Specification of state-based Systems

Prof. Martin Wirsing

25.11.2002

Model-oriented Specifications with Z

Model-oriented Specification

- based on concrete mathematical structures (such as sequences, sets,....)
- operations are described by properties of pre- and post states

Ζ

1978 designed by B. Suffrin, J.R. Abrial (Oxford)

VDM

1970 "Vienna Development Method (VDM)" designed by Cliff Jones, D. Bjorner (IBM Vienna)

RAISE

1985 D. Bjorner combines VDM with alg. spec.

Object-Z, Z++ 1990 Z with object-oriented constructs

The Specification Language Z

- set-oriented specification language
- based on Zermelo-Fraenkel set theory
- specification consists of schemata
- A specification consists of
- basic data types
- schemata
- A schema describes
- static aspects
 - possible states of a system
 - state invariants
- dynamic aspects
 - \circ operations
 - $\circ\;$ relations between input and output
 - $\circ~$ change of state

Basic Computation Structures of Z

Z is based on first order predicate logic and typed set theory.

Logic

 $\neg P$ not P $P \wedge Q$ P and Q $P \lor Q$ P or Q $P \Rightarrow Q$ P implies Q $P \Leftrightarrow Q$ P holds if, and only if Q holds $\forall x : T \mid P \bullet Q$ for all x of type T, which satisfy P, Q holds $\forall x : T \bullet Q$ for all x of type T, Q holds (special case) $\exists x : T \mid P \bullet Q$ there exists one x of type T, which satisfies P and Q $\exists_1 x : T \mid P \bullet Q$ there exists exactly one x of type T, which satisfies P and Q

5

Set Theory

$x \in S$	
$S \subseteq T$	
Ø	
$\{x_1,\ldots,x_n\}$	
$\{x: T \mid P\}$	
${x:T \mid P \bullet}$	t

$\mux\colonT$	P
$\mux:T$	$P \bullet t$
$(x_1,\ldots,$	(x_n)
$S_1 \times \ldots$	$\times S_n$

x is element of S S is subset of T, i.e. $\forall x : S \bullet x \in T$ empty set the set consisting of x_1, \ldots, x_n the set of all x of type T, which satisfy P the set of all values of t(x) s.t. x satisfies P, i.e. $\{t(x) \mid x \in T \land P(x)\}$ the only x of type T, which satisfies P the value of t for the only x of type T, which satisfies P ordered n-tuple cartesian product, i.e. $\{x_1 : S_1; \ldots; x_n : S_n \bullet (x_1, \ldots, x_n)\}$

 $\mathbb{P}S$ the set of all subsets of S $\mathbb{F}S$ the set of all *finite* subsets of S $S \cap T$ the intersection of S and T, i.e. $\{x : S \mid x \in T\}$ $S \cup T$ the union of S and T, i.e. $\{x : X \mid x \in S \lor x \in T\}$ (X type of elements of S and T) $S \setminus T$ the set difference, i.e. $\{x : S \mid x \notin T\}$ $\bigcup SS$ generalised union, i.e. $\{x : X \mid (\exists S : SS \bullet x \in S)\}$ #Snumber of elements of finite set S \mathbb{N}, \mathbb{Z} natural numbers, the integers $m \dots n$ interval from m to n, i.e. $\{k : \mathbb{N} \mid m \leq k \land k \leq n\}$

