navigation� () use cases ViewMovie, Search and GoToExternalSite. Pro-

Figure 7.2. UWE use case model for MUC

UML-Based Web Engineering 165

cess use cases are used to describe business tasks that end users will perform
with the system; they are modeled in the same way as it is done for traditional
software. These business tasks normally imply transactional actions on the un-
derlying data base. We use “pure” UML notation for their graphical represen-
tation. Typical examples for business use cases are Register, CommentMovie,
and BuyTicket. A third group of use cases are those that imply personalization
of a Web system, such as ViewRecommendations and ViewLatestNews. They
are denoted by a stereotype �personalized� (). Personalization is triggered
by user behavior.

All UML elements for modeling use case diagrams are available, such as
system boundary box, package, generalization relationship, stereotyped de-
pendencies �extend� and �include� among use cases. Figure 7.2 illustrates
the use case diagram for the MUC case study restricted to the functional re-
quirements from the User and RegisteredUser viewpoint.

Detailed View of Use Cases The level of detail and formality of re-
quirements specifications depends on project risks and complexity of the Web
application to be built. But very often a specification based only on use cases
is not enough (Vilain et al., 2000). Analysts use different kinds of refinement
techniques to obtain a more detailed specification of the functional require-
ments, such as workflows, formatted specifications, or prototypes. These rep-
resentations usually include actors, pre- and post-conditions, a workflow de-
scription, exceptions and error situations, information sources, sample results,
and references to other documents. In particular, for the development of Web
systems the informational, navigational, and process goals have to be gathered
and specified. Informational goals indicate content requirements. Navigational
goals point towards the kind of access to content, and process goals specify the
ability of the user to perform some tasks within the Web system (Pressman,
2005).

Following the principle of using UML whenever possible for the specifica-
tion, we refine requirements with UML activity diagrams. For each non-trivial
business use case we build at least one activity diagram for the main stream
of tasks to be performed in order to provide the functionality indicated by the
corresponding use case. Optionally, additional diagrams can be depicted for
exceptions and variants. Activity diagrams include activities, shareholders re-
sponsible for these activities (optional) and control flow elements. They can
be enriched with object flows showing relevant objects for input or output of
those activities.

Figure 7.3 illustrates the activity diagram for the use case BuyTicket of our
MUC case study. The UWE profile includes a set of stereotypes adding Web
specific semantics to UML activity and object nodes. For example, a distinc-
tion is made between the objects that define content, nodes of the application,

166

Figure 7.3. MUC case study: UWE activity diagram detailing the buy-ticket use case

and presentation elements. Visualization is improved by the use of the corre-
sponding icons: for �content�, for �node�, and for Web user interface
(�WebUI�). Stereotypes of activities are used to distinguish possible actions
of the user in the Web environment: browse, search, and transactional activities
that comprise changes in at least one database. To this category of stereotypes
belong: for �browse�, for �query�, and for transactional actions.

7.2.2 Defining the Content
Analysis models provide the basis for the design models, in particular the

content model of a Web system. The aim of the content model is to provide a
visual specification of the domain relevant information for the Web system that
mainly comprises the content of the Web application. However, very often it
includes also entities of the domain required for customized Web applications.
These entities constitute the so-called user profile or user model. Customiza-
tion not only deals with adaptation to the properties of users or user groups,
but also with adaptation to features of the environment. A so called context
profile or context model is built in such a case. The objects occuring in the
detailed view of the use cases provide natural candidates of domain entities for
the content and user model.

The separation of content and user model (or context model) has proven its
value in practice. Both are graphically represented as UML class diagrams.
The content model of MUC is depicted in Fig. 7.4; the user model is shown
in Fig. 7.5. The entities representing content and respectively user or context
properties are modeled by classes, i.e. instances of the UML metaclass Class.

UML-Based Web Engineering 167

Figure 7.4. MUC case study: Content model

Relationships between content and user properties are modeled by UML as-
sociations. In particular, movies are modeled by a class Movie with a set of
properties, such as title and genre forming the attributes of the class Movie, or
as classes associated to Movie like Trailer and ExternalReview. Stakeholders of
the film production, e.g. a movie’s producer, composer, and cast, are modeled
as roles of associations to class Person. Note that Performance and Ticket were
inferred from the activity diagram in Fig. 7.3.

The user model contains the user data (see again Fig. 7.3) needed for the
login of the user and the comments and rating of the movies. All these data
are provided by the users themselves during registration or use of the Web
application. In addition, the system collects information on users by observing
their behavior. The collected data is used for adaptation and is modeled as
a cross-cutting aspect and woven into the user model and other parts of the
system (see Sect. 7.2.6 on aspect-oriented modeling of adaptivity).

There is no need for the definition of additional elements as there is no dis-
tinction to modeling of non-Web applications. We use “pure” UML notation
and semantics. All the features provided by the UML specification for con-

168

Figure 7.5. MUC case study: User model

structing class diagrams can be used, in particular, packages and enumerations
(e.g. Genre in Fig. 7.4) and relationships like generalizations, compositions, or
association classes (e.g. Cast in Fig. 7.4).

7.2.3 Laying Down the Navigation Structure
Based on the requirement analysis and the content modeling, the naviga-

tion structure of a Web application is modeled. Navigation classes (visualized
as) represent navigable nodes of the hypertext structure; navigation links
show direct links between navigation classes. Alternative navigation paths
are handled by �menu�s (). Access primitives are used to reach multiple
instances of a navigation class (�index� , or �guided tour�), or to se-
lect items (�query�). In Web applications that contain business logic the
business processes must be integrated into the navigation structure. The entry
and exit points of the business processes are modeled by process classes ()
in the navigation model, the linkage between each other and to the navigation
classes is modeled by process links. Each process class is associated with a use
case which models a business process. Navigation structures are laid down in
stereotyped UML class diagrams with navigation and process classes, menus,
and access primitives extending the UML metaclass Class, and navigation and
process links extending the UML metaclass Association.

