
Specification of state-based Systems

Prof. Martin Wirsing

25.11.2002

Specification Development with
Z

M. Wirsing: Specification of state-based Systems, 25.11.2002

2

Refinement of Operations

For the refinement of operations we consider the following schema:

OP
∆State
x? : Input
y ! : Output

P(s , x?, s ′, y !)

where s, s ′ are variables of the sort state. In sequential notation the schema OP has
the form:

OP =̂ [∆State ; x? : Input ; y ! : Output | P(s , x?, s ′, y !)]

M. Wirsing: Specification of state-based Systems, 25.11.2002

3

Note:
In general s and s ′ may have different sorts State1 and State2, where State1 and State2

are records.

If there are several input- or output variables, we write x? and y ! for vectors.

The semantics of OP can be characterised by relations.

[[OP]] = { 〈〈s , x?〉, 〈s ′, y !〉〉 ∈ (State × Input)× (State ×Output) | P(s , x?, s ′, y !) }

In general OP describes a relation, which accepts for every input several possible post
states and output values.

M. Wirsing: Specification of state-based Systems, 25.11.2002

4

Example:

Let S be the following specification

S
x?, y ! : N

(0 < x? < 3) ∧ (y ! < x? + 1)

In sequential notation

S =̂ [x?, y ! : N | (0 < x? < 3) ∧ (y ! < x? + 1)]

Then

[[S]] = { (x?, y !) : N× N | 0 < x? < 3 ∧ y ! < x? + 1 }

For the input x? = 2, the values 0, 1, 2 are possible as output y !. The input x? = 7 is
not correct.

M. Wirsing: Specification of state-based Systems, 25.11.2002

5

Every implementation R of S in a programming language is deterministic, i.e. every
input has exactly one result (a value or undefined, if R does not terminate), and R
should accept all input values of S .

R is an operational (or relational) refinement of a schema S , if

• R accepts all inputs of S (i.e. dom S ⊆ dom R) and

• if R is more determinate than S for the inputs of S (i.e. ((dom S)C R) ⊆ S).

Definition:

Let Input , Output , State be sets and R, S ⊆ (State × Input)× (State ×Output).

R refines S operationally, if

1. dom S ⊆ dom R and

2. ((dom S)C R) ⊆ S) holds.

M. Wirsing: Specification of state-based Systems, 25.11.2002

6

This can also be expressed as follows:

T ⊆ M1 ×M2

The characteristic predicate pre T of the domain is defined:

(pre T)(a) =def a ∈ M1 ∧ ∃ b ∈ M2 : a T b

(pre T)(a) ⇔ a ∈ domT

Then R is an operational refinement of S , if:

1. preS ⇒ preR, i.e.

∀ a, x? : (a, x?) ∈ domS ⇒ (a, x?) ∈ domR

2. preS ∧ R ⇒ S , i.e.

∀ a, x?, b, y ! : (a, x?) ∈ domS ∧ (a, x?) R (b, y !)⇒ (a, x?) S (b, y !)

holds.

M. Wirsing: Specification of state-based Systems, 25.11.2002

Refinement of BirthdayBook . 7

Example (Refinement of BirthdayBook .):

BirthdayBook will be combined with two new schemata.

The enumeration type:

REPORT ::= ok | already known | not known

and the two schemata:

Success
result ! : REPORT

result ! = ok

AlreadyKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? ∈ known
result ! = already known

M. Wirsing: Specification of state-based Systems, 25.11.2002

Refinement of BirthdayBook . 8

The new schema

RAddBirthday =̂ (AddBirthday ∧ Success) ∨ AlreadyKnown

terminates for every input.

RAddBirthday
∆Birthday
name? : NAME
date? : DATE
result ! : REPORT

(name? /∈ known ∧ birthday ′ = birthday ∪ {name? 7→ date?} ∧ result ! = ok) ∨
(name? ∈ known ∧ birthday ′ = birthday ∧ result ! = already known)

M. Wirsing: Specification of state-based Systems, 25.11.2002

Change of the Data Structure 9

A robust version of FindBirthday and Remind can be achieved by using the auxiliary
schema:

NotKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? /∈ known
result ! = not known

RFindBirthday =̂ (FindBirthday ∧ Success) ∨ NotKnown

RRemind =̂ Remind ∧ Success

M. Wirsing: Specification of state-based Systems, 25.11.2002

10

Change of the Data Structure

• The abstract data types are replaced by concrete data types.

