Specification of state-based Systems

Prof. Martin Wirsing

Specification Development with Z

Refinement of Operations

For the refinement of operations we consider the following schema:

$$
\begin{aligned}
& - \text { OP } \\
& \Delta \text { State } \\
& x ?: \text { Input } \\
& y!: \text { Output } \\
& P\left(s, x ?, s^{\prime}, y!\right)
\end{aligned}
$$

\qquad
where s, s^{\prime} are variables of the sort state. In sequential notation the schema $O P$ has the form:

$$
O P \widehat{=}\left[\Delta \text { State } ; x ?: \text { Input } ; y!: \text { Output } \mid P\left(s, x ?, s^{\prime}, y!\right)\right]
$$

Note:

In general s and s^{\prime} may have different sorts State $_{1}$ and State $_{2}$, where State $_{1}$ and State $_{2}$ are records.
If there are several input- or output variables, we write x ? and $y!$ for vectors.

The semantics of $O P$ can be characterised by relations.

$$
\llbracket O P \rrbracket=\left\{\left\langle\langle s, x ?\rangle,\left\langle s^{\prime}, y!\right\rangle\right\rangle \in(\text { State } \times \text { Input }) \times(\text { State } \times \text { Output }) \mid P\left(s, x ?, s^{\prime}, y!\right)\right\}
$$

In general $O P$ describes a relation, which accepts for every input several possible post states and output values.

Example:

Let S be the following specification

$$
\frac{x ?, y!: \mathbb{N}}{(0<x ?<3) \wedge(y!<x ?+1)}
$$

In sequential notation

$$
S \widehat{=}[x ?, y!: \mathbb{N} \mid(0<x ?<3) \wedge(y!<x ?+1)]
$$

Then

$$
\llbracket S \rrbracket=\{(x ?, y!): \mathbb{N} \times \mathbb{N} \mid 0<x ?<3 \wedge y!<x ?+1\}
$$

For the input $x ?=2$, the values $0,1,2$ are possible as output $y!$. The input $x ?=7$ is not correct.

Every implementation R of S in a programming language is deterministic, i.e. every input has exactly one result (a value or undefined, if R does not terminate), and R should accept all input values of S.
R is an operational (or relational) refinement of a schema S, if

- R accepts all inputs of S (i.e. dom $S \subseteq \operatorname{dom} R$) and
- if R is more determinate than S for the inputs of S (i.e. $((\operatorname{dom} S) \triangleleft R) \subseteq S$).

Definition:

Let Input, Output, State be sets and $R, S \subseteq($ State \times Input $) \times($ State \times Output $)$. R refines S operationally, if

1. $\operatorname{dom} S \subseteq \operatorname{dom} R$ and
2. $((\operatorname{dom} S) \triangleleft R) \subseteq S)$ holds.

This can also be expressed as follows:

$$
T \subseteq M_{1} \times M_{2}
$$

The characteristic predicate pre T of the domain is defined:

$$
\begin{aligned}
& (\text { pre } T)(a) \quad={ }_{\text {def }} \quad a \in M_{1} \wedge \exists b \in M_{2}: a \underline{T} b \\
& (\operatorname{pre} T)(a) \quad \Leftrightarrow \quad a \in \operatorname{dom} T
\end{aligned}
$$

Then R is an operational refinement of S, if:

1. pre $S \Rightarrow$ pre R, i.e.

$$
\forall a, x ?:(a, x ?) \in \operatorname{dom} S \Rightarrow(a, x ?) \in \operatorname{dom} R
$$

2. pre $S \wedge R \Rightarrow S$, i.e.

$$
\forall a, x ?, b, y!:(a, x ?) \in \operatorname{dom} S \wedge(a, x ?) \underline{R}(b, y!) \Rightarrow(a, x ?) \underline{S}(b, y!)
$$

holds.

Example (Refinement of BirthdayBook.):

BirthdayBook will be combined with two new schemata.

The enumeration type:

$$
R E P O R T::=o k \mid \text { already_known } \mid \text { not_known }
$$

and the two schemata:

Success \qquad result! : REPORT

$$
\text { result }!=o k
$$

AlreadyKnown \qquad ヨBirthdayBook name? : NAME
result! : REPORT
name? \in known
result! = already_known

The new schema

RAddBirthday $\widehat{=}($ AddBirthday \wedge Success $) \vee$ AlreadyKnown
terminates for every input.