Initial Navigation Structure UWE provides methodological guide-
lines for developing an initial sketch of the navigation structure from the con-
tent model of a Web application (see also Koch and Kraus, 2002; Knapp et al.,
2003): Content classes deemed to be relevant for navigation are selected from
the content model and these classes as well as their associations are put into a
navigation model as navigation classes and navigation links, respectively. Nav-
igation links represent possible steps to be followed by the user, and thus these
links have to be directed; if navigation back and forth between two navigation

UML-Based Web Engineering 169

classes is desired, an association is split into two. Menus are added to every
navigation class that has more than one outgoing association. Finally, access
primitives (index, guided tours and queries) allow for selecting a single infor-
mation entity, as represented by a navigation class. An index, a guided tour
or a query should be added between two navigation classes whenever the mul-
tiplicity of the end target of their linking association is greater than one. The
properties of the content class corresponding to the navigation class over which
the index or the query runs are added as navigation attributes to the navigation
class.

The result of applying these steps of the UWE method to the content model
of the MUC case study in Fig. 7.4 is shown in Fig. 7.6. From the home page

Figure 7.6. MUC case study: Navigation from Movie (fragment)

Home the user can, by means of a query SearchMovie, search for movies of
his interest by criteria like movie name, actors, or directors etc. Soundtrack is
directly reachable through MovieMenu as there may be at most one soundtrack
for each movie whereas there may be several directors which have to be se-
lected from DirectorsIndex. As an example for a bidirectional linkage between
navigation classes, the actors of a movie can be selected from CastIndex reach-
ing a Person, where conversely all movies which this person has contributed
to can be chosen from. The navigation structure has been refined by adding a
home node () as the initial node of the MUC Web application, as well as a
main menu.

170

The UWE profile notation for menus and access primitives provides a com-
pact representation of patterns frequently used in the Web domain. Fig. 7.7(b)
shows the shorthand notation for indexes. Using “pure” UML for modeling
an index would instead, require an additional model element: an index item as
depicted in Fig. 7.7(a). The result would be an overloaded model if it contains
many of such indexes.

(a) “Pure” UML notation for index (b) Shorthand notation for index

Figure 7.7. UWE Profile: Index

Adding Business Processes In a next step, the navigation structure
can now be extended by process classes which represent the entry and exit
points to business processes. These process classes are derived from the non-
navigational use cases. In Fig. 7.8, the business processes Register (linked to
the use case Register) and Login (linked to the use case Login) have been added.
The integration of these classes in the navigation model requires an additional
menu (MainMenu) which provides links to Register, Login and SearchMovies.
A user may only manage his movies, if he has logged in previously. Finally, a
user can buy tickets for a selected movie and a selected performance by navi-
gating to BuyTicket.

Figure 7.8. MUC case study: Integration of business processes into navigation (fragment)

UML-Based Web Engineering 171

A single navigation structure diagram for a whole Web application would
inevitably lead to cognitive overload. Different views to the navigation struc-
ture should be produced from the content model focusing on different aspects
of the application, like navigation to particular content or integration of related
business processes.

7.2.4 Refining the Processes
Each process class included in the navigation model is refined into a process

model consisting of a process flow model and optionally of a process structure
model. The control and data flow is modeled in the process flow model in
the form of an UML activity diagram. It is the result of a refinement process
that starts from the workflow in the requirements model. Figure 7.9 illustrates

Figure 7.9. MUC case study: UWE process flow model for the buy-ticket process

the result of the refinement process applied to Fig. 7.3. This process mainly
consists in the integration of the main stream of the actions with alternatives,
such as Enter new credit card info in case of invalid card numbers or exception
handling (not included in this example). Control elements are added with the
purpose of providing the business logic. Activities and objects can be added to
the activity diagram. A process structure model has the form of a class diagram

172

and describes the relationship between a process class and other classes whose
instances are used to support the business process.

7.2.5 Sketching the Presentation
The presentation model provides an abstract view on the user interface (UI)

of a Web application. It is based on the navigation model and abstracts from
concrete aspects of the UI, like the use of colors, fonts, and where the UI el-
ements are placed on the Web page; instead, the presentation model describes
the basic structure of the user interface, i.e., which UI elements (e.g. text, im-
ages, anchors, forms) are used to present the navigation nodes. The advantage
of the presentation model is that it is independent of the actual techniques used
to implement the Web site, thus allowing the stakeholders to discuss the appro-
priateness of the presentation before actually implementing it.

Figure 7.10. MUC case study: Presentation class Movie

The basic elements of a presentation model are the presentation classes
which are directly based on nodes from the navigation model, i.e. navigation
classes, menus, access primitives, and process classes. A presentation class ()
is composed of UI elements, like text (�text�), anchor (�anchor�), button
(�button�), image (�image�), form (�form�), and anchored collection
(�anchored collection�). Figure 7.10 shows an example of a presentation
class for the navigation class Movie. Note that to ease the identification of
which navigation node is presented by a presentation class, the presentation
class uses by default the same name as the corresponding navigation node.
Each attribute of a navigation class is presented with an appropriate UI ele-
ment. For example, a text element is used for the title attribute and an image
element is used for the photo attribute. The relationship between presentation
classes and UI elements is that of composition. For presentation models, com-
position is pictured by drawing the component, i.e. the UI element, inside the
composite, i.e. the presentation class; note, however, that this notation is not
supported by all CASE tools.