• After a refinement a relation R ⊆ AS ×KS must exist between the abstract
specification AS and the concrete specification KS .

• Compatibility conditions must exist between the initial states of AS and KS , and
between the operations AOP and KOP of AS and KS .

M. Wirsing: Specification of state-based Systems, 25.11.2002

11

Example:

1. Representation of 2-dimensional matrices by 1-dimensional vectors:

MATRIX
a : (1 . . r)× (1 . . s)→ N

VEKTOR
c : (1 . . r ∗ s)→ N

The representation relation can be defined as follows:

R =̂ [MATRIX ; VEKTOR | ∀ i : 1 . . r ; j : 1 . . s • a(i , j) = c((i − 1) ∗ s + j)]

This representation is bijective.

M. Wirsing: Specification of state-based Systems, 25.11.2002

12

2. Representation of bags by sequences.
Consider the bags:

b1 = [[0, 1, 1]], b2 = [[0, 1]], b3 = [[1, 0, 1]]

Then b1 = b3, but b1 6= b2.

In Z every bag b with elements of type X is represented by a partial function
b : X 7→ N. e.g.

b1 : N 7→ N with b1(0) = 1, b1(1) = 2, b1(x) undefined for x > 1

Constructors are the empty bag [[]], the one-element bag [[x]] and the union] of
bags; count(b, x) returns the number of x in b.

Bags are often represented by unordered sequences of natural numbers. Formally we
define the representation relation R ⊆ bagN× seqN with

[[b1, . . . , bn]] R 〈c1, . . . , ck〉 iff. k = n and c1, . . . , ck is a permutation of b1, . . . , bn

M. Wirsing: Specification of state-based Systems, 25.11.2002

13

Every bag [[b1, . . . , bn]] with n ≥ 2 has several representatives, e.g.

[[0, 1]] representatives 〈0, 1〉 and 〈1, 0〉
[[0, 1, 1]] representatives 〈0, 1, 1〉, 〈1, 0, 1〉 and 〈1, 1, 0〉

Vice versa, every representative has exactly one bag.

M. Wirsing: Specification of state-based Systems, 25.11.2002

14

3. Representation of bags of bit sequences with paritycheck by sequences of
paritychecks

AS
a : bag seq{0, 1}

InitAS
AS

a = [[]]

AOP
∆AS
x? : seq{0, 1}
y ! : {0, 1}

a ′ = a] [[x?]]
y ! = (x?(1) + . . . + x?(#x?)) mod 2

M. Wirsing: Specification of state-based Systems, 25.11.2002

15

CS
c : seq{0, 1}

InitCS
CS

c = 〈〉

COP
∆CS
x? : seq{0, 1}
y ! : {0, 1}

c′ = c a 〈Σ2(x?)〉
y ! = Σ2(x?)

M. Wirsing: Specification of state-based Systems, 25.11.2002

16

The representation relation R relates every element of a bag with its paritycheck.
A sequence c with elements from {0, 1} represents a bag a, if
◦ the number of 1’s in c equals the number of elements of a, which have a paritycheck 1 and

◦ the number of 0’s in c equals the number of elements of a, which have a paritycheck 0.

R
AS
CS

∀ j ∈ {0, 1} • #(c � {j}) = sum { x : doma | Σ2(x) = j • x 7→ a(x) }

where sum b is the number of elements of a bag:

[X]
sum : bag X → N

sum [[]] = 0
sum(b] [[x]]) = sum(b) + 1

M. Wirsing: Specification of state-based Systems, 25.11.2002

Verification Conditions for Refinements 17

The relation R permits, that abstract elements have several concrete representations
and vice versa.

a1 = [[〈0〉, 〈0, 1〉]] a2 = [[〈0, 0〉, 〈0, 1〉]]

c1 = 〈0, 1〉 c1 = 〈1, 0〉

M. Wirsing: Specification of state-based Systems, 25.11.2002

18

Verification Conditions for Refinements

Reminiscence
C is an operational refinement of A.

1. C applicable, if A applicable domA ⊆ domC preA⇒ preC
2. C is more determinate than A (domAC C) ⊆ A (preA) ∧ C ⇒ A

Now
Extension of this condition for the change of the data structure.