RAddBirthday
Δ Birthday
name?: NAME
date?: DATE
result! : REPORT
$($ name $? \notin$ known \wedge birthday $=$ birthday $\cup\{$ name $? \mapsto d a t e ?\} \wedge r e s u l t!=o k)$ $($ name $? \in$ known \wedge birthday $=$ birthday \wedge result $!=$ already_known $)$

A robust version of FindBirthday and Remind can be achieved by using the auxiliary schema:

```
NotKnown
\XiBirthdayBook
name?: NAME
result!: REPORT
name? & known
    result! = not_known
```

$$
\begin{aligned}
\text { RFindBirthday } & \widehat{=}(\text { FindBirthday } \wedge \text { Success }) \vee \text { NotKnown } \\
\text { RRemind } & \widehat{=} \text { Remind } \wedge \text { Success }
\end{aligned}
$$

Change of the Data Structure

- The abstract data types are replaced by concrete data types.
- After a refinement a relation $R \subseteq A S \times K S$ must exist between the abstract specification $A S$ and the concrete specification $K S$.
- Compatibility conditions must exist between the initial states of $A S$ and $K S$, and between the operations $A O P$ and $K O P$ of $A S$ and $K S$.

Example:

1. Representation of 2-dimensional matrices by 1-dimensional vectors:

MATRIX \qquad $a:(1 \ldots r) \times(1 \ldots s) \rightarrow \mathbb{N}$

VEKTOR \qquad $c:(1 \ldots r * s) \rightarrow \mathbb{N}$

The representation relation can be defined as follows:

$$
R \widehat{=}[\operatorname{MATRIX} ; V E K T O R \mid \forall i: 1 \ldots r ; j: 1 \ldots s \bullet a(i, j)=c((i-1) * s+j)]
$$

This representation is bijective.
2. Representation of bags by sequences.

Consider the bags:

$$
b_{1}=\llbracket 0,1,1 \rrbracket, \quad b_{2}=\llbracket 0,1 \rrbracket, \quad b_{3}=\llbracket 1,0,1 \rrbracket
$$

Then $b_{1}=b_{3}$, but $b_{1} \neq b_{2}$.
In Z every bag b with elements of type X is represented by a partial function $b: X \rightarrow \mathbb{N}$. e.g.

$$
b_{1}: \mathbb{N} \rightarrow \mathbb{N} \text { with } b_{1}(0)=1, b_{1}(1)=2, b_{1}(x) \text { undefined for } x>1
$$

Constructors are the empty bag $\llbracket \rrbracket$, the one-element bag $\llbracket x \rrbracket$ and the union \uplus of bags; count (b, x) returns the number of x in b.

Bags are often represented by unordered sequences of natural numbers. Formally we define the representation relation $R \subseteq \operatorname{bag} \mathbb{N} \times \operatorname{seq} \mathbb{N}$ with

$$
\llbracket b_{1}, \ldots, b_{n} \rrbracket \underline{R}\left\langle c_{1}, \ldots, c_{k}\right\rangle \text { iff. } k=n \text { and } c_{1}, \ldots, c_{k} \text { is a permutation of } b_{1}, \ldots, b_{n}
$$

Every bag $\llbracket b_{1}, \ldots, b_{n} \rrbracket$ with $n \geq 2$ has several representatives, e.g.

$\llbracket 0,1 \rrbracket$	representatives	$\langle 0,1\rangle$ and $\langle 1,0\rangle$
$\llbracket 0,1,1 \rrbracket$	representatives	$\langle 0,1,1\rangle,\langle 1,0,1\rangle$ and $\langle 1,1,0\rangle$

Vice versa, every representative has exactly one bag.
3. Representation of bags of bit sequences with paritycheck by sequences of paritychecks

$$
A S
$$

$$
a: \operatorname{bag} \operatorname{seq}\{0,1\}
$$

InitAS AS

$$
a=\llbracket \rrbracket
$$

$$
\begin{aligned}
& -A O P \\
& \Delta A S \\
& x ?: \operatorname{seq}\{0,1\} \\
& y!:\{0,1\} \\
& a^{\prime}=a \uplus \llbracket x ? \rrbracket \\
& y!=(x ?(1)+\ldots+x ?(\# x ?)) \bmod 2
\end{aligned}
$$

The representation relation R relates every element of a bag with its paritycheck. A sequence c with elements from $\{0,1\}$ represents a bag a, if

- the number of 1 's in c equals the number of elements of a, which have a paritycheck 1 and
- the number of 0 's in c equals the number of elements of a, which have a paritycheck 0 .