UML-Based Web Engineering 173

Figure 7.11. MUC case study: The presentation model of the movie page

Usually, the information of several navigation nodes is presented on
one Web page, which is modeled by pages (�page�) in UWE. Pages
can contain, among others, presentation classes and presentation groups
(�presentation group�). A presentation group can itself contain presentation
groups and presentation classes. An excerpt of the presentation model of the
movie page is shown in Fig. 7.11. It contains a presentation class for the main
menu, which in turn contains a link (represented by the anchor UI element) to
home, a presentation class for the SearchMovie query, and button UI elements
to start the login and registration processes. The SearchMovie query also pro-
vides an example of the form UI element to enter the movie name to search for.
The presentation class for MovieMenu contains links to the presentation classes
of the corresponding indexes – based on the navigation model in Fig. 7.6 – pro-
viding additional information on the movie. The presentation classes of these
indexes plus the presentation classes for movie are assembled in a presenta-
tion group. The use of the stereotypes �default� and �alternative� for the
associations from Movie, ProducersIndex, etc. to MovieMenu indicates that the
elements of the presentation groups are alternatives, i.e., only one of them is
shown depending on which link was followed from the movie menu, with the
presentation class Movie being shown by default. For example, when the user
follows the producers link in the MovieMenu, the ProducersIndex is shown,
containing the list of the producers of that film.

174

7.2.6 Aspect-Oriented Modeling of Adaptivity
Adaptivity is an increasingly important feature of Web applications. Adap-

tive Web applications provide more appropriate pages to the user by being
aware of user or context properties. An example of adaptivity are recommen-
dations based on user behavior, like movie of favorite actors in our MUC case
study. In general, adaptivity is orthogonal to the three views: content, navi-
gation structure, and presentation (see Fig. 7.1). In order to model adaptive
features of Web applications non-invasively, we use techniques of Aspect-
Oriented Modeling (AOM, cf. Filman et al., 2004) in UWE.

We introduce a new model element named aspect. An aspect is composed
of a pointcut part and an advice part. It is a (graphical) statement expressing
that additionally to the features specified in the principal model, each model el-
ement selected by the pointcut also has the features specified by the advice. In
other words, a complete description, including both general system function-
ality and additional, cross-cutting features of the quantified model elements, is
given by the composition of the principal model and the aspect. The process
of composition is called weaving.

UWE defines several kinds of aspects for modeling different static and run-
time adaptivity (Baumeister et al., 2005). In order to model the recommenda-
tion feature modularly we use on the one hand a model aspect and a runtime
aspect for keeping track of the number of visits of movies pages. On the other
hand, another runtime aspect integrates the recommendation feature into the
login process: A list of movies is presented ranked according to the appear-
ing actors, which in turn are ranked according to their relevance in the visited
movies.

(a) Aspect (b) Class RegisteredUser after weaving

Figure 7.12. MUC case study: Model aspect

The static model aspect for extending the user model (see Fig. 7.5) by an
operation which returns the number of visits of a registered user to a movie
page is shown in Fig. 7.12(a). The pointcut is a pattern containing a special
element, the formal parameter, which is annotated by a question mark. The
pointcut selects all model elements in the base model that match the pattern
thereby instantiating the formal parameter. In our case the formal parame-

UML-Based Web Engineering 175

ter is a class of which only the name RegisterdUser is specified. The point-
cut therefore selects all classes (actually, there is exactly one such class) in
the navigation model with the name RegisteredUser. The advice defines the
change to the selected model elements. After weaving, our RegisteredUser
class is thus extended by the operation visited, see Fig. 7.12(b); no other ele-
ments are affected by this aspect. Model aspects are a special case of aspect-
oriented class diagrams (AOCDs), which are also defined in a lightweight
UML extension and therefore UML compatible, see (Zhang, 2005). Since a
model aspect specifies a static modification of the base model, other, stan-
dardized model transformation languages such as the Atlas Transformation
Language (ATL [Jouault and Kurtev, 2005]), QVT-P (QVT-Partners, 2003), or
QVT (QVT-Merge Group, 2004) may also be used. The advantage of AOCD
compared with these languages is, however, that it does not require the modeler
to have expert knowledge of the UML metamodel, which may make AOCD
easier to use (cf. Sect. 7.4).

Figure 7.13. MUC case study: Link traversal aspect for counting movie visits

The dynamic behavior of our MUC system is extended by two runtime as-
pects. Figure 7.13 shows a link traversal aspect, used to ensure that visited
returns the correct result: the pointcut selects all links from any object – note
that neither the name nor the type of the object to the left is specified and thus
it matches any object – to some Movie object. The advice defines with an OCL
constraint the result of the action fired when such a link is visited: if the cur-
rent user is logged in, the system increases his respective record by one. After
weaving, the behavior of the system is thus enriched by counting user visits to
the movie pages.

Figure 7.14 shows how the business process Login is extended by a flow
aspect. The base model depicted in Fig. 7.14(a) defines the normal workflow
without considering adaptivity: the user is asked to input his email address
and password, then the system verifies the input and responds accordingly.
The adaptive feature of generating recommendations for the user is added by
the aspect shown in Fig. 7.14(b). The pointcut selects every (in this concrete
example, exactly one) control flow edge from a decision point to the OK ac-
tion, which is guarded by the condition valid. The advice deletes this edge by

176

crossing it out and adds an action for recommendation generation and two new
control flow edges to bind it into the process.