The relation between state descriptions in abstract specifications and concrete
implementations is given by a representation relation.

Idea
The implementation of an operation . . .

1. is applicable in every representative of a state, where the abstract operation is
applicable, and

2. leads to a representative of a possible result state of the abstract operation.

M. Wirsing: Specification of state-based Systems, 25.11.2002

19

Specifications often describe components of large systems. Component specifications
serve as

• starting point for the development of the component and

• description of the component interfaces.

During the component development . . .

• it is allowed to reduce the Non-determinism of operations:
the other components have to accept every result, permitted by the original
specification.

• it is not allowed to restrict the pre-domain of operations:
for every permitted input, it is expected to get an output in return, which fulfils the
specification.

It is permitted to extend the pre-domain of operations during the refinement, but it can
not be used by other components.

M. Wirsing: Specification of state-based Systems, 25.11.2002

Mean Value 20

Example (Mean Value):

AbsCalculator
store : bagZ

Calculator
sum : Z
cnt : N

AbsInitCalculator
AbsCalculator

store = ∅

InitCalculator
Calculator

sum = cnt = 0

AbsEnter
∆AbsCalculator
n? : Z

store ′ = store] [[n?]]

Enter
∆Calculator
n? : Z

sum ′ = sum + n?
cnt ′ = cnt + 1

M. Wirsing: Specification of state-based Systems, 25.11.2002

Mean Value 21

AbsMean
∆AbsCalculator
mean ! : Z

store 6= ∅
store ′ = store
mean ! = (

∑
store) div (card store)

Mean
∆Calculator
mean ! : Z

cnt 6= 0
sum ′ = sum
cnt ′ = cnt
mean ! = sum div cnt

M. Wirsing: Specification of state-based Systems, 25.11.2002

22

The relation between Calculator and AbsCalculator is described by the representation
relation.

RepCalculator
AbsCalculator
Calculator

sum =
∑

store
cnt = card store

For example the abstract states:

〈|store = [[2, 2, 4, 6]]|〉 and 〈|store = [[1, 3, 5, 5]]|〉

are described by the implementation state

〈|sum = 14, cnt = 4|〉

M. Wirsing: Specification of state-based Systems, 25.11.2002

ID Assignment 23

Example (ID Assignment):

AbsID
used : PN

ID
nextID : N

AbsInitID
AbsID

used = ∅

InitID
ID

nextID = 0

AbsAssignID
∆AbsID
newID ! : N

newID ! /∈ used
used ′ = used ∪ {newID !}

AssignID
∆ID
newID ! : N

newID ! = nextID
nextID ′ = nextID + 1

M. Wirsing: Specification of state-based Systems, 25.11.2002

24

AbsReclaimID
∆AbsID
freeID? : N

used ′ = used \ {freeID?}

ReclaimID
ΞID
freeID? : N

• Determinate implementations: counter instead of sets

• The specification does not exclude the behavior of the implementation.

M. Wirsing: Specification of state-based Systems, 25.11.2002

25

General case: Given two schema tuples

Abs = 〈AbsState,AbsInit ,AbsOps〉 and Conc = 〈ConcState,ConcInit ,ConcOps〉

and a representation relation

Rep =̂ [AbsState ; ConcState | RepInv]

Conc refines Abs w.r.t. Rep, if holds:

1. Every possible initial state of Conc represents a possible initial state of Abs.

2. For every operation COp of Conc, there is one operation AOp of Abs, so that
(a) If AOp is applicable in state a and if c is a possible representative of a, so COp is applicable in c.

(b) If c′ is a possible result state of COp and if c is representative of a state a, so c′ is a

representative of a possible result state a ′ of AOp.

holds.

M. Wirsing: Specification of state-based Systems, 25.11.2002

26

Definition:

A schema tuple Conc = 〈CState,CInit ,COps〉 refines a schema tuple
Abs = 〈AState,AInit ,AOps〉 w.r.t. a representation relation Rep, if:

[Initialising] CInit ⇒ ∃AState • AInit ∧ Rep

[Operations] For every operation COp ∈ COps exists an operation AOp ∈ AOps with:

[Applicability] Rep ∧ (pre AOp)⇒ pre COp
[Correctness] Rep ∧ (pre AOp) ∧ COp ⇒ ∃AState ′ • AOp ∧ Rep ′

holds.