$$
\begin{aligned}
& \text { R } \\
& { }_{A} S \\
& C S \\
& \hline \forall j \in\{0,1\} \bullet \#(c \upharpoonright\{j\})=\operatorname{sum}\left\{x: \operatorname{dom} a \mid \Sigma_{2}(x)=j \bullet x \mapsto a(x)\right\}
\end{aligned}
$$

where sum b is the number of elements of a bag:

$$
\begin{aligned}
& =[X] \overline{\overline{\operatorname{sum}: \operatorname{bag} X \rightarrow \mathbb{N}}} \\
& \hline \operatorname{sum} \llbracket \rrbracket=0 \\
& \operatorname{sum}(b \uplus \llbracket x \rrbracket)=\operatorname{sum}(b)+1
\end{aligned}
$$

The relation R permits, that abstract elements have several concrete representations and vice versa.

$$
\begin{aligned}
& a_{1}=\llbracket\langle 0\rangle,\langle 0,1\rangle \rrbracket \quad a_{2}=\llbracket\langle 0,0\rangle,\langle 0,1\rangle \rrbracket \\
& c_{1}=\langle 0,1\rangle \quad c_{1}=\langle 1,0\rangle
\end{aligned}
$$

Verification Conditions for Refinements

Reminiscence

C is an operational refinement of A.

1. C applicable, if A applicable $\quad \operatorname{dom} A \subseteq \operatorname{dom} C \quad$ pre $A \Rightarrow$ pre C
2. C is more determinate than $A \quad(\operatorname{dom} A \triangleleft C) \subseteq A \quad(\operatorname{pre} A) \wedge C \Rightarrow A$

Now

Extension of this condition for the change of the data structure.
The relation between state descriptions in abstract specifications and concrete implementations is given by a representation relation.

Idea

The implementation of an operation . . .

1. is applicable in every representative of a state, where the abstract operation is applicable, and
2. leads to a representative of a possible result state of the abstract operation.

Specifications often describe components of large systems. Component specifications serve as

- starting point for the development of the component and
- description of the component interfaces.

During the component development . . .

- it is allowed to reduce the Non-determinism of operations: the other components have to accept every result, permitted by the original specification.
- it is not allowed to restrict the pre-domain of operations: for every permitted input, it is expected to get an output in return, which fulfils the specification.

It is permitted to extend the pre-domain of operations during the refinement, but it can not be used by other components.

Example (Mean Value):

Calculator \qquad sum : \mathbb{Z} cnt : \mathbb{N}
_ AbsInitCalculator___
AbsCalculator
store $=\emptyset$
_ InitCalculator \qquad Calculator

```
sum = cnt = 0
```

Enter \qquad Δ Calculator

$$
n ?: \mathbb{Z}
$$

$$
s u m^{\prime}=\operatorname{sum}+n ?
$$

$$
c n t^{\prime}=c n t+1
$$

\(\left[\begin{array}{l}AbsMean

\triangle A b s C a l c u l a t o r

mean!: \mathbb{Z}\end{array}\right]\)| store $\neq \emptyset$ |
| :--- |
| stor $e^{\prime}=$ store |
| mean $!=\left(\sum\right.$ store $) \operatorname{div}($ card store $)$ |

Mean
Δ Calculator
mean $!: \mathbb{Z}$
cnt $\neq 0$
sum $^{\prime}=$ sum
cnt $^{\prime}=$ cnt
mean $!=$ sum div $c n t$

The relation between Calculator and AbsCalculator is described by the representation relation.
RepCalculator \qquad
AbsCalculator
Calculator
sum $=\sum$ store
cnt $=$ card store

For example the abstract states:

$$
\ \text { store }=\llbracket 2,2,4,6 \rrbracket\rangle \quad \text { and } \quad \backslash \text { store }=\llbracket 1,3,5,5 \rrbracket\rangle
$$

are described by the implementation state

$$
\ s u m=14, c n t=4\rangle
$$

Example (ID Assignment):


```
AbsAssignID
    AAbsID
    newID!: N
    newID! # used
    used}\mp@subsup{}{}{\prime}=\mathrm{ used }\cup{newID!
```

$$
I D
$$

$$
n e x t I D: \mathbb{N}
$$

_ InitID \qquad ID $n e x t I D=0$

$$
\text { nextID }=0
$$

_ AssignID \qquad $\Delta I D$
newID! : \mathbb{N}
$n e w I D!=n e x t I D$
$n e x t I D^{\prime}=n \operatorname{extID}+1$

```
AbsReclaimID
    \DeltaAbsID
    freeID?: N
    used'}=\mathrm{ used \{freeID?}
```

$$
\begin{aligned}
& \text { ReclaimID } \\
& \Xi I D \\
& \text { freeID? : } \mathbb{N}
\end{aligned}
$$

- Determinate implementations: counter instead of sets
- The specification does not exclude the behavior of the implementation.

