
Foundations of System Development

Prof. Dr. Martin Wirsing

04.10.2002

Contents

M. Wirsing: Foundations of System Development, 04.10.2002

• Data-oriented specification development
(Abstract data types, change of data structures and refinement, CASL)

• Specification of dynamic systems
(Transition systems, model based specifications, invariants, Pre- and Post-conditions,
Z, refinement)

• Validation and refinement of concurrent, dynamic and reactive systems
(Features of processes, temporal logic, model checking, TLA, refinement)

Contents 1

System Development and Formal Specification

Prof. Dr. Martin Wirsing

04.10.2002

M. Wirsing: System Development and Formal Specification, 04.10.2002

Introduction

M. Wirsing: System Development and Formal Specification, 04.10.2002

Introduction 3

Goals

• understanding the process of System Development and the importance of validation
and verification

• show (technical) problems in System Development

• give an overview of formal methods for System Development

Related courses

• Object-Oriented Software Development

• Formal Object-Oriented Software Development

• Temporal Logic

• Model Checking Practical Course

• Software Engineering Practical Course

M. Wirsing: System Development and Formal Specification, 04.10.2002

Introduction 4

Introductory Examples

• Spacecraft Mariner I was destroyed on 22 of Juli 1962, 18–20 million dollars were
lost. The program included following code-fragment:

if not in radar contact with the rocket
then
do not correct its flight path

• Similar software bugs destroyed space rocket Ariane 5 in spring 1996

• The ”Deutsche Telekom ltd.” lost plenty money, because of a wrong calculation of
telephone bills.

• The Windows Calculator (Version 3.1–8.3) had following computer bug:

2.01
−2.00

0.00

• A bug in Therac 25, a medical attendance tool for cancer, lead to
erythema(burnings) and cases of death

M. Wirsing: System Development and Formal Specification, 04.10.2002

The Software Lifecycle 5

The Software Lifecycle

System-Development-Process

Verification
Validation

Analysis and Specification of requirements

Detailed Design

Implementation

Integration

Maintenance

System design and System specification

M. Wirsing: System Development and Formal Specification, 04.10.2002

The Software Lifecycle 6

• Analysis and Specification of Requirements. Creates a document, that describes
what the system should do, but not how.

• System design and system specification. Specification of system architecture and
component tasks.

• Detailed Design. Refinement of the design to be able to generate code from it.

• Implementation. Implementing the designed components in a certain programming
language.

• Integration. Assembling system components.

• Maintenance. Bug-fixing and changing the running system.

• Validation. Test whether a product fulfils the user-requirements (”Do we build the
right product?”).

• Verification. Test whether every process of the system development fulfils the
intention of the previous process (”Do we build the product in the right way?”).

• Testing. The process of executing a whole system to test if it fulfils the
requirements. Is part of validation.

M. Wirsing: System Development and Formal Specification, 04.10.2002

The Software Lifecycle 7

Costs of software within the lifecycle

While hardware costs become more and more cheaper, the costs for software explode.
We differ two kinds of costs:

• Costs of Software-Construction (a),

• Costs for maintenance, for bug fixing or change of requirements (b).

The costs a) amount to 20% or less, the costs of maintenance b) amount to at least
80%.

Costs

New Applications

Maintenance
Total Expenses

Years

M. Wirsing: System Development and Formal Specification, 04.10.2002

Introduction 8

Reusability

• Advantages:
◦ saves time and costs,

◦ less bug fixing,

◦ longer used software is more robust,

◦ Reuseability on all process levels particulary on the specification level.

• Problems:
◦ ”not invented here” Syndrom, which means that you do not trust software from others,

◦ Reuseability is difficult to handle if you need to adapt the code to a new problem.

◦ the development of generic software is expensive.

In the last years Application Programming Interfaces (API) were pushed. But through
better notations (e.g.: Java Beans,EJB,COM) component development is more and
more in demand.

M. Wirsing: System Development and Formal Specification, 04.10.2002

System Development Problems 9

System Development Problems

Development Process Step Notation

Specification of Requirements natural languages with diagrams
and tables

Design Specification graphic notation and in natural
language; formal spec. in
security-critical systems

Detailed Specification Pseudo Code and natural
language.

Implementation Programming Languages

M. Wirsing: System Development and Formal Specification, 04.10.2002

System Development Problems 10

Problems:

1. Natural languages are not precise enough

2. Different notations in each phase. Errors at the interfaces between the phases.

3. Errors in the requirements definition phase are more expensive than errors in latter
phases

Design PhasesImplementationRequirements

per bug
Costs

M. Wirsing: System Development and Formal Specification, 04.10.2002

Introduction 11

Examples

• Lack of Precision.
◦ ”The interface for the system should be user-friendly.The virtual interface should stand on a few

simple concepts, that are clear to understand and offer a simple user guidance.”

◦ ”The volt value of the bulbs is always an integer between 3 and 6 Volt.” Does that mean: ”volt

value ≥ 3 and volt value ≤ 6” or ”volt value > 3 and volt value < 6” ?

• Incompleteness ”The system should control the temperatures hourly, that are
measured from the sensors at the running reactors. These values should be saved for
the last three months. The command function of AVERAGE is to display the average
temperature of one reactor for a certain day.”

What will be displayed if the average temperature of today is requested at 14 o’
clock: error or average temperature until 14 o’ clock?