Note:
Operation refinement is a special case of this definition with CState = AState,
CInit = AInit and the identity as representation relation.

M. Wirsing: Specification of state-based Systems, 25.11.2002

27

Refinement condition for ID Assignment

Representation relation IDRep
AbsID
ID

used ⊆ ran(0 . . nextID − 1)

Initialising ID ∧ nextID = 0 ⇒ ∃ used • used ⊆ ran(0 . .−1)

Assign (a) IDRep ∧ (preAbsAssignID) ⇒ preAssignID
(b) IDRep ∧ (preAbsAssignID) ∧ AssignID

⇒ ∃AbsID ′ • AbsAssignID ∧ IDRep ′

⇔
used ⊆ ran(0 . . nextID − 1) ∧ newID ! = nextID ∧ nextID ′ = nextID + 1

⇒ ∃ used ′ • used ′ = used ∪ {newID !} ∧ used ′ ⊆ ran(0 . . nextID ′ − 1)
Reclaim (a) IDRep ∧ (preAbsReclaimID) ⇒ preReclaimID

(b) IDRep ∧ (preAbsReclaimID) ∧ ReclaimID
⇒ ∃AbsID ′ • AbsReclaimID ∧ IDRep ′

⇔
used ⊆ ran(0 . . nextID − 1) ∧ nextID ′ = nextID
⇒ ∃ used ′ • used ′ = used \ {freeID?} ∧ used ′ ⊆ ran(0 . . nextID ′ − 1)

M. Wirsing: Specification of state-based Systems, 25.11.2002

Transfer to Imperative Programming Languages 28

A state sequence s0, s1, s2, . . . is called process of a Z-specification 〈State, Init ,Ops〉, if
s0 satisfies the initialising condition Init and if for all i ≥ 0 there is an operation
Op ∈ Ops, so that the state pair 〈si , si+1〉 is a model of Op.

Let Conc be a refinement of Abs and let c0, c1, . . . be a process of Conc, where only
concrete operations COp have been applied.

Then a process a0, a1, . . . of Abs exists, so that ai is a representative of ci (for all i). If
the operation AOp is abblicable in ak and if COp is a refinement of AOp, so COp is
applicable in ck .

r
c0

COp1
r

c1

� -

in1? out1!
A
A
AU �

�
��

�
�
�� A

A
AU

Rep

?

6

ra0
AOp1

ra1

Rep

?

6

� -

COp2
r

c2

� -

AOp2

in2? out2!
A
A
AU �

�
��

�
�
�� A

A
AU

ra2
� -

Rep

?

6

�

�

M. Wirsing: Specification of state-based Systems, 25.11.2002

29

Transfer to Imperative Programming Languages

Goals

• Understand the relation between Z-schemata and imperative programs

• Formal development of programs by description of states and operations

• Basics of the refinement calculus

Literature
R. Back, J. von Wright: Refinement calculus—A Systematic Introduction.
Springer-Verlag, 1998.

C. Morgan: Programming from Specifications. Prentice-Hall, 3. Auflage 1998.

H. Partsch: Specification and Transformation of Programs. Springer-Verlag, 1990.

M. Wirsing: Specification of state-based Systems, 25.11.2002

30

Programs as relations over states.

A Z-schema of the form
Op
∆State

P
or Op =̂ [∆State | P]

describes a relation between states. A program can also be interpreted as a relation
between two states.

Example:

The following programs transform a state with x = 0 ∧ y = 1 into a state with
x = 1 ∧ y = 1.

• x := 1

• x := y

• x := x+1

• while x<1 do x := x+1 end

M. Wirsing: Specification of state-based Systems, 25.11.2002

31

Example-programming language
according to guarded commands

(Multi-)Assignment x,y := x+y, y-x

Sequential execution P ; Q

Conditional
statement
(non-
determinate)

if
[] b1 -> P1

...
[] bn -> Pn
else Pn+1 (optional)
fi

Loop do b -> P od

Local block |[x:T ; Π]|

During the development program skeletons are formed, which include Z-schemata for
program fragments, which have to be developed.