General case: Given two schema tuples

$$
\text { Abs }=\langle\text { AbsState }, \text { AbsInit }, \text { AbsOps }\rangle \quad \text { and } \quad \text { Conc }=\langle\text { ConcState }, \text { ConcInit }, \text { ConcOps }\rangle
$$

and a representation relation

$$
\text { Rep } \widehat{=}[\text { AbsState } ; \text { ConcState } \mid \text { RepInv }]
$$

Conc refines Abs w.r.t. Rep, if holds:

1. Every possible initial state of Conc represents a possible initial state of $A b s$.
2. For every operation $C O p$ of $C o n c$, there is one operation $A O p$ of $A b s$, so that
(a) If $A O p$ is applicable in state a and if c is a possible representative of a, so $C O p$ is applicable in c.
(b) If c^{\prime} is a possible result state of $C O p$ and if c is representative of a state a, so c^{\prime} is a representative of a possible result state a^{\prime} of $A O p$.
holds.

Definition:

A schema tuple Conc $=\langle$ CState, , Init, $C O p s\rangle$ refines a schema tuple $A b s=\langle$ AState, AInit, AOps \rangle w.r.t. a representation relation Rep, if:
[Initialising] CInit $\Rightarrow \exists$ AState \bullet AInit \wedge Rep
[Operations] For every operation $C O p \in C O p s$ exists an operation $A O p \in A O p s$ with:
[Applicability] $\operatorname{Rep} \wedge($ pre $A O p) \Rightarrow$ pre $C O p$
[Correctness] Rep $\wedge($ pre $A O p) \wedge C O p \Rightarrow \exists$ AState ${ }^{\prime} \bullet A O p \wedge R^{\prime} p^{\prime}$
holds.

Note:

Operation refinement is a special case of this definition with CState $=$ AState, CInit $=$ AInit and the identity as representation relation.

Refinement condition for ID Assignment

Representation relation

$$
\begin{aligned}
& I D R e p \\
& A b s I D \\
& I D \\
& \text { used } \subseteq \operatorname{ran}(0 \ldots \text { nextID }-1)
\end{aligned}
$$

Initialising
$I D \wedge \operatorname{nextID}=0 \Rightarrow \quad \exists$ used \bullet used $\subseteq \operatorname{ran}(0 \ldots-1)$
Assign
(a) IDRep $\wedge($ preAbsAssignID $) \Rightarrow$ preAssignID
(b) IDRep $\wedge($ preAbsAssignID $) \wedge$ AssignID

$$
\Rightarrow \exists A b s I D^{\prime} \bullet A b s A s s i g n I D \wedge I D R e p^{\prime}
$$

$$
\Leftrightarrow
$$

$$
\text { used } \subseteq \operatorname{ran}(0 \ldots n e x t I D-1) \wedge n e w I D!=n e x t I D \wedge n e x t I D^{\prime}=n e x t I D+1
$$

Reclaim

$$
\Rightarrow \exists \text { used }^{\prime} \bullet \text { used }^{\prime}=\text { used } \cup\{\text { newID }!\} \wedge \text { used }^{\prime} \subseteq \operatorname{ran}\left(0 \ldots n e x t I D^{\prime}-1\right)
$$

(a) IDRep $\wedge($ preAbsReclaimID $) \Rightarrow$ preReclaimID
(b) IDRep $\wedge($ preAbsReclaimID $) \wedge$ ReclaimID

$$
\Rightarrow \exists A b s I D^{\prime} \bullet A b s R e c l a i m I D \wedge I D R e p^{\prime}
$$

\Leftrightarrow

$$
\begin{aligned}
& \text { used } \subseteq \operatorname{ran}(0 \ldots \text { nextID }-1) \wedge \text { nextID }=\text { next } I D \\
& \quad \Rightarrow \exists \text { used }^{\prime} \bullet \text { used }^{\prime}=\text { used } \backslash\{\text { freeID } ?\} \wedge \text { used }^{\prime} \subseteq \operatorname{ran}\left(0 \ldots n e x t I D^{\prime}-1\right)
\end{aligned}
$$

A state sequence $s_{0}, s_{1}, s_{2}, \ldots$ is called process of a Z-specification \langle State, Init, $O p s\rangle$, if s_{0} satisfies the initialising condition Init and if for all $i \geq 0$ there is an operation $O p \in O p s$, so that the state pair $\left\langle s_{i}, s_{i+1}\right\rangle$ is a model of $O p$.
Let Conc be a refinement of $A b s$ and let c_{0}, c_{1}, \ldots be a process of Conc, where only concrete operations $C O p$ have been applied.