Relations

	Inclations and a second s
$X \leftrightarrow Y$	binary relations between X and Y , i.e. $\mathbb{P}(X imes Y)$
$x \ \underline{R} \ y$	x and y are in relation R , i.e. $(x,y)\in R$
$x \mapsto y$	maplet of x and y , also written (x, y)
$\operatorname{dom} R$	domain of R , i.e. $\{x: X \mid (\exists y: Y \bullet xRy)\}$
$\operatorname{ran} R$	codomain of R, i.e. $\{y: Y \mid (\exists x : X \bullet xRy)\}$
$R_1 \ {}_9^\circ R_2$	relation composition,
	$\{x:X;\ z:Z\mid (\exists\ y:\ Y\bullet x\ R_1\ y\wedge y\ R_2\ z)\bullet (x\mapsto z)\}$
R^{-1} (also $R^{\sim})$	inverse of R, i.e. $\{y: Y; x : \overline{X} \mid x \ \underline{R} \ \overline{y} \bullet (y \mapsto x)\}$
$\mathrm{id}S$	identity relation of S , i.e. $\{x: S \bullet x \mapsto x\}$
$R(\mid S \mid)$	relation image, i.e. $\{y: Y \mid (\exists x: S \bullet x \ \underline{R} \ y)\}$
$S \lhd R$	restriction of the domain, $\{x:X; \ y:Y \mid x \in S \land x \ \underline{R} \ y \bullet (x \mapsto y)\}$
$S \vartriangleleft R$	anti restriction of the domain,
	$\{x:X; \ y:Y \mid x \notin S \land x \ \underline{R} \ y \bullet (x \mapsto y)\}$
$R \vartriangleright T$	restriction of the codomain, $\{x : X; y : Y \mid x \ \underline{R} \ y \land y \in T \bullet (x \mapsto y)\}$
$R \triangleright T$	anti restriction of the codomain,
	$\{x:X; \ y:Y \mid x \ \underline{R} \ y \land y \notin T \bullet (x \mapsto y)\}$
$R_1\oplus R_2$	overwriting of R_1 , where R_2 is defined, $(\mathrm{dom}R_2 riangleq R_1) \cup R_2$

Functions				
$X \leftrightarrow Y$	partial functions from X to Y ,			
	$\{f: X \leftrightarrow Y \mid \forall x : X; y_1, y_2 : Y \bullet x f y_1 \land x f y_2 \Rightarrow y_1 = y_2 \}$			
$X \to Y$	total functions from X to Y, $\{f: X \xrightarrow{-} Y \mid \operatorname{dom} f = X\}$			
$X \twoheadrightarrow Y$	finite partial functions from X to Y, $\{f : X \rightarrow Y \mid \operatorname{dom} f \in \mathbb{F} X\}$			
$X \rightarrowtail Y$	partial injective functions from X to Y, $\{f : X \rightarrow Y \mid f^{-1} \in Y \rightarrow X\}$			
$X \rightarrowtail Y$	total injective functions from X to Y, $(X \to Y) \cap (X \rightarrowtail Y)$			
$X \twoheadrightarrow Y$	partial surjective functions from X to Y, $\{f: X \rightarrow Y \mid \operatorname{ran} f = Y\}$			
$X \twoheadrightarrow Y$	total surjective functions from X to Y, $(X \to Y) \cap (X \twoheadrightarrow Y)$			
$X \rightarrowtail Y$	bijections from X to Y, $(X \rightarrow Y) \cap (X \rightarrow Y)$			
f x, $f(x)$	application of the function f to the argument x , μy : $Y \mid x f y$			
$\lambda x : T \mid P \bullet t$	lambda-notation, $\{ x : T \mid P \bullet x \mapsto t \}$			

8

Sequences

seq X #s $\langle \rangle$ $\langle x_1, \dots, x_n \rangle$ $s \frown t$

sequences over X, $\{s : \mathbb{N} \to X \mid \text{dom } s = 1 \dots \# s\}$ length of s (see # sets) empty sequence ϵ enumeration of a finite sequence, $\{(1 \mapsto x_1), \dots, (n \mapsto x_n)\}$

concatenation of s and t, $s \cup \{i : 1 \dots \# t \bullet (i + \# s \mapsto t(i))\}$

Basic Schemata

The (name for) data type D

[D]

A schema ${\cal S}$ has the form

$$\begin{array}{c} S \\ x_1 : T_1; \ldots; x_n : T_n \\ \hline P \end{array}$$

whereby

- $x_1 : T_1; \ldots; x_n : T_n$ is a set of declarations and
- P is a predicate, that can include a set G of global variables beside x_1, \ldots, x_n .

The semantics of S is given by a state signature and a class of models.

StateSig(S) =_{def} {
$$x_1 : T_1, \ldots, x_n : T_n$$
},

Let G be the signature of the basic structures of Z:

$$\begin{array}{lll} {\sf Sig}(S) &=_{def} & G \cup {\sf StateSig}(S) \\ {\sf SStruct}({\sf StateSig}(S)) &=_{def} & \{A \in {\sf Struct}({\sf Sig}(S)) \ | \\ & A \text{ is standard over the interpretation} \\ & \text{ of the given datatypes } A_D \} \\ {\sf Mod}(S) &=_{def} & \{A \in {\sf Struct}({\sf Sig}(S)) \ | \ A \models P \}. \end{array}$$

Every structure A denotes a possible state of the variables of the schema.