M. Wirsing: Specification of state-based Systems, 25.11.2002

32

General framework

A schema tuple 〈State, Init ,Ops〉 is transformed into a program of the form
|[StateDecls ;

Init ;

type Choice = Quit | Op1 | ... | OpN ;

|[choice : Choice ; MakeChoice ;

do choice 6= Quit ->

if choice = Op1 ->

|[InOutDecls1 ; GetInputs1 ; Op1 ; SendOutputs1]|
. . .
[] choice = OpN ->

|[InOutDeclsN ; GetInputsN ; Opn ; SendOutputsN]|
fi ;

MakeChoice

od

]|
]|

M. Wirsing: Specification of state-based Systems, 25.11.2002

33

Simplifying assumptions:

• All operations of the starting specification are total.

• Predicates of all schemata include only variables, which occur in the declaration part
(no global variables!).

• The types of the declared variables are available in the programming language.

In the following we write
Op
∆[~x : ~T]; Ξ[~y : ~U]

P(~x , ~y) ∧ Q(~y)

Implementations of Op are only allowed to include assignments for the variables ~x .

M. Wirsing: Specification of state-based Systems, 25.11.2002

34

Basic principles of the refinement rules:
• Z-schemata are only included at those parts of the program, where their

pre-condition is satisfied.

• All variables listed in the declaration part of a schema are declared at this
part of the program.

• Only explicitly listed variables in ∆[~x : ~T] are allowed to be changed
(frame rule).

The applicability principle holds in the starting program, because all operations are
expected to be total.

The frame rule refers to the actually declared variables. Local variables may be
changed, because they are not visible outside the block.

M. Wirsing: Specification of state-based Systems, 25.11.2002

35

Implementation

Let Φ,Ψ be (mixed) programs.

Φ v Ψ (Ψ implements Φ)

holds, iff

1. Ψ is applicable, always when Φ is applicable and

2. every possible state transition according to Ψ is also permitted by Φ, provided that Φ
is applicable in the start state.

If we see Φ and Ψ as relations over states,

Φ v Ψ ⇔ dom Φ ⊆ dom Ψ ∧ (dom ΦC Ψ) ⊆ Φ

holds again.

If Φ and Ψ are schemata and if Ψ is an operational refinement of Φ, Φ v Ψ holds. This
permits predicate logic tranformations during application development. The following
rules serve for stepwise transformation of operation schemata into programs.

M. Wirsing: Specification of state-based Systems, 25.11.2002

36

Introduction of local variables

Op
∆[~x : ~T]; Ξ[~y : ~U]

P

v |[~z : ~V ;

Op1

∆[~x : ~T ; ~z : ~V]; Ξ[~y : ~U]

P

]|

for the new variables ~z

The new variables can be changed in later refinement steps.

However it is not allowed to make assumptions concerning the starting value, because
that would restrict the applicability of Op1

M. Wirsing: Specification of state-based Systems, 25.11.2002

37

Omitting unused variables

Op
∆[~x : ~T]; Ξ[~y : ~U ; ~z : ~V]

P(~x , ~y) ∧ Q(~y ,~z)

v
Op1

∆[~x : ~T]; Ξ[~y : ~U]

P(~x , ~y)

Reason

• The frame rule guarantees, that the variables ~z will not be changed.

• The applicability condition guarantees, that Q(~y ,~z) holds before and after the
execution of Op and Op1.

Example:

SwapIfGreater
∆[x , y : Z]; Ξ[z : N]

z > 5 ∧ x ′ = y ∧ y ′ = x

v
Swap
∆[x , y : Z]

x ′ = y ∧ y ′ = x

M. Wirsing: Specification of state-based Systems, 25.11.2002

38

Assignment rule for simple variables

Op
∆[x1 : T1; . . . ; xn : Tn]; Ξ[~y]

x ′1 = e1 ∧ . . . ∧ x ′n = en
P

v x1,...,xn := e1,...,en

Assumption:

• The variables x1, . . . , xn are pairwise different.

• The expressions e1, . . . , en include no slashed variables and comply directly with the
expressions e1,...,en of the programming language.

M. Wirsing: Specification of state-based Systems, 25.11.2002

39

Correctness of the assignment rule
For the pre-condition of Op holds

pre Op ≡ P [e1/x ′1, . . . , en/x ′n, ~y/~y
′]

and the applicability condition guarantees, that this predicate is satisfied before
execution of the assigment.