Then a process a_{0}, a_{1}, \ldots of $A b s$ exists, so that a_{i} is a representative of c_{i} (for all i). If the operation $A O p$ is abblicable in a_{k} and if $C O p$ is a refinement of $A O p$, so $C O p$ is applicable in c_{k}.

Transfer to Imperative Programming Languages

Goals

- Understand the relation between Z-schemata and imperative programs
- Formal development of programs by description of states and operations
- Basics of the refinement calculus

Literature

R. Back, J. von Wright: Refinement calculus-A Systematic Introduction. Springer-Verlag, 1998.
C. Morgan: Programming from Specifications. Prentice-Hall, 3. Auflage 1998.
H. Partsch: Specification and Transformation of Programs. Springer-Verlag, 1990.

Programs as relations over states.

A Z-schema of the form

$$
\left[\begin{array}{l}
O p \\
\hline P \text { State }
\end{array} \text { or } O p \widehat{=}[\Delta \text { State } \mid P]\right.
$$

describes a relation between states. A program can also be interpreted as a relation between two states.

Example:

The following programs transform a state with $x=0 \wedge y=1$ into a state with $x=1 \wedge y=1$.

- $\mathrm{x}:=1$
- $\mathrm{x}:=\mathrm{y}$
- $\mathrm{x}:=\mathrm{x}+1$
- while $\mathrm{x}<1$ do $\mathrm{x}:=\mathrm{x}+1$ end

Example-programming language

according to guarded commands
(Multi-)Assignment
$\mathrm{x}, \mathrm{y}:=\mathrm{x}+\mathrm{y}, \mathrm{y}-\mathrm{x}$
Sequential execution P; Q
Conditional
statement
(non-
determinate)

$$
\begin{array}{llll}
\text { if } & & \\
\text { c] } & b_{1} & -> & P_{1} \\
& \vdots & & \\
\text { [] } b_{n} & -> & P_{n} & \\
\text { else } & & P_{n+1} & \text { (optional) } \\
\text { fi } & & &
\end{array}
$$

Loop do b-> P od
Local block

```
\(\left|\left[\mathrm{x}: \mathrm{T} ; \mathrm{\Pi}_{\mathrm{l}}\right]\right|\)
```

During the development program skeletons are formed, which include Z-schemata for program fragments, which have to be developed.

General framework

A schema tuple \langle State, Init, Ops \rangle is transformed into a program of the form
|[StateDecls ;
Init ;
type Choice = Quit | Op1 | ... | OpN ;
|[choice : Choice ; MakeChoice ;
do choice \neq Quit ->
if choice = Op1 ->
|[InOutDecls1 ; GetInputs1 ; $O p_{1}$; SendOutputs1]|
[] choice $=0 \mathrm{pN}->$
[InOutDeclsN ; GetInputsN ; $O p_{n}$; SendOutputsN]|
fi ;
MakeChoice
od
]|
]

Simplifying assumptions:

- All operations of the starting specification are total.
- Predicates of all schemata include only variables, which occur in the declaration part (no global variables!).
- The types of the declared variables are available in the programming language.

In the following we write $\begin{aligned} & O p \overline{\Delta[\vec{x}: \vec{T}] ; \Xi[\vec{y}: \vec{U}]}$| $P(\vec{x}, \vec{y}) \wedge Q(\vec{y})$ |
| :--- |\end{aligned}

Implementations of $O p$ are only allowed to include assignments for the variables \vec{x}.

Basic principles of the refinement rules:

- Z-schemata are only included at those parts of the program, where their pre-condition is satisfied.
- All variables listed in the declaration part of a schema are declared at this part of the program.
- Only explicitly listed variables in $\Delta[\vec{x}: \vec{T}]$ are allowed to be changed (frame rule).

The applicability principle holds in the starting program, because all operations are expected to be total.

The frame rule refers to the actually declared variables. Local variables may be changed, because they are not visible outside the block.