(a) Base model

(b) Aspect adding recommendation generation

Figure 7.14. MUC case study: Flow aspect extending Login

7.3 UWE Metamodel
The UWE metamodel is defined as a conservative extension of the UML 2.0

metamodel. Conservative means that the model elements of the UML meta-
model are not modified. Instead, all new model elements of the UWE meta-
model are related by inheritance to at least one model element of the UML
metamodel. We define additional features and relationships for the new ele-
ments. Analogous to the well-formedness rules in the UML specification, we
use OCL constraints to specify the additional static semantics of these new el-
ements. The resulting UWE metamodel is profileable, which means that it is
possible to map the metamodel to a UML profile (Koch and Kraus, 2003). In
particular, UWE stays compatible with the MOF interchange metamodel and
therefore with tools that are based on the corresponding XML interchange for-
mat XMI. The advantage is that all standard UML CASE tools which support
UML profiles or UML extension mechanisms can be used to create UWE mod-
els of Web applications. If technically possible, these CASE tools can further
be extended to support the UWE method. ArgoUWE, see Sect. 7.5, presents an
instance of such CASE tool support for UWE based on the UWE metamodel.

UML-Based Web Engineering 177

Figure 7.15. Overview of the UWE metamodel

The UWE extension of the UML metamodel consists of adding two top-
level packages Core and Adaptivity to the UML, cf. Fig. 7.15. The separa-
tion of concerns of Web applications is reflected by the package structure of
Core, the cross-cutting of adaptation by the dependency of Adaptivity on Core
(see Fig. 7.1). The package Requirements comprises the UWE extensions on
UseCase for discerning navigational from business process and personalized
use cases and the different markings for ActivityNode (�browse�, �query�,
and �transaction�) and ObjectNode (�content�, �node�, and �WebUI�),
see Escalona and Koch, 2006. The navigation and presentation packages bun-
dle UWE’s extensions for the corresponding models. Figure 7.16 details a part
of the metamodel for Navigation with the connection between Node and Link
and their various subclasses. NavigationClass and ProcessClass with the re-
lated NavigationLink and ProcessLink as well as Menu and the access primitives
Index, GuidedTour and Query provide the Web domain specific metaclasses for
building the navigation model. Packages Contents and Process are currently
only used as a stub, reflecting the fact that UWE allows the designer to develop
content and process models using all UML features. Finally, Adaptation con-
tains UWE’s aspect facilities by representing Aspect as a UML Package with
two subpackages Pointcut and Advice.

In order to transfer the UWE metamodel into a UML profile we use UML’s
extension mechanisms (see Sect. 7.1). Figure 7.17 shows how the meta-
classes of the UWE navigation metamodel are rendered as a stereotype hi-
erarchy, forming the UWE navigation profile: Node becomes a stereotype
of Class, NavigationAttribute a stereotype of Property, and Link a stereo-
type of Association. The associations of the UWE navigation metamodel,
e.g., connecting Link to Node cannot be represented by meta-associations
(see Object Management Group, 2005) and have to be added either by stereo-
typing the UML metaclass Dependency or by using the association from

178

Figure 7.16. UWE navigation metamodel

the UML metamodel from which the association is derived. The latter ap-
proach is used for representing the composition between NavigationClass and
NavigationAttribute using the association ownedAttributes; for the association
between AccessPrimitive and NavigationAttribute and the association between
NavigationClass and Menu we stereotype Dependency leading, e.g., to the fol-
lowing constraint:

context Dependency
inv: self.stereotypes->

includes("Primitive2Attribute") implies
(self.client.stereotypes->

includes("AccessPrimitive") and
self.supplier.stereotypes->

includes("NavigationAttribute"))

where client and supplier denote the ends of the Dependency relationship.

Consistency Rules Following the UML, we use OCL to state more pre-
cisely the static semantics of UWE’s new metamodel elements as well as the
dependencies of metamodel elements both inside a single metamodel package
and between packages. As an example, the following constraint states that ev-
ery use case which is neither a navigation nor a personalized use case needs a
process class and that the converse direction holds as well (cf. Fig. 7.18):

context ProcessClass
inv: not self.useCase.oclIsKindOf(NavigationUseCase) and

UML-Based Web Engineering 179

Figure 7.17. UWE navigation profile

Figure 7.18. UWE process metamodel

not self.useCase.oclIsKindOf(PersonalizedUseCase)

context UseCase
inv: (not self.oclIsKindOf(NavigationUseCase) and

not self.oclIsKindOf(PersonalizedUseCase)) implies
ProcessClass.allInstances()->
exists(pn | pn.useCase = self)

180

7.4 Model-Driven Development in UWE
The UWE approach includes the specification of a process for the develop-

ment of Web systems in addition to the UML profile and the UWE metamodel.
The UWE process is model-driven following the MDA principles and using
several other OMG standards, like MOF, UML, OCL, and XMI, and forth-
coming standards, like QVT (QVT-Merge Group, 2004). The process relies on
modeling and model transformations, and its main characteristic is the system-
atic and semi-automatic development of Web systems as detailed in this book
in the chapter on model-driven Web engineering by N. Moreno et al. The aim
of such an MDD process is automatic model transformation which in each step
is based on transformation rules.

Focusing on model transformations the UWE process is depicted in
Fig. 7.19 as a stereotyped UML activity diagram (Meliá et al., 2005). Mod-
els are shown as objects, and transformations are represented with stereotyped
activities (special circular icon).

The process starts with the business model, which MDA calls computa-
tional independent model (CIM), used to specify the requirements. Platform-
independent models (PIMs) are derived from these requirement models. The
set of design models represents the different concerns of the Web applications
comprising: the content, the navigation, the business processes, the presenta-
tion, and the adaptation of the Web system (summarized as FunctionalModels
in Fig. 7.19). In a next step, the different views are integrated into a “big
picture” model of the Web systems, which can be used for validation (Knapp
and Zhang, 2006) and also for generation of platform-dependent models (see
below). A merge with architectural modeling features, either of the “big-
picture model” or the design models directly, results in an integrated PIM
covering functional and architectural aspects. Finally, the platform-specific
models (PSMs) derived from the integration model are the starting point for
code generation.