Example:

SwapIfGreater
∆[x , y : Z]; Ξ[z : N]

z > 5 ∧ x ′ = y ∧ y ′ = x

v x,y := y,x

M. Wirsing: Specification of state-based Systems, 25.11.2002

40

Generalisation: Array components

Arrays can be modeled in Z by sequences, assigments are equal to the overwriting of an
array at a certain index position.

Op
∆[x1 : T1; . . . ; xn : Tn]; Ξ[~y]

. . . ∧ x ′i = xi ⊕ {j 7→ e} ∧ . . .
P

v ...,xi[j],...:= ...,e,...

if holds: P ⇒ 1 ≤ j ≤ #xi

Example:

SwapIJ
∆[x : seqZ]; Ξ[i , j : N]

x ′ = x ⊕ {i 7→ x (j), j 7→ x (i)}
1 ≤ i < j ≤ #x

v x[i],x[j] := x[j],x[i]

Similarly: Assignment to record components

M. Wirsing: Specification of state-based Systems, 25.11.2002

41

Sequentialization

preOp ⇒ preOp1 preOp ∧ Op1 ⇒ (preOp2)′ preOp ∧ (Op1
o
9 Op2)⇒ Op

Op v Op1 ; Op2

Reason

• Is Op applicable in a state s, so Op1 is also applicable.

• Every execution of Op1 starting from a state s, ends in a state, where Op2 is
applicable.

• If Op1 and Op2 are executed sequentially in a state s , so the result satisfies the
specification Op.

M. Wirsing: Specification of state-based Systems, 25.11.2002

Search for the index position of the maximum in an array 42

Example (Search for the index position of the maximum in an array):

FindMaxPos
∆[maxel : N]; Ξ[a : seqZ]

#a > 0
1 ≤ maxel ′ ≤ #a
∀n : 1 . . #a • a(maxel ′) ≥ a(n)

Step 1: Introduction of a local variable for the iteration

FindMaxPos v |[seen:int;

FindMaxSeen
∆[maxel : N; seen : Z]; Ξ[a : seqZ]

#a > 0
1 ≤ maxel ′ ≤ #a
∀n : 1 . . #a • a(maxel ′) ≥ a(n)

]|

M. Wirsing: Specification of state-based Systems, 25.11.2002

Search for the index position of the maximum in an array 43

Step 2: Initialising and further computation of FindMaxSeen

FindMaxSeen v

Initialise
∆[maxel : N; seen : Z]
Ξ[a : seqZ]

MaxelInv ′

;

Complete
∆[maxel : N; seen : Z]
Ξ[a : seqZ]

seen ′ = #a
∆MaxelInv

with the auxiliary schema

MaxelInv
maxel : N; seen : Z; a : seqZ

#a > 0
1 ≤ maxel ≤ seen ≤ #a
∀n : 1 . . seen • a(maxel) ≥ a(n)

M. Wirsing: Specification of state-based Systems, 25.11.2002

44

Proof 1 (Search for the index position of the maximum in an array):

1. preFindMaxSeen ⇒ preInitialise
reduces to #a > 0⇒ #a > 0

2. preFindMaxSeen ∧ Initialise ⇒ (preComplete)′

holds, because Initialise implies the condition MaxelInv ′

3. preFindMaxSeen ∧ (Initialise o
9 Complete)⇒ FindMaxSeen

Complete guarantees seen ′ = #a ∧ MaxelInv ′

Step 3: Implementation of Initialise

Initialise v
InitRefined
∆[maxel : N; seen : Z]; Ξ[a : seqZ]

MaxelInf ′

seen ′ = maxel ′ = 1

(operational refinement)

v seen,maxel := 1,1 (Assignment rule)

M. Wirsing: Specification of state-based Systems, 25.11.2002

45

Case analysis

Let Op be a schema, b1, . . . , bn conditions, where only unslashed variables from Op
occur and which comply directly with the conditions b1, . . . , bn in the programming
language.

If pre Op ⇒ b1 ∨ . . . ∨ bn, holds, so

Op v if b1 -> b1 ∧ Op
[] b2 -> b2 ∧ Op
. . .
[] bn -> bn ∧ Op
fi

Idea: Choose bi so that the single alternatives can be simplified in the following steps.

Correctness

• The applicability condition for the schemata bi ∧ Op hold because of the assumption

preOp ⇒ b1 ∨ . . . ∨ bn

• Correctness, because of propositional logical simplifications.