Example (Basic Schemata):

1. The semantic of the schema

$$\begin{array}{c}
S_0 \\
x : \mathbb{Z} \\
y : \operatorname{seq} \mathbb{Z} \\
\hline
x < \# y
\end{array}$$

$$\begin{aligned} \mathsf{StateSig}(S_0) &= \{ x : \mathbb{Z}, y : \mathsf{seq}\mathbb{Z} \} & \text{with types } \mathbb{Z}, \mathsf{seq}\mathbb{Z} \\ \mathsf{Mod}(S_0) &= \{ A \in \mathsf{SStruct}(\mathsf{StateSig}(S_0)) \mid A \models x < \# y \} \end{aligned}$$

2. The schema

$\begin{array}{c} T \\ z : 1 \dots 10 \end{array}$	- is abreviation for	$\begin{array}{c} T \\ z : \mathbb{Z} \\ x : \mathbb{Z} \end{array}$
$x:\mathbb{N}$ $x = z * z$	_	$z \in 1 \dots 10$ $x \in \mathbb{N}$ $x = z * z$

The signature only considers the types of variables, not the state information.

 $\begin{aligned} \mathsf{StateSig}(T) &= G \cup \{ x : \mathbb{Z}, z : \mathbb{Z} \} \\ \mathsf{Mod}(T) &= \{ A \in \mathsf{SStruct}(\mathsf{StateSig}(T)) \mid A \models z \in 1..10 \land x \in \mathbb{N} \land x = z^2 \} \end{aligned}$

3. A birthday book:

[NAME, DATE]

are the basic data types NAME and DATE.

The state space is described by following schema:

 \mathbb{P} = power set, dom = domain, birthday is a partial function, known = dombirthday is an invariant, BirthdayBook has two new variables. $\underline{BirthdayBook}_{intermediated}$ $known : \mathbb{P}NAME$ $birthday : NAME \rightarrow DATE$ $known = \mathsf{dom}birthday$

A possible state is

 $\begin{array}{l} \langle known = \{ "\,\mathsf{Martin"}, "\,\mathsf{Thomas"}, "\,\mathsf{Sabine"} \}, \\ birthday = \{ "\,\mathsf{Martin"} \mapsto "\,\mathsf{24.}\ 12.", "\,\mathsf{Thomas"} \mapsto "\,\mathsf{8.}\ 02.", "\,\mathsf{Sabine"} \mapsto "\,\mathsf{8.}\ 02." \} \end{array}$

 $\begin{aligned} \mathsf{StateSig}(BirthdayBook) &= \{known: \mathbb{P}NAME, birthday: NAME \leftrightarrow DATE\} \\ \mathsf{Mod}(BirthdayBook) &= \{A \in \mathsf{SStruct}(\mathsf{StateSig}(BirthdayBook)) \mid \\ A \models known = \mathsf{dom}birthday \end{aligned} \end{aligned}$

A schema S can be considered as a record with the selectors $x_1 : T_1, \ldots, x_n : T_n$. The renaming of a schema results in a new schema.

e.g.

```
S_1 = [a : \mathbb{N}; b : \operatorname{seq}\mathbb{N} \mid a < \#b]
```

is different from S_0 .

The name is preserved after a combination of schemata. Adding schemata extends the neighbourhood by new schema names.

16

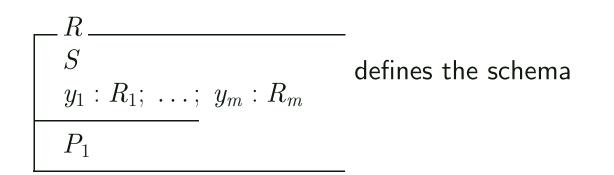
Schema Combination

Operators for combining schemata:

- schema inclusion
- logical composition
- export and hiding
- decoration

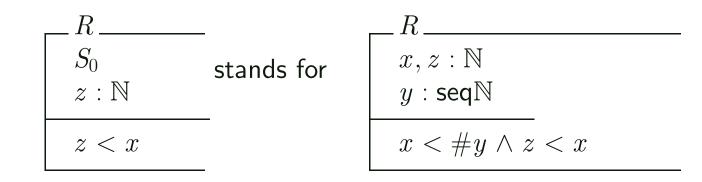
Schema Inclusion

A schema R can be a extension of a schema S:



$$\begin{array}{c} R \\ x_1 : T_1; \ \dots; \ x_n : T_n \\ y_1 : R_1; \ \dots; \ y_m : R_m \\ \hline P \land P_1 \end{array}$$