7.4.1 Transformations from Requirements to
Functional Models

The overall objective of modeling the requirements is the specification of
the system as a CIM and to provide input for the construction of models in
the other development phases (see Figs. 7.1, 7.19, and Sect. 7.2). In particular,
specific objectives for Web systems are the specification of content require-
ments, the specification of the functional requirements in terms of navigation
needs and business processes, the definition of interaction scenarios for differ-
ent groups of Web users, and if required, the specification of personalization
and context adaptation. The first model transformation step of the UWE pro-
cess consists of mapping these Web system requirements models to the UWE

UML-Based Web Engineering 181

:Model for
Struts

«PIM to PSM»
Integration2Struts

:Model for
J2EE

«CIM to PIM»
Req2Architecture

:Architecture
Models

«PIM to PIM»
IntegratingBigPicture&Architecture

«PIM to PSM»

«CIM to PIM»
Req2Functionality

«PIM to PIM»
Functionality2BigPicture

:Functional
Models

:...

«PIM to PIM»
Functionality
Refinement

PIM

CIM

PSM

:Integration
Model

:Requirements
Model

«PIM to PSM»
Integration2J2EE

:BigPicture
Model

Figure 7.19. Overview of model transformations in the UWE process

functional models. Transformation rules are defined therefore as mappings
from the requirements metamodel package to the content, navigation, presenta-
tion, process, and adaptivity packages of the metamodel. How these packages
depend on each other is shown in Fig. 7.15.

For example, UWE distinguishes in the requirements model between differ-
ent types of navigation functionality: browsing, searching, and transactional
activities. Browse actions can be used to enforce the existence of a navigation
path between source and target node. An action of type search indicates the
need of a query in the navigation model in order to allow for user input of a
term and the system responding with a resulting set matching this term (see
Sect. 7.2.1).

Figure 7.20 shows the Search2Query transformation rule specified in QVT’s
graphical notation (QVT-Merge Group, 2004). Source and target of the trans-
formation is the UWE metamodel defined as checkonly and enforce, respec-
tively (identified with an “c” and “e” in Fig. 7.20). For each search with con-

182

Figure 7.20. Transformation rule Search2Query

tent p2 in the requirements model, a query in the navigation model is generated
with an associated navigation attribute p2. For the associated node object in
the requirements model, an index and objects of a navigation class, as well as
corresponding links will be generated.

For more details about the UWE metamodel for Web requirements we refer
the reader to Escalona and Koch, 2006. A detailed description of the trans-
formation rules between CIMs and PIMs for the functional aspects of Web
applications has been presented in Koch et al., 2006. A metamodel of the non-
functional requirements for Web applications and mappings of non-functional
requirements to architectural model elements are subject to future work.

7.4.2 Refinement of Functional Models
The transformations for refining the functional models comprise mappings

from content to navigation model, refinements of the navigation model, and
from the navigation into the presentation model. In UWE, an initial navigation
model is generated based on classes of the content model marked as navigation
relevant (see Sect. 7.2.3). This generation step can be rendered as a transfor-
mation Content2Navigation. From a single content model different navigation
views can be obtained, e.g., for different stakeholders of the Web system like
anonymous user, registered user, and administrator. The generation of each
navigation view requires a set of marks on elements of the content model which
form a so-called marking model kept separately from the content model. The

UML-Based Web Engineering 183

development process cannot be completed in an entirely automatic way, as the
designer has to take the decision about the “navigation relevance” marks; the
Content2Navigation transformation is applied once the marks have been set.

Conversely, the remaining transformation steps for navigation models men-
tioned in Sect. 7.2.3 are turned into transformation rules that can be applied
fully automatically. These rules include for example the insertion of indexes
and menus. Presentation elements are generated from navigation elements.
For example, for each link in the navigation model an appropriate anchor is
required in the presentation model. The main difficulty is the introduction of
the look and feel aspects.

All these transformations are defined as OCL constraints (by preconditions
and postconditions) in UWE and are implemented in Java in the CASE tool
ArgoUWE.

7.4.3 Creation of Validation and Integration
Models

The UWE MDD process comprises two main integration steps: the inte-
gration of all functional models and the integration of functional and non-
functional aspects; the latter integration step is related to architectural design
decisions.

The aim of the first step is the creation of a single model for validating the
correctness of the different functional models and that allows seamless creation
of PSMs. This “big picture” model is a UML state machine, representing the
content, navigation structure, and the business processes of the Web applica-
tion as a whole (presentation aspects will be added in the future). The state
machine can be checked by the tool Hugo/RT (Knapp et al., 2002) – a UML
model translator for model checking, theorem proving, and code generation.

The transformation rules Functional2BigPicture are defined based on a meta-
model graph transformation system. For the implementation of the graph trans-
formation rules any (non-Web specific) tool for graph transformations can be
used. An example of the graph transformation of a navigation node to a state
of the validation model is sketched in Fig. 7.21.

The aim of the second step is the merge of the validation model ele-
ments with information on architectural styles. Following the WebSA ap-
proach (Meliá et al., 2005) we propose to merge functional design models
and architecture models at the PIM level. For example, the elements of the
WebSA models provide a layer-view and a component-view of the architec-
ture, which are also specified as PIMs. Transformation rules are defined based
on the UWE and WebSA metamodels.