M. Wirsing: Specification of state-based Systems, 25.11.2002

Iteration step for the maximum search 46

Example (Iteration step for the maximum search):

StepSeen
∆[maxel : N; seen : Z]; Ξ[a : seqZ]

∆MaxelInv
seen ′ = seen + 1

v

MoveSeen
∆[seen : Z]; Ξ[a : seqZ; maxel : N]

MaxelInv
1 ≤ seen < #a
seen ′ = seen + 1

;

AdjustMaxel
∆[maxel : N]; Ξ[a : seqZ; seen : Z]

1 ≤ maxel < seen ≤ #a
∀n : 1 . . (seen − 1) • a(maxel) ≥ a(n)
MaxelInv ′

M. Wirsing: Specification of state-based Systems, 25.11.2002

47

v seen := seen+1 ;

if a[seen] > a[maxel] -> a(seen) > a(maxel) ∧ AdjustMaxel
[] a[seen] <= a[maxel] -> a(seen) ≤ a(maxel) ∧ AdjustMaxel
fi

v . . . v seen := seen+1 ;

if a[seen] > a[maxel] -> maxel := seen

[] a[seen] <= a[maxel] -> maxel := maxel

fi

M. Wirsing: Specification of state-based Systems, 25.11.2002

48

Iteration rule

Implementations by a loop Op v do b -> Body od

Idea Invariant Inv and variant v

• The invariant holds at the beginning and at the end of every execution of Body
• The invariant and the condition guarantee applicability in Body
• The invariant and negation of the condition guarantee correctness

• The variant decreases at every execution of Body and ensures termination.

M. Wirsing: Specification of state-based Systems, 25.11.2002

49

Formally: Let be
Inv , b, Goal Predicates without slashed variables
b Direct translation of b into the programming language
v Numerical arithmetical expression without slashed variables
Iterate Operation schema for the iteration step
~x , ~y Tuples of all occurring variables

Op
∆[~x]; Ξ[~y]

∆Inv
Goal ′

v do b ->

Body
∆[~x]; Ξ[~y]

∆Inv
Iterate

od

holds, if all following conditions are satisfied:

Inv ∧ b ⇒ pre Body
Inv ∧ ¬ b ⇒ Goal
b ∧ Body ⇒ 0 ≤ v ′ < v

M. Wirsing: Specification of state-based Systems, 25.11.2002

Summary 50

Example (Implementation of Complete by a loop):

Complete v do seen < #a -> StepSeen od

Instantiation of the iteration rule

Inv MaxelInv b seen < #a
Goal seen = #a Iterate seen ′ = seen + 1
v #a − seen

Generated code

|[seen : int ;

seen, maxel := 1,1 ;

do seen < #a ->

seen := seen+1 ;

if a(seen) > a(maxel) -> maxel := seen

[] a(seen) <= a(maxel) -> maxel := maxel

fi

od]|

M. Wirsing: Specification of state-based Systems, 25.11.2002

51

Summary

• The effect of operations of state-based systems is not only determined by the input
variables, but also depend on the current system state.

• Z-specifications make model-oriented descriptions of state-based and interactive
systems possible.

• A typical specification has the form 〈State, Init ,Ops〉.
Where the schema State defines the components for the description of a state and
defines the relation between state components by schemata invariants.

The schema Init describes the subset of possible initial states.

Every operation is described by a schema Op ∈ Ops with the help of a predicate
over pre- and post states and input/output values.

• The basic data structures are described by predefined basic structures. Z has no
recursive function definitions.

• Z-schemata can be renamed by decorations and can be combined by logical
operators with quantifiers.

• The specification development in Z is based on the refinement concept.

M. Wirsing: Specification of state-based Systems, 25.11.2002

52

• For an operation refinement AOp by COp must hold:
Applicability condition preAOp ⇒ preCOp and
Correctness condition (preAOp) ∧ COp ⇒ AOp

• The concept of data refinement generalizes this concept for algebraic specifications,
by expressing the relation between an abstract specification and the state of an
implementation by a relation.

• The development of imperative programs from Z-specifications of operations is
formally provided by the refinement calculus.

MMISS: Kurztitel, December 16, 2002

	Specification Development with Z
	Refinement of Operations
	Change of the Data Structure
	Verification Conditions for Refinements
	Transfer to Imperative Programming Languages
	Zusammenfassung