Example:



Logical Combination of schemata

1. Conjunction

 $S \wedge T =_{def} S$ and T

i.e.

$$\begin{array}{lll} {\rm Sig}(S \wedge T) &=& {\rm Sig}(S) \cup {\rm Sig}(T) \\ {\rm Mod}(S \wedge T) &=& \{A \in {\rm Struct}({\rm Sig}(S \wedge T)) \ | \\ && A \mid_{{\rm Sig}(S)} \in {\rm Mod}(S) \ {\rm and} \ A \mid_{{\rm Sig}(T)} \in {\rm Mod}(T) \} \end{array}$$

 $S\,\wedge\,T$ is the intersection of the models.

Example:

$$S_0 \wedge T = \begin{bmatrix} x : \mathbb{N} \\ y : \operatorname{seq}\mathbb{Z} \\ z : 1 \dots 10 \end{bmatrix}$$
$$x < \#y \wedge x = z * z$$

20

2. Disjunction

The disjunction $S\,\vee\,T$ denotes the union of the models

$$\begin{array}{lll} {\rm Sig}(S \lor T) &=& {\rm Sig}(S) \cup {\rm Sig}(T) \\ {\rm Mod}(S \lor T) &=& \{A \in {\rm Struct}({\rm Sig}(S \lor T)) \ & | \\ & A \mid_{{\rm Sig}(S)} \in {\rm Mod}(S) \ {\rm or} \ A \mid_{{\rm Sig}(T)} \in {\rm Mod}(T) \} \end{array}$$

Example:

$$S_0 \lor T = \begin{bmatrix} x : \mathbb{Z} \\ y : \operatorname{seq} \mathbb{Z} \\ z : 1 \dots 10 \end{bmatrix}$$
$$x < \# y \lor (x \in \mathbb{N} \land x = z * z)$$

3. Negation The schema $\neg S$ represents the complement of the models under preservation of the types:

$$\begin{split} \mathsf{Sig}(\neg \ S) &= \ \mathsf{Sig}(S) \\ \mathsf{Mod}(\neg \ S) &= \ \left\{ \ A \in \mathsf{Struct}(\mathsf{Sig}(S)) \ \mid \ A \notin \mathsf{Mod}(S) \right\} \end{split}$$

Example:

$$\neg T = \begin{bmatrix} x : \mathbb{Z} \\ z : \mathbb{Z} \end{bmatrix}$$
$$x \notin \mathbb{N} \lor z \notin \mathbb{N} \lor z \notin 1 \dots 10 \lor x \neq z * z$$

4. Quantification hides (free) variables.

 $Qx_1: T_1; \ldots; x_k: T_k \mid P \bullet S$

(where k < n, i.e. the variables x_1, \ldots, x_k are in S and have the same type as in S)

$$x_{k+1}: T_{k+1}; \ldots; x_n: T_n$$

 $Qx_1: T_1; \ldots; x_k: T_k \mid P \bullet S$

Example:

 $\exists \, z : \mathbb{N} \mid z > 5 \bullet T \quad = \quad$

 $x : \mathbb{N}$ reduces to $x : \mathbb{N}$ $\exists z : \mathbb{N} \mid z > 5 \bullet z \in 1 ... 10 \land x = z * z$ $\exists z : 6 ... 10 \bullet x = z * z$

If we quantify over all declared variables of a schema S, we write:

 $QS \bullet T$

as abreviation for

$$Qx_1 : T_1; \ldots; x_n : T_n \mid P \bullet T$$

where

$$\begin{array}{c} S \\ x_1 : T_1; \dots; x_n : T_n \\ \hline P \end{array}$$

- 5. Export and hiding of symbols
 - (a) $S \upharpoonright (x_1, \ldots, x_k)$
 - (b) $S \setminus (x_1, \ldots, x_k)$

are schemata, that restrict the signature of S by restriction (a) and hiding (b). These operations can be defined by quantification.

$$S \upharpoonright (x_1, \dots, x_k) =_{def} \exists x_{k+1} : T_{k+1}; \dots; x_n : T_n \bullet S$$
$$S \setminus (x_1, \dots, x_k) =_{def} \exists x_1 : T_1; \dots; x_k : T_k \bullet S$$

Example:

