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IFunctionaI Models: Interpretation of Interfaces through Structures

Goals

e Learn to understand the relationship between signature, term and mathematical
structures

e Understand formulas and their interpretation in structures
e Understand the notions of >-homomorphisms
e Abstract data types, initial and reachable algebras

e Learn to put in relationship similar algebras through >-homomorphisms
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IAIgebras and Structures

Algebras and Structures

A >-algebra has for

e every sort a carrier set,

e every function symbol a function.

If signatures X also include predicate symbols, so you call them X-structures.

Definition 1 (3-Algebra):
Let X = (S, F, P) be a signature.
1. A X-algebra A consists of

(a) a family (As)ses of not empty carrier sets and
(b) (total) functions f* : Ay X oo X Ag, — Ag, forall f € Frs,,.sn),s)-
2. Moreover a X-structure has relations p* C Agy X ... x Ay forallp e P, o)

3. The class of all -algebras is called Alg(>) , the class of all X-structures is called
Struct(X).
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IAIgebras and Structures

Example 1 (sig(BOOLO)-Algebras without "and”, "or", "implies”):

1. The standard model B of boolean values

BBool — {Ta F}7
true? =T, falseP =
notB(T) = F, notB(F) =

Y

2. The structure N B on the natural numbers with

NBBool — N7
trueNB =1, falseN B =0,
notVB(2i) = 2i +1, notVB(2i +1) = 2i

3. The structure ZB on integers

ZBBool = Za

true?B =1, false?P =0,
not?5(1) =0, not?5(0) =1,
not?B(i) =i, for i different from 0, 1.
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IAIgebras and Structures

4. The structure ZB1 on integers with

ZBlBool — Z7
true?Bl =1, false?Pl =0,
not?B(1) = 0, not?B(0) =1,

not?B(i) =i+ 1, for i different from 0, 1.

5. The trivial structure U B with

UBBool = 17
trueV B = falseV?P =1,
not’B(1) =1,
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IAIgebras and Structures 6

Example 2 (Algebras for SETO (set signature)):

1. Finite sets on Z: P/ (Z)

Setprin(z) =def {M|M C Z, M finite}  empty™ " (®) =4
{z}me(Z) =def {2} My P! @) Mo =gey M1 U M,

2. Finite or infinite sets of integers: P(Z)

EIemp(Z) —def 2
Setp(z) =def {M‘M C Z}
for operations see previous example

3. AVL-Trees on natural numbers

Elemavy =gef N
Setavr =ges "all AVL-Trees” {2}AVE =, "one element AVL-Trees"
emptyAV L =des empty AVL-Tree” AV UAVL AV, —des unification of AVL-Trees"
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IAIgebras and Structures

4. The one element structure U for Set

EIemU —def 7
Sety; =def {O}
{217 =gey

5. Numbers for set

EIemZZ —def 2
Sety» =def 7,
{27 =gy 2

empty? =g.r ®
MUY My =4.¢ @

emptyZZ =def 0
21 U%Z 29 =def 21 T 22
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IAIgebras and Structures

Term Algebra

Let X = (S, F') be a sensible signature.
The term algebra structure: We use T for T'(X, X).

The carrier sets of T are the sets T'(3, X)) for s € S. The interpretation of function
symbols is defined by:

fT(al, ey Qp) =def f(a1,...,a,) fora; €T

Example 3 (Term algebra T):
Ground term algebra T'= T'(BOOLO) with

Tsool = T'(BOOLO)goo;  {true, false}
truel = true false! = false
not? () = not(t) and so on.
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IFunctionaI Models: Interpretation of Interfaces through Structures 9

Interpretation of Terms

Definition 2 (Term Interpretation):

Given X, X, X-algebra A

1. A assignment from X to A is a family of mappings (vs : Xs — Ag)scs, written
v: X — A

2. The interpretation I, : T'(3, X) — A of terms in A concerning v defines the
following family of mappings:
(a) (I,,)(x) =vs(x) for s € S

(b) Ivs(f(tlv s 7tn)> — fA([%l(tl)? e 7[Usn(tn>)7
for all f S F((sl,...,sn>,s)7t1 S T(E7X>Sl,...,tn < T(ZaX)sn

Instead of I, we write [,
For t € T'(Z, {0}) we write t5.
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=
nn



B> Formulas 10

Y -Formulas

Definition 3 (2-Formulas):
Let X = (S, F, P) be a signature and X be a S-sorted family of variables.
1. An atomic X-formula has the form

p(ti,...,tn) forp€ Py sy t1 € T8, X)s,.. .ty € T(X, X)s,

Moreover for every sort s € S and all terms t1,t5 € T'(X, X)s,,
11 =5 12
Is an atomic formula.

2. The set of >-formulas WEFF (%) (well-formed formula) is the smallest set, that
fulfils following properties (inductive definition):

(a) every atomic X-formula is in WFF (%),
(b) if G1,G2 in WFF(X), so (—mG1) and (G1 A G3) as well,
(c) ifGin WFF(X), x € X5,50 (Vz:s. G)in WFF(X).
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B> Formulas 11

3. Further operators are defined as abreviations:

(G1VG2) =der —((0G1) A (2G2))

(G1 = G2) =defr ((7G1)V G2)
( ) =def (Gl == GQ)/\(GQ == Gl)
(EI:I: s.G) =ger (—(Vz:s. (7G)))

The set of free variables of G is called F'V(G). A formula G is called closed, if
FV(G) = 0.