184

Figure 7.21. Transformation rule Node2State

7.4.4 Generation of Models and Code for
Specific Platforms

In order to transform PIMs into PSMs additional information of the platform
is required. It can be provided as an additional model or it is implicitly con-
tained in the transformations. For mappings from UWE design models (PIMs)
to PSMs for Web applications we tested different model transformation lan-
guages. The query-view-transformation languages we use are ATL (Jouault
and Kurtev, 2005), QVT-P (QVT-Partners, 2003), and QVT (QVT-Merge
Group, 2004). For example, the following QVT-P transformation tackles the
generation of J2EE elements from Java server pages of the integration model.

relation ServerPage2J2EE {
domain { (IM.IntegrationModel)

[(ServerPage)
[name = nc,
services = { (WebService) [name = on,

type = ot] },
views = { (View) [name = vn] }]] }

domain { (JM.J2EEModel)
[(JavaServerPage)

[name = nc,
forms = { (Form) [name = on,

type = ot] },
beans = { (JavaClass) [name = vn] }]] }

when { services->forAll(s |
WebService2Form(s, F1set.toChoice()))

views->forAll(v |
View2Bean(v, J1set.toChoice())) }

}

The ATL code below exemplifies a transformation rule that maps the el-
ement Anchor of the UWE presentation model to a JSP element. Note
that the transformation rule also involves elements of the navigation model
(NavigationLink).

UML-Based Web Engineering 185

rule Anchor2JSP {
from
uie : UWE!Anchor

(not uie.presentationClass.oclIsUndefined() and
not uie.navigationLink.oclIsUndefined())

to
jsp : JSP!Element

(name <- ’a’,
children <- Sequence { hrefAttribute,

contentNode }),
hrefAttribute : JSP!Attribute
(name <- ’href’,
value <- thisModule.createJSTLURLExpr
(uie.navigationLink.target.name,’objID’)),

contentNode : JSP!TextNode
(value <- uie.name)

}

7.5 CASE Tool ArgoUWE
We have extended the CASE tool ArgoUML into a tool for UWE-based Web

application development, called ArgoUWE (Knapp et al., 2003, www.pst.
ifi.lmu.de/projekte/argouwe). We decided to extend ArgoUML
as it is a feature-rich, open-source tool and offers a plugin architecture. The
drawback of this decision is that the UWE metamodel can not be used directly
since ArgoUML is based on UML 1.3/4. However, a UML 1.x compatible
profile can easily be derived from the UWE metamodel along the same lines
as sketched in Sect. 7.3.

ArgoUML provides support for designing Web applications in the phases
of requirements elicitation and content, navigation, business process as well
as presentation modeling. It provides not only tailored editors for UWE di-
agrams, but also semi-automatic model transformations defined in the UWE
development process. As these model transformations are based on the UWE
metamodel, the tool ensures both consistency between the different models
and integrity of the overall Web application model with respect to UWE’s
OCL constraints. ArgoUWE fully integrates the UWE metamodel (Koch and
Kraus, 2003) and provides XMI export, and thus facilitates data transfer with
other UML-compliant tools. Design deficiencies, such as violations of the
OCL constraints, are reported by an extension of the cognitive design critics of
ArgoUML and can also be checked upon request (see Sect. 7.5.2).

Working with ArgoUWE is intuitive for ArgoUML users, as ArgoUWE
makes use of the graphical interface of ArgoUML. In particular, the UML
model elements and diagrams are structured in a tree view in the explorer ((1)
in Fig. 7.22); the diagrams are edited in the editor pane (2); to-do items of the
designer are listed in the to-do pane (3); tagged values, constraints, and doc-

186

umentation of the currently selected model as well as automatically generated
code skeletons are shown in the details pane (4).

Figure 7.22. MUC case study: ArgoUWE-screenshot of a fragment of the use case model

7.5.1 Model Transformations
ArgoUWE implements some of the aforementioned model transformations

as semi-automatic procedures.

In the content model, the designer may mark classes as navigation rel-
evant. ArgoUWE can then generate an initial navigation model by cre-
ating for each navigation relevant class a navigation class and for each
association between navigation relevant classes a link between the cor-
responding navigation classes.

In the navigation model, ArgoUWE can add indexes and menus auto-
matically. The designer may add queries and guided tours between nav-
igation nodes manually or, alternatively, by selecting a generated index
and changing it into a query or a guided tour.

UML-Based Web Engineering 187

From the navigation model, ArgoUWE can generate a first draft of a
presentation model. For each navigation class and each of its attributes
a presentation class is created. The presentation classes of attributes are
associated to those of the navigation classes by composition.

The generation of Web applications from the presentation model is out of
scope for ArgoUWE. This is done either by hand by the Web designer or semi-
automatically by using frameworks for the implementation of Web applica-
tions, such as Struts (www.struts.apache.org).

7.5.2 Model Consistency
An important requirement of any CASE tool is to support the modeler to

keep his models consistent. Upon model inconsistency, the tool may either
interrupt the modeler and force him first to correct it before continuing mod-
eling, or simply give a warning. We implemented ArgoUWE to do the latter
since we believe that the usability of the modeler being warned yet not in-
terrupted outweighs the drawback of the model being inconsistent for a short
time. Moreover, the ArgoUML feature of design critics provides an excel-
lent starting point for the implementation of the non-interruptive warnings for
UWE models.