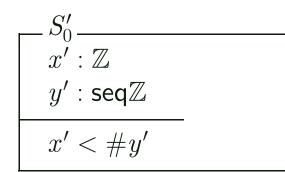
$$T \upharpoonright x = \exists z : \mathbb{N} \bullet T = \boxed{x : \mathbb{N}} = \boxed{x : \mathbb{N}} = \exists z : \mathbb{N} \mid z \in 1 \dots 10 \bullet x = z * z$$

Decoration

The identificators in schemata can be decorated:

$$\begin{array}{c}
S' \\
x_1' : T_1; \ldots; x_n' : T_n \\
P[x_1'/x_1, \ldots, x_n'/x_n]
\end{array}$$

Example:



Semantics of S':

 $\begin{aligned} \mathsf{StateSig}(S') &= \{x' : T \mid x : T \in \mathsf{StateSig}(S)\} \\ \mathsf{Mod}(S') &= \{A \in \mathsf{SStruct}(\mathsf{StateSig}(S')) \mid \exists B \in \mathsf{Mod}(S) : A \mid_{copy} = B\}, \end{aligned}$

where copy(x) = x' for all $x : T \in Sig(S)$ is the signature morphism, that decorates all declared symbols of S with '.

An equivalent form is:

S' = S with copy

State Transitions

 $\Delta S =_{def} S \wedge S'$ Generally the schema S denotes a state space of a abstract data type. Every model of ΔS has the signature $\operatorname{Sig}(S) \cup \operatorname{Sig}(S')$, i.e. let $\operatorname{StateSig}(S) = \{x_1 : T_1, \dots, x_n : T_n\}$. So

$$\begin{aligned} \mathsf{StateSig}(\Delta S) &= \{x_1 : T_1, \dots, x_n : T_n, x'_1 : T_1, \dots, x'_n : T_n\} \\ \mathsf{Mod}(\Delta S) &= \{A \in \mathsf{SStruct}(\mathsf{StateSig}(\Delta S)) \mid A \mid_{\mathsf{Sig}(S)} \in \mathsf{Mod}(S) \text{ and} \\ A \mid_{\mathsf{Sig}(S')} \in \mathsf{Mod}(S')\} \end{aligned}$$

 ΔS can be considered as a state transition, i.e. every element of $Mod(\Delta S)$ consists of a pair $\langle B, B' \rangle$ of algebras, we write:

$$B \to_S B'$$

where $B = A |_{Sig(S)}$ and $B' = A |_{Sig(S')}$ holds for a $A \in Mod(\Delta S)$. ΔS defines the relation between B and B' through the axioms of S, i.e. B and B' can be any models (modulo renaming).

Preservation of Values

 $\Xi S = \Delta S \wedge \bigwedge_{i=1,\dots,n} x_i = x'_i$ ΞS is an abreviation for not changing the values in the post state, that have been declared by the variables of S.

In imperative programing languages, we express local changes of a single variable by x := e.

Let $StateSig(S) = \{x_1 : T_1, \ldots, x_n : T_n\}$. Then for the post-constraint of $x_i := e$ holds :

$$x'_1 = x_1 \wedge \ldots \wedge x'_i = e \wedge \ldots \wedge x'_n = x_n$$

Example (Counter):

Counter

 $\begin{array}{c} _Counter_\\ value, limit : \mathbb{N}\\ \hline\\ value < limit \end{array}$

Define the operation *Inc* (increment):

 $\begin{tabular}{c} Inc \\ \hline \Delta Counter \\ \hline value' = value + 1 \\ limit' = limit \end{tabular}$

Initial state:

Satisfiability conclusion for *InitCounter*:

 $\exists Counter \bullet InitCounter \equiv \\ \exists value, limit : \mathbb{N} \bullet value < limit \land value = 0 \land limit = 100$

Addition (with Input/ Output):

 $\begin{array}{c} Add \\ \Delta Counter \\ jump? : \mathbb{N}, new_value! : \mathbb{N} \\ \hline value' = value + jump? \\ limit' = limit \\ new_value! = value' \\ \end{array}$

Example (Operations of birthday book):

The following property can be proven:

 $known' = known \cup \{name?\}$

Proof 1 (Property of *AddBirthday***):**

known'

- $= \operatorname{dom} birthday'$
- $= \operatorname{dom}(birthday \cup \{name? \mapsto date?\})$
- $= \operatorname{dom} birthday \cup \operatorname{dom} \{name? \mapsto date?\}$
- $= \operatorname{dom} birthday \cup \{name?\}$
- = known \cup {name?}