Implementation

Let Φ, Ψ be (mixed) programs.

$$
\Phi \sqsubseteq \Psi \quad(\Psi \text { implements } \Phi)
$$

holds, iff

1. Ψ is applicable, always when Φ is applicable and
2. every possible state transition according to Ψ is also permitted by Φ, provided that Φ is applicable in the start state.
If we see Φ and Ψ as relations over states,

$$
\Phi \sqsubseteq \Psi \quad \Leftrightarrow \quad \operatorname{dom} \Phi \subseteq \operatorname{dom} \Psi \quad \wedge \quad(\operatorname{dom} \Phi \triangleleft \Psi) \subseteq \Phi
$$

holds again.
If Φ and Ψ are schemata and if Ψ is an operational refinement of $\Phi, \Phi \sqsubseteq \Psi$ holds. This permits predicate logic tranformations during application development. The following rules serve for stepwise transformation of operation schemata into programs.

Introduction of local variables

The new variables can be changed in later refinement steps.
However it is not allowed to make assumptions concerning the starting value, because that would restrict the applicability of $O p 1$

Omitting unused variables

$$
\left[\begin{array} { l }
{ O p \overline { O p } \overline { x } : \vec { T }] ; \Xi [\vec { y } : \vec { U } ; \vec { z } : \vec { V }] } \\
{ \hline P (\vec { x } , \vec { y }) \wedge Q (\vec { y } , \vec { z }) } \\
{ \hline }
\end{array} \quad \left[\begin{array}{l}
O p 1 \\
\hline[\vec{x}: \vec{T}] ; \Xi[\vec{y}: \vec{U}] \\
P(\vec{x}, \vec{y})
\end{array}\right.\right.
$$

Reason

- The frame rule guarantees, that the variables \vec{z} will not be changed.
- The applicability condition guarantees, that $Q(\vec{y}, \vec{z})$ holds before and after the execution of $O p$ and $O p 1$.

Example:

SwapIfGreater
$\Delta[x, y: \mathbb{Z}] ; \Xi[z: \mathbb{N}]$
$z>5 \wedge x^{\prime}=y \wedge y^{\prime}=x$

Swap

$$
\Delta[x, y: \mathbb{Z}]
$$

$$
x^{\prime}=y \wedge y^{\prime}=x
$$

Assignment rule for simple variables

$$
\begin{aligned}
& -O p \\
& \Delta\left[x_{1}: T_{1} ; \ldots ; x_{n}: T_{n}\right] ; \Xi[\vec{y}] \\
& x_{1}^{\prime}=e_{1} \wedge \ldots \wedge x_{n}^{\prime}=e_{n} \\
& P
\end{aligned}
$$

Assumption:

- The variables x_{1}, \ldots, x_{n} are pairwise different.
- The expressions e_{1}, \ldots, e_{n} include no slashed variables and comply directly with the expressions e1,..., en of the programming language.

Correctness of the assignment rule

For the pre-condition of $O p$ holds

$$
\text { pre } O p \equiv P\left[e_{1} / x_{1}^{\prime}, \ldots, e_{n} / x_{n}^{\prime}, \vec{y} / \vec{y}^{\prime}\right]
$$

and the applicability condition guarantees, that this predicate is satisfied before execution of the assigment.

Example:

SwapIfGreater $\Delta[x, y: \mathbb{Z}] ; \Xi[z: \mathbb{N}]$

$$
\sqsubseteq \mathrm{x}, \mathrm{y}:=\mathrm{y}, \mathrm{x}
$$

$z>5 \wedge x^{\prime}=y \wedge y^{\prime}=x$

Generalisation: Array components

Arrays can be modeled in Z by sequences, assigments are equal to the overwriting of an array at a certain index position.

$$
\begin{aligned}
& {\left[\begin{array}{l}
O p \\
\Delta\left[x_{1}: T_{1} ; \ldots ; x_{n}: T_{n}\right] ; \Xi[\vec{y}] \\
\ldots \wedge x_{i}^{\prime}=x_{i} \oplus\{j \mapsto e\} \wedge \ldots \\
P
\end{array}\right.} \\
& \text { if holds: } P \Rightarrow 1 \leq j \leq \# x_{i} \\
& \text { Example: }
\end{aligned}
$$

SwapIJ

$$
\begin{aligned}
& \Delta[x: \operatorname{seq} \mathbb{Z}] ; \Xi[i, j: \mathbb{N}] \\
& x^{\prime}=x \oplus\{i \mapsto x(j), j \mapsto x(i)\} \\
& 1 \leq i<j \leq \# x
\end{aligned}
$$

$$
\sqsubseteq x[i], x[j]:=x[j], x[i]
$$

Similarly: Assignment to record components

Sequentialization

$$
\begin{gathered}
\operatorname{pre} O p \Rightarrow \operatorname{pre} O p_{1} \quad \operatorname{pre} O p \wedge O p_{1} \Rightarrow\left(\operatorname{pre} O p_{2}\right)^{\prime} \quad \operatorname{pre} O p \wedge\left(O p_{1}{ }_{9}^{\circ} O p_{2}\right) \Rightarrow O p \\
O p \quad \sqsubseteq O p_{1} ; O p_{2}
\end{gathered}
$$

