Specification of state-based Systems

Prof. Martin Wirsing

25.11.2002

States and Transition Systems

Goals

- Understanding the difference between explicitly and implicitly given states
- Learn to understand states and transition systems

Functional View:

- A state is represented by a constructor term
- States are passed as explicit parameters of functions

Example (Stack):

The signature of stacks over natural numbers:

sig STACKSIG= sorts Na

sortsNat, Stackopsempty : Stackpush : Nat \times Stack \rightarrow Stacktop : Stack \rightarrow Natpop : Stack \rightarrow Stack

end

A state z_1 is given by following constructor term:

 $z_1 =_{def} push(2, push(1, empty))$

The invocation $pop(z_1)$ changes the state z_1 into the state $z_2 = push(1, empty)$.

4

State-based view:

- A state is implicit and
- The operations have following types.

ops empty : Unit push : Nat \rightarrow Unit top : Unit \rightarrow Nat pop : Unit \rightarrow Unit

The invocation of pop() changes the state z_1 into the state z_2 . A following push(4) leads to the state

 $z_3 =_{def} push(4, push(1, empty))$

Example (State-based view of Person):

The description of persons requires several attributes: name : Name address : Address age : Nat

i.e. a state is given by several components. Operations:

 $\begin{array}{l} \texttt{getName}: \texttt{Unit} \rightarrow \texttt{Name} \\ \texttt{getAddress}: \texttt{Unit} \rightarrow \texttt{Address} \\ \texttt{getAge}: \texttt{Unit} \rightarrow \texttt{Nat} \end{array}$

Example (Functional (algebraic) view of Person):

generated type Person ::= makePerson(getName: Name; getAddress: Address; getAge: Nat)

This defines the set of states with a constructor makePerson : Name \times Address \times Nat \rightarrow Person

and the selection operations getName : Person \rightarrow Name getAddress : Person \rightarrow Address getAge : Person \rightarrow Nat

Definition (State Signature):

Given a signature $\Sigma = (S, F, P)$ and a Σ -structure A.

- A state signature is a family of (system-) variables (X_s)_{s∈S} with X_s countable for all s ∈ S.
- An A-state is an assignment $\sigma: X_s \to A_s$ for all $s \in S$.

Example (Person):

A state signature of Person is: name : Name address : Address age : Nat

8

A structure A with the sorts Name, Address, Nat is e.g.

A state s is e.g.

s(name) = wirsing s(address) = (Schlagintweitstr., 18, München)s(age) = 53

A transition system describes a set of transitions:

Definition:

Given a signature $\Sigma = (S, F, P)$ and a state signature V.

- 1. A transition system $\Gamma = (Z, \delta)$ is given by
 - \circ a set Z of Σ -states and
 - \circ a transition relation $\delta \subseteq Z \times Z$.
- 2. A labelled transition system $\Gamma = (Z, \mathcal{A}, \delta)$ is given by
 - $\circ~$ a set Z of states,
 - $\circ~$ a set ${\cal A}$ of actions and
 - a transition relation $\delta \subseteq Z \times \mathcal{A} \times Z$.

Example (Stack):

Let K be a stack with $K_{\text{Stack}} =_{def} \mathbb{N}^*$

and a state signature stack : Stack

Then the set of states equals K_{Stack} , i.e. $Z =_{def} K_{Stack} = \mathbb{N}^*$

the set of actions equals the invocations of stack operations, i.e. $A =_{def} { push(n) | \in \mathbb{N} } \cup { pop(), top() }$

and the labelled transition system has the transition relation δ with

$$\begin{split} & (\langle \mathsf{stack} = s \rangle, \mathsf{push}(n), \langle \mathsf{stack} = \langle n, s \rangle \rangle) \in \delta \\ & (\langle \mathsf{stack} = \langle n, s \rangle \rangle, \mathsf{pop}(), \langle \mathsf{stack} = s \rangle) \in \delta \\ & (\langle \mathsf{stack} = \langle n, s \rangle \rangle, \mathsf{top}(), \langle \mathsf{stack} = \langle n, s \rangle \rangle) \in \delta \end{split}$$

for all $n \in \mathbb{N}$.

top has not been considered adequately in this example. Better: Include arguments and results of the operation into the action.

 $\begin{array}{lll} \mathcal{A} =_{\mathit{def}} & \mathbb{N} \times \mathsf{push} \times \mathsf{Unit} \\ & \cup & \mathsf{Unit} \times \mathsf{pop} \times \mathsf{Unit} \\ & \cup & \mathsf{Unit} \times \mathsf{top} \times \mathbb{N} \end{array}$

The transition relation has the form:

$$\begin{split} &(\langle \mathsf{stack} = s \rangle, (n, \mathsf{push}, ()), \langle \mathsf{stack} = \langle n, s \rangle \rangle) \\ &(\langle \mathsf{stack} = \langle n, s \rangle \rangle, ((), \mathsf{pop}, ()), \langle \mathsf{stack} = s \rangle) \\ &(\langle \mathsf{stack} = \langle n, s \rangle \rangle, ((), \mathsf{top}, n), \langle \mathsf{stack} = \langle n, s \rangle \rangle) \end{split}$$

for all $n \in \mathbb{N}$.