We used the mathematical properties:

```
[ invariant of Birthday' ]
[ specification AddBirthday ]
[ set theory ]
[ property of dom ]
[ invariant of Birthday ]
```

$$dom(f \cup g) = (dom f) \cup (dom g)$$
$$dom\{a \mapsto b\} = \{a\}$$

33

Semantically *AddBirthday* describes a state transition of StateSig(*BirthdayBook*)-algebras into post-algebras with input variables *name*? and *date*?:

 $A \in \mathsf{Mod}(BirthdayBook) \to_{AddBirthday} A'$

where in A' holds:

 $\begin{array}{lll} known^{A'} &= \mbox{dom} birthday^{A'} \\ birthday^{A'} &= \mbox{birthday}^A \cup \{name?^{A'} \mapsto date?^{A'}\} \\ date?^{A'} & \mbox{any element of the carrier set } Date^{A'} = Date^A \\ name?^{A'} & \mbox{any element } \notin known^A \mbox{ of the carrier set } Name^{A'} = Name^A \end{array}$

The exclamation mark describes an output variable. The following operations do not change the state of BirthdayBook

 $\Xi Birthday Book \equiv \Delta Birthday Book \wedge known' = known \wedge birthday' = birthday$

_FindBirthday _____ EBirthdayBook name? : NAME date! : DATE

 $name? \in known$ date! = birthday(name?)

 $\begin{array}{l} \hline Remind \\ \hline \Xi BirthdayBook \\ today?: DATE \\ cards!: \mathbb{P}NAME \\ \hline cards! = \{ n: NAME \mid n \in known \land birthday(n) = today? \} \end{array}$

Sequential Composition

Two schemata S_1 and S_2 can be combined sequentially by $S_1 \ _9 S_2$.

 $A \to_{S_1} A'', A'' \to_{S_2} A'' \quad \Rightarrow \quad A \to_{S_1^0 S_2} A'$

Formally: Let S_1 and S_2 be defined over the same signature Σ , then:

 $S_1 \circ S_2 =_{def} \exists S'' \bullet S_1[S''/S'] \land S_2[S''/S]$

holds.

Example (Composition of counter operations):

1. Inc $\frac{1}{9}$ Inc = \exists value", limit" : $\mathbb{N} \bullet$

$\Delta Counter$	
value'' = value + 1	=
limit'' = limit	
value' = value'' + 1	
limit' = limit''	

 $\begin{array}{c} Inc & Inc \\ \Delta Counter \\ \hline value' = value + 2 \\ limit' = limit \end{array} \end{array}$

2. Inc $\frac{9}{9}$ Add

$$\begin{array}{c} Inc \ _{9}^{\circ} Add \\ \Delta Counter \\ jump? : \mathbb{N}, new_value! : \mathbb{N} \\ value' = value + jump? + 1 \\ limit' = limit \\ new_value! = value' \end{array}$$

3. Add \S Inc $\begin{array}{r} Add \ \S Inc \\ \Delta Counter \\ jump? : \mathbb{N}, new_value! : \mathbb{N} \\ value' = value + jump? + 1 \\ limit' = limit \\ new_value! = value + jump? \quad (= value' - 1) \end{array}$

Summary

- Z is a model-oriented specification language for state-based systems.
- System states are described by Z-schemata

$$\begin{array}{c} S \\ x_1 : T_1; \dots; x_n : T_n \\ \hline P \end{array}$$

equivalent to $S \cong [x_1 : T_1; \ldots; x_n : T_n \mid P]$

Basic sorts: [*SORT*], e.g. [*ADDRESS*].

• Combination of schemata propositional logic \land,\lor,\neg quantification $\exists \vec{x}: \vec{T} \bullet S, \quad \forall \vec{x}: \vec{T} \bullet S$ export/hiding $S \upharpoonright (\vec{x}), \quad S \setminus (\vec{x})$

- Decoration of names by ' (post-state), ? (input) or ! (output)
- Specification of state changes

$$\Delta S \equiv S \wedge S' \Xi S \equiv \Delta S \wedge \theta S = \theta S'$$

• Sequential composition $S_1 \ {}_9^{\circ} \ S_2$

$$S_1 \circ S_2 \equiv \exists \Sigma'' \bullet S_1[\Sigma''/\Sigma'] \land S_2[\Sigma''/\Sigma]$$

where Σ is the signature of S_1 and S_2 .