Reason

- Is $O p$ applicable in a state s, so $O p_{1}$ is also applicable.
- Every execution of $O p_{1}$ starting from a state s, ends in a state, where $O p_{2}$ is applicable.
- If $O p_{1}$ and $O p_{2}$ are executed sequentially in a state s, so the result satisfies the specification $O p$.

Example (Search for the index position of the maximum in an array):

_ FindMaxPos \qquad
$\Delta[\operatorname{maxel}: \mathbb{N}] ; \Xi[a:$ seq $\mathbb{Z}]$
$\# a>0$
$1 \leq$ maxel $^{\prime} \leq \# a$
$\forall n: 1 \ldots \# a \bullet a\left(\right.$ maxel $\left.^{\prime}\right) \geq a(n)$
Step 1: Introduction of a local variable for the iteration

FindMaxPos $\sqsubseteq \left\lvert\,\left[\right.$ seen:int; $\begin{array}{l}\text { FindMaxSeen } \\ \left.\begin{array}{l}\Delta[\text { maxel }: \mathbb{N} ; \text { seen }: \mathbb{Z}] ; \Xi[a: \text { seq } \mathbb{Z}]\end{array}\right] \mid \\ \# a>0 \\ 1 \leq \text { maxel }^{\prime} \leq \# a \\ \forall n: 1 \ldots \# a \bullet a\left(\text { maxel }^{\prime}\right) \geq a(n)\end{array}\right.$

Step 2: Initialising and further computation of FindMaxSeen

FindMaxSeen \sqsubseteq\begin{tabular}{l}

Initialise $\overline{\mathbb{N} ; \text { seen }: \mathbb{Z}]}$\begin{tabular}{l}
$\Delta[$ maxel $: \mathbb{N}]$

$\Xi[a:$ seq $]$

\hline MaxelInv $^{\prime}$

$\quad ; \quad$

Complete

$\Delta[$ maxel $: \mathbb{N} ;$ seen $: \mathbb{Z}]$

$\Xi[a:$ seq $\mathbb{Z}]$
\end{tabular}

seen $n^{\prime}=\# a$
Δ MaxelInv

\hline
\end{tabular}

with the auxiliary schema

$$
\left[\begin{array}{l}
\text { MaxelInv } \\
\text { maxel }: \mathbb{N} ; \text { seen }: \mathbb{Z} ; a: \operatorname{seq} \mathbb{Z} \\
\# a>0 \\
1 \leq \text { maxel } \leq \text { seen } \leq \# a \\
\forall n: 1 \ldots \text { seen } \bullet a(\text { maxel }) \geq a(n)
\end{array}\right.
$$

Proof 1 (Search for the index position of the maximum in an array):

1. preFindMaxSeen \Rightarrow preInitialise
reduces to $\# a>0 \Rightarrow \# a>0$
2. preFindMaxSeen \wedge Initialise $\Rightarrow(\text { preComplete })^{\prime}$
holds, because Initialise implies the condition MaxelInv'
3. preFindMaxSeen \wedge (Initialise ${ }_{9}^{\circ}$ Complete) \Rightarrow FindMaxSeen

Complete guarantees seen ${ }^{\prime}=\# a \wedge$ MaxelInv $^{\prime}$

Step 3: Implementation of Initialise

Case analysis

Let $O p$ be a schema, b_{1}, \ldots, b_{n} conditions, where only unslashed variables from $O p$ occur and which comply directly with the conditions b1, ..., bn in the programming language.
If pre $O p \Rightarrow b_{1} \vee \ldots \vee b_{n}$, holds, so
$O p \quad \sqsubseteq \quad$ if $\mathrm{b} 1->b_{1} \wedge O p$
[] b2 $\rightarrow>b_{2} \wedge O p$
[] bn $->b_{n} \wedge O p$
fi
Idea: Choose b_{i} so that the single alternatives can be simplified in the following steps.

Correctness

- The applicability condition for the schemata $b_{i} \wedge O p$ hold because of the assumption

$$
\text { pre } O p \Rightarrow b_{1} \vee \ldots \vee b_{n}
$$

- Correctness, because of propositional logical simplifications.