The “cognitive design critics” of ArgoUML is one of its distinguishing fea-
tures compared to other modeling tools (cf. Robbins, 1999). During run time,
a thread running in the background keeps checking if the current model shows
deficiencies. For each deficiency found, a design critique item is created and
added to the to-do pane. Design critics not only warn the user that his design
may be improved but can also, by means of a wizard, lead to a better design.
The design critique items range from incompleteness, such as unnamed model
elements, to inconsistency, such as name collisions of different attributes or
operations in a class. Furthermore, design critics also suggest the use of cer-
tain design patterns (Gamma et al., 1995). The issues of design critics can be
sorted by several criteria like priority or the model element causing the design
critique. Design critiques are only warnings and do not interrupt the designer.

ArgoUWE inherits the feature of design critics from ArgoUML. In fact,
all well-formedness constraints of UWE have been fully integrated and are
continuously checked by ArgoUWE in the background at runtime. In Fig. 7.22
the highlighted design critique indicates that the use case CommentMovie does
not show a corresponding process class yet; this critique corresponds to the
metamodel constraints shown in Sect. 7.3.

7.6 Outlook
The UML-based Web Engineering (UWE) approach is continuously evolv-

ing. Evolution is due to: improvement of existing features, such as person-

188

alization of Web systems; adaptation to new technologies, as asynchronous
client-server communication; and introduction of new software engineering
techniques like aspect-orientation and model-driven principles. The challenge
in all these cases is to provide a more intuitive and useful tool for the method-
ological development of Web systems, to increase Web systems quality and to
reduce development time.

The evolution we can currently observe is driven by a set of improvements
that are being addressed and a set of extensions we are planning for UWE. The
most important are:

Specification of the transformations (at metamodel level) of (non-
functional) requirements to architecture models.

Implementation of the “weaving” process for the integration of the
aspect-oriented features in UWE models.

Engineering of Rich Internet Applications (RIAs), e.g. Web applications
based on asynchronous communication like using AJAX (Garrett, 2005).

Tool support for transformations from CIM models to PIM models and
for the UML 2.0 features in UWE.

Integration of a QVT engine (when available) in the tool environment.

Extension of UWE with test models.

Our higher-level goal is the convergence of Web design/development meth-
ods. It is the only way to obtain a powerful domain-specific modeling and
development language that benefits from the advantages of the different meth-
ods. Obviously, there is a trend towards using UML as the common notation
language. Some methods are moving from their proprietary notation to a UML
compliant one and introduce a UML profile; others define a MOF-based meta-
model. It is currently hard to predict how far this converging trend will go and
whether it will eventually lead to a “Unified Web Modeling Language”.

Acknowledgments
Thanks go to Andreas Kraus for providing the ATL transformation rule and

fruitful discussions. This work has been partially supported by the project
MAEWA “Model Driven Development of Web Applications” (WI841/7-1)
of the Deutsche Forschungsgemeinschaft (DFG), Germany and the EC 6th
Framework project SENSORIA “Software Engineering for Service-Oriented
Overlay Computers” (FET-IST 016004).

UML-Based Web Engineering 189

References
Baresi, Luciano, Garzotto, Franca, Mainetti, Luca, and Paolini, Paolo (2002).

Meta-modeling Techniques Meet Web Application Design Tools. In
Kutsche, Ralf-Detlef and Weber, Herbert, editors, Proc. 5th Int. Conf. Fun-
damental Approaches to Software Engineering (FASE’02), volume 2306 of
Lect. Notes Comp. Sci., pages 294–307. Springer, Berlin.

Baumeister, Hubert, Knapp, Alexander, Koch, Nora, and Zhang, Gefei (2005).
Modelling Adaptivity with Aspects. In Lowe and Gaedke, 2005, pages 406–
416.

Baumeister, Hubert, Koch, Nora, and Mandel, Luis (1999). Towards a UML
Extension for Hypermedia Design. In France, Robert and Rumpe, Bernhard,
editors, Proc. 2nd Int. Conf. Unified Modeling Language (UML’99), volume
1723 of Lect. Notes Comp. Sci., pages 614–629. Springer, Berlin.

de Troyer, Olga and Leune, Corneli Jan (1998). WSDM: A User Centered De-
sign Method for Web Sites. Computer Networks, 30(1–7):85–94.

Escalona, Marı́a José and Koch, Nora (2006). Metamodeling the Requirements
of Web Systems. In Proc. 2nd Int. Conf. Web Information Systems and Tech-
nologies (WebIST’06), Setubal, Portugal.

Filman, Robert E., Elrad, Tzilla, Clarke, Siobhán, and Aksit, Mehmet, editors
(2004). Aspect-Oriented Software Development. Addison-Wesley, Reading,
Mass., &c.

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John (1995).
Design Patterns. Addison-Wesley, Boston, &c.

Garrett, Jesse James (2005). Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/publications/essays/
archives/000385.php.

Gómez, Jaime, Cachero, Cristina, and Pastor, Oscar (2001). Conceptual Mod-
eling of Device-Independent Web Applications. IEEE Multimedia, 8(2):26–
39.

Hennicker, Rolf and Koch, Nora (2001). Systematic Design of Web Applica-
tions with UML. In Siau, Keng and Halpin, Terry A., editors, Unified Mod-
eling Language: Systems Analysis, Design and Development Issues, pages
1–20. Idea Group.

Isakowitz, Tomás, Stohr, Eduard A., and Balasubramanian, P. (1995). RMM: A
Methodology for Structuring Hypermedia Design. Comm. ACM, 38(8):34–
44.

Jouault, Frédéric and Kurtev, Ivan (2005). Transforming Models with ATL.
In Bruel, Jean-Michel, editor, Revised Sel. Papers Satellite Events at the
MoDELS 2005 Conf., volume 3844 of Lect. Notes Comp. Sci., pages 128–
138. Springer, Berlin.