• Ambiguity. ”The operator label consists of an operator name and a password.The
password consists of eight digits. It should be presented on a display and saved in a
login file, when a operator logs on. Does this refer to the operator name or the
password?”

M. Wirsing: System Development and Formal Specification, 04.10.2002

Formal Methods in Computer Science 12

Formal Methods in Computer Science

• 1960: Formal Languages and State Machines

finite state machines, Chomsky-Hierarchie, Turing machines, regular expressions.

• 1970: Semantics of Programming Languages (Scott, Strachey)

semantics of λ-calculus, denotational semantics.

• 1969–1975: Proving Programs, Assertion Calculus (Dijkstra, Hoare, Floyd) describes
properties of the state before and after the execution of the program.

• 1975: Formal Specification (Guttag, ADJ)

Abstract description of program features through axioms.

• 1970: Formal Program Development (CIP, Burstall/Darlington, Hoare)

Relationship between abstract levels of description, program transformation and
change of data structures.

• 1980: Temporal Logic for description of the dynamic behaviour of systems.

• 1990: Integration of pragmatical graphical notations with formal technics.

• 1995: Great results of temporal logic by using Model Checking for Verification.

M. Wirsing: System Development and Formal Specification, 04.10.2002

Formal Methods in Computer Science 13

Model-oriented and Algebraic Specifications

Generally, specifications are classified in model-oriented, algebraic and temporal
specifications. Today the model-oriented specification languages VDM [Jones 90], B
and Z are mainly used. The algebraic specifications are represented by Larch, LOTOS,
Maude and a new language CASL. Temporal logic languages are LTL, CTL, TLA.

M. Wirsing: System Development and Formal Specification, 04.10.2002

Formal Methods in Computer Science 14

Model-oriented Specifications

describe imperative concepts through an assertion such as:
{Φ}P{Ψ}

Factorial Function
e.g.: the assertion
{n ≥ 0} s := n; Q{s = fac(n)}
is a specification of a program Q, that calculates the factorial function. In this
specification s is a variable, n a ”mathematical” or ”logical” variable, whose value is
not allowed to be changed during the execution of Q. fac represents the factorial
function.

M. Wirsing: System Development and Formal Specification, 04.10.2002

Formal Methods in Computer Science 15

Axiomatic Specifications

aim at the functional behaviour of computation structures. A data structure is
described by its interface or signature, which means the declaration of its data types,
operations and its characteristic properties.

Stack Example:

The computing structure of a stack is given by the name for the data type of the stack
and by the data types of the stack elements. Characteristical functions are:

empty: Stack
push: Data×Stack→Stack
top: Stack→Data
pop: Stack→Stack

M. Wirsing: System Development and Formal Specification, 04.10.2002

Formal Methods in Computer Science 16

Characteristical properties are:

top(push(d, s)) = d
pop(push(d, s)) = s

An imperative version of a stack specification includes the following procedures:

New(s) assigns the empty stack to the variable s,

Push(s, n) adds the symbol n to the stack s,

Pop(s) removes the first stack symbol,

Top(s,m) assigns the first symbol of the stack s to the variable m,

IsEmpty(s, b) assigns the value true to the variable b, if s is empty, otherwise b gets
the value false.

M. Wirsing: System Development and Formal Specification, 04.10.2002

Formal Methods in Computer Science 17

Prejudices versus formal methods.

1. Formal methods make testing superfluous.
Wrong: The transitions ”real world to system” or also ”informal description to
formal description” can not be proven.

2. Formal methods make natural language descriptions unnecessary.
Wrong: The analysis of requirements starts always with natural languages, extended
by technical terms of the application. The natural language is used as comment for
the specification.

3. A PhD is necessary to understand formal languages.
Wrong: Formal specification is a formal notation like any other programming
language.

M. Wirsing: System Development and Formal Specification, 04.10.2002

Introduction 18

Examples for proving systems

System Developer Remarks
LCF R. Milner Logic for Computable Functions
PVS John Rushby, N. Shankar (SRI) Interactiv prover for higher order

logic, since 1980
Isabelle L. Paulson, T. Nipkow Advancement of LCF Cambridge,

since 1985
Larch DEC Palo Alto / MIT Guttag,

Horning
since 1989

NUPRL Constable, Cornell U. Advancement of LCF, since 1986
Modelchecker Different systems for proving the

features of finite state machines
since 1990

Z/Eves Dan Craigen Analysis tool for Z, since 1990
HOL-CASL Till Mossakowski, Univ. Bremen Parser and Prover, since 2000

M. Wirsing: System Development and Formal Specification, 04.10.2002

Summary 19

Summary

• System Development can be divided into process steps, starting with analysis of
requirements and ending up in maintenance. In all process steps, validation and
verification is necessary to prove the results.

• Lack of Precision, Incompleteness and Ambiguity are often sources of errors, that
can be simpler discovered with formal analysis.

• Basic formal technics are:
◦ axiomatic specifications to describe data and functional behaviour,

◦ model-oriented specification to describe state-based behaviour,

◦ temporal-logic specification to describe dynamic and reactive behaviour.

MMISS: Kurztitel, October 14, 2002

	Contents
	Introduction
	Goals
	Introductory Examples
	The Software Lifecycle
	System Development Problems
	Formal Methods in Computer Science
	Summary