Example (Iteration step for the maximum search):

StepSeen \qquad
$\Delta[$ maxel $: \mathbb{N} ;$ seen $: \mathbb{Z}] ; \Xi[a:$ seq $\mathbb{Z}]$
Δ MaxelInv
seen $^{\prime}=$ seen +1

```
\(\sqsubseteq\left[\begin{array}{l}\text { MoveSeen } \overline{\Delta[\text { seen }: \mathbb{Z}] ; \Xi[a: \text { seq } \mathbb{Z} ; \text { maxel }: \mathbb{N}]} \\ \hline \begin{array}{l}\text { MaxelInv } \\ 1 \leq \text { seen }<\# a \\ \text { seen }\end{array} \quad ; \text { seen }+1\end{array} ;\right.\)
```

$$
\begin{aligned}
& \text { AdjustMaxel } \\
& \Delta[\text { maxel }: \mathbb{N}] ; \Xi[a: \text { seq } \mathbb{Z} ; \text { seen }: \mathbb{Z}] \\
& 1 \leq \text { maxel }<\text { seen } \leq \# a \\
& \forall n: 1 \ldots(\text { seen }-1) \bullet a(\text { maxel }) \geq a(n) \\
& \text { MaxelInv }
\end{aligned}
$$

```
seen := seen+1 ;
if a[seen] > a[maxel] -> a(seen) >a(maxel) ^ AdjustMaxel
[] a[seen] <= a[maxel] -> a(seen ) \leqa(maxel) ^ AdjustMaxel
fi
\sqsubseteq\ldots\sqsubseteq seen := seen+1 ;
    if a[seen] > a[maxel] -> maxel := seen
    [] a[seen] <= a[maxel] -> maxel := maxel
fi
```


Iteration rule

Implementations by a loop $O p \sqsubseteq$ do b $->$ Body od

Idea Invariant Inv and variant v

- The invariant holds at the beginning and at the end of every execution of Body
- The invariant and the condition guarantee applicability in Body
- The invariant and negation of the condition guarantee correctness
- The variant decreases at every execution of Body and ensures termination.

Formally: Let be
Inv, b, Goal Predicates without slashed variables
b Direct translation of b into the programming language
$v \quad$ Numerical arithmetical expression without slashed variables
Iterate \quad Operation schema for the iteration step
$\vec{x}, \vec{y} \quad$ Tuples of all occurring variables

holds, if all following conditions are satisfied:

$$
\begin{aligned}
& \text { Inv } \wedge b \Rightarrow \text { pre Body } \\
& \text { Inv } \wedge \neg b \Rightarrow \text { Goal } \\
& b \wedge \text { Body } \Rightarrow 0 \leq v^{\prime}<v
\end{aligned}
$$

Example (Implementation of Complete by a loop):

Complete \sqsubseteq do seen < \#a $->$ StepSeen od
Instantiation of the iteration rule

Inv	MaxelInv	b	seen $<\# a$
Goal	seen $=\# a$	Iterate	seen $^{\prime}=$ seen +1
v	$\# a-$ seen		

Generated code

```
|[ seen : int ;
    seen, maxel := 1,1 ;
    do seen < #a ->
            seen := seen+1 ;
            if a(seen) > a(maxel) -> maxel := seen
            [] a(seen) <= a(maxel) -> maxel := maxel
            fi
    od ]|
```


Summary

- The effect of operations of state-based systems is not only determined by the input variables, but also depend on the current system state.
- Z-specifications make model-oriented descriptions of state-based and interactive systems possible.
- A typical specification has the form \langle State, Init, Ops \rangle.

Where the schema State defines the components for the description of a state and defines the relation between state components by schemata invariants.
The schema Init describes the subset of possible initial states.
Every operation is described by a schema $O p \in O p s$ with the help of a predicate over pre- and post states and input/output values.

- The basic data structures are described by predefined basic structures. Z has no recursive function definitions.
- Z-schemata can be renamed by decorations and can be combined by logical operators with quantifiers.
- The specification development in Z is based on the refinement concept.
- For an operation refinement $A O p$ by $C O p$ must hold:

$$
\begin{array}{ll}
\text { Applicability condition } & \text { pre } A O p \Rightarrow \text { pre } C O p
\end{array} \text { and }
$$

- The concept of data refinement generalizes this concept for algebraic specifications, by expressing the relation between an abstract specification and the state of an implementation by a relation.
- The development of imperative programs from Z-specifications of operations is formally provided by the refinement calculus.