190

Knapp, Alexander, Koch, Nora, Moser, Flavia, and Zhang, Gefei (2003). Ar-
goUWE: A CASE Tool for Web Applications. In Proc. 1st Int. Wsh. Engi-
neering Methods to Support Information Systems Evolution (EMSISE’03),
Genève. 14 pages.

Knapp, Alexander, Merz, Stephan, and Rauh, Christopher (2002). Model
Checking Timed UML State Machines and Collaborations. In Damm,
Werner and Olderog, Ernst Rüdiger, editors, Proc. 7th Int. Symp. Formal
Techniques in Real-Time and Fault Tolerant Systems, volume 2469 of Lect.
Notes Comp. Sci., pages 395–416. Springer, Berlin.

Knapp, Alexander and Zhang, Gefei (2006). Model Transformations for Inte-
grating and Validating Web Application Models. In Mayr, Heinrich C. and
Breu, Ruth, editors, Proc. Modellierung 2006 (MOD’06), volume P-82 of
Lect. Notes Inform., pages 115–128. Gesellschaft für Informatik.

Koch, Nora (2001). Software Engineering for Adaptive Hypermedia Systems:
Reference Model, Modeling Techniques and Development Process. PhD the-
sis, Ludwig-Maximilians-Universität München.

Koch, Nora and Kraus, Andreas (2002). The Expressive Power of UML-based
Web Engineering. In Schwabe, Daniel, Pastor, Oscar, Rossi, Gustavo, and
Olsina, Luis, editors, Proc. 2nd Int. Wsh. Web-Oriented Software Technology
(IWWOST’02), pages 105–119. CYTED.

Koch, Nora and Kraus, Andreas (2003). Towards a Common Metamodel for
the Development of Web Applications. In Lovelle, Juan Manuel Cueva,
Rodrı́guez, Bernardo Martı́n González, Aguilar, Luis Joyanes, Gayo, José
Emilio Labra, and del Puerto Paule Ruiz, Marı́a, editors, Proc. Int. Conf.
Web Engineering (ICWE’03), volume 2722 of Lect. Notes Comp. Sci., pages
495–506. Springer, Berlin.

Koch, Nora, Kraus, Andreas, and Hennicker, Rolf (2001). The Au-
thoring Process of the UML-based Web Engineering Approach. In
Schwabe, Daniel, editor, Proc. 1st Int. Wsh. Web-Oriented Software Tech-
nology (IWWOST’01). http://www.dsic.upv.es/˜west2001/
iwwost01/.

Koch, Nora, Zhang, Gefei, and Escalona, Marı́a José (2006). Model Trans-
formations from Requirements to Web System Design. In Wolber, Dave,
Calder, Neil, Brooks, Chris, and Ginige, Athula, editors, Proc. 6th Int. Conf.
Web Engineering (ICWE’06), pages 281–288. ACM.

Lowe, David and Gaedke, Martin, editors (2005). Proc. 5th Int. Conf. Web
Engineering (ICWE’05), volume 3579 of Lect. Notes Comp. Sci. Springer,
Berlin.

Meliá, Santiago, Kraus, Andreas, and Koch, Nora (2005). MDA Transforma-
tions Applied to Web Application Development. In Lowe and Gaedke, 2005,
pages 465–471.

UML-Based Web Engineering 191

Object Management Group (2005). Unified Modeling Language. www.uml.
org.

Object Management Group (2005). Unified Modeling Language: Super-
structure, version 2.0. Specification, OMG. http://www.omg.org/
cgi-bin/doc?formal/05-07-04.

Pressman, Roger (2005). Software Engineering — A Practitioner’s Approach.
McGraw-Hill, Boston–Singapore, 6th edition.

QVT-Merge Group (2004). Revised Submission for MOF 2.0 Query/Views/
Transformations RFP (ad/2002-04-10). Submission, OMG. http://
www.omg.org/cgi-bin/doc?ad/04-04-01.pdf.

QVT-Partners (2003). Revised Submission for MOF 2.0 Query/Views/
Transformations RFP (ad/2002-04-10). Submission, OMG. http://
qvt.org.

Robbins, Jason Elliot (1999). Cognitive Support Features for Software Devel-
opement Tools. PhD thesis, University of California, Irvine.

Schwabe, Daniel and Rossi, Gustavo (1995). The Object-Oriented Hypermedia
Design Model. Comm. ACM, 38(8):45–46.

Schwinger, Wieland and Koch, Nora (2006). Modelling of Web Applications.
In Kappel, Gerti, Pröll, Birgit, Reich, Siegfried, and Retschitzegger, Werner,
editors, Web Engineering: Systematic Development of Web Applications,
pages 39–64. John Wiley, Hoboken.

Vilain, Patricia, Schwabe, Daniel, and de Souza, Clarisse Sieckenius (2000).
A Diagrammatic Tool for Representing User Interaction in UML. In Evans,
Andy, Kent, Stuart, and Selic, Bran, editors, Proc. 3rd Int. Conf. Unified
Modeling Language (UML’00), volume 1939 of Lect. Notes Comp. Sci.,
pages 133–147. Springer, Berlin.

Wirsing, Martin, Koch, Nora, Rossi, Gustavo, Garrido, Alejandra, Mandel,
Luis, Helmerich, Alfred, and Olsina, Luis (1999). Hyper-UML: Specifica-
tion and Modeling of Multimedia and Hypermedia Applications in Dis-
tributed Systems. In Proc. 2nd Wsh. German-Argentinian Bilateral Pro-
gramme for Scientific and Technological Cooperation, Königswinter.

Zhang, Gefei (2005). Towards Aspect-Oriented Class Diagrams. In Proc.
12th Asia Pacific Software Engineering Conf. (APSEC’05), pages 763–768.
IEEE.