4. A quantifier free formula is a X-formula without quantors.
5. A Horn formula has the form

Vry:81,...,.V2m : Sm- G1 AN ... NG, — G

for atomic formulas G; and G. If all G and G; are equations we speak of a
conditional equational formula or short of conditional equation.

=
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IFunctionaI Models: Interpretation of Interfaces through Structures 12

Example 4 (3-Formulas):

1. Vz,y,z: Elem. (zxoy)oz=z0(yoz)
Is an universally quantified equation for the description of associativity.
2. Vx,y : Nat. succ(x) = succ(y) — =z =1y
Is a conditional equation for the description of injectivity of succ.
3. Vx : Bool. x = true V x = false
defines, that the sort Bool has at most two elements.
4. Yz : Bool. not(not(x)) = x
describes the idempotency of not.

3
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IProperties of Algebras: Homomorphism, initial and reachable Structures 13

Properties of Algebras: Homomorphism, initial and reachable
Structures

Definition 4 (3-Homomorphism):
Let X = (S, F) be the signature and let A, B be X-algebras
1. A >-homomorphism (p: A — B) is a family of mappings

(ps P Ay — BS)SE S

with following properties:
For all function symbols f € Fi(,, . s, and all a; € Ay, 0 =1,...,n:

pS(fA(ah e 7an)) — fB(p81<a1>7 e 7105n(a’n>)

2. A bijective X-homomorphism is called >-isomorphism. Two X-algebras A, B are
called isomorphic, if there is a Y-isomorphism from A to B.
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IProperties of Algebras: Homomorphism, initial and reachable Structures

15

Notice:

1. The equality is preserved by >>-homomorphisms:

ai =4 az = ps(a) =" ps(az)

but not the inequality:
a1 % az = ps(ar) #° ps(as)

2. For structures a >-homomorphism requires additionally, that
predicates are preserved:
forp € P, sy anda; € A, 0 =1,...,n:

(ala SR 7an) ~ pA — (psl(a’l)7 SR 7p8n(af’n)) < pB
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IProperties of Algebras: Homomorphism, initial and reachable Structures

16

Example 5 (NATO0-Algebras):
Let

e N=(N,0,_+1) the standard model of natural numbers.

e / = (Z,0,_+1) the standard model of integers

e No=({0,1},0, -+ 1(mod2))

e Ny = ({0},0,id).

be given. Then

e in: N — Z with in(x) ==z "Embedding Homomorphism”

e p2: N — Ny resp. p5 : Z — Ny with po(z) = p5(z) = 2 mod 2
e p1: No — Ny with pi(z) =0

are homomorphisms.

Proof Homomorphism condition for ps : N — Ns:
pa(zero?) = 0 = zeroV?
pa(succ™ (x)) = pa(z + 1) = (z +
succN2(py(x)) = succV?(x mod 2)
((r mod 2) +1) mod 2 = (x + 1)

1) mod 2

mod 2
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IProperties of Algebras: Homomorphism, initial and reachable Structures 17
N
P2
A
N, P2
P1
N
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IProperties of Algebras: Homomorphism, initial and reachable Structures

18

Lemma 1 (3-Homomorphism)
Let be p: A — B a 3-homomorphism. Then for any ground term t € T'(%):

p(th) =17

Proof :
By structural induction
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IProperties of Algebras: Homomorphism, initial and reachable Structures 19

Example 6 (Non-Existence of Homomorphisms):

1. There is no NatO-homomorphism p: Ny — N.

Proof by contradiction
Assume there is such a homomorphism. Then according to Lemma 1 we would have

N

N2) = succ(succ(zero))N =2,  p(zero™?) = zero™ =0

p(succ(succ(zero))

and

succ(succ(zero)) V2 = zero™?

thus we obtain a contradiction:
2 = p(succ(succ(zero))™¥2) = p(zero™?) = 0.

So there is no homomorphism p: Ny — N.

3
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IProperties of Algebras: Homomorphism, initial and reachable Structures 20

Definition 5 (Initiality):
A >-algebra I is called initial in K, if
1. IeK

2. for all B € K there exists exactly one >-homomorphism p: I — B.

Example 7 (Initiality):

Let > be a sensible signature.

1. The ground term algebra T'(X%) is initial in Alg(X): Let A € Alg(X). The family of
mappings eval, : T(X), — Ag with eval(t) =t is a ©-homomorphism. Because of
eval(f(t1,...,tn)) = fA(eval(ty),. .., eval(t,)) eval is a X-homomorphism.

2. The standard model N = (N, 0, _+ 1) of natural numbers is initial in Alg(NATO0).

N = 0 1 2 .
! | !
Zero succ(zero) succ(succ(zero))

3. Other interpretations of sig(NATO) like Z, N2, Ny are not initial in Alg(NATO).

3
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IProperties of Algebras: Homomorphism, initial and reachable Structures 21

Theorem 1 (Equality in initial algebras)

Let X = (S, F') be a sensible signature, K a class of Y-algebras and I € K initial in
K. Then for all ground terms t1,t, € T'(X)s, s € S the following holds:

Ieti=t, iff KkEt=t

Proof Initiality

“=" Let [ =1, =ty and A € K. By definition t{ =t holds. As I is initial, there is
exactly one X-homomorphism p: I — A. Thus Lemma 1 implies:

ti = p(t1) = plts) = t5

“<" Let K =1t; =ty. Because of [ € K we have [ =t = to.
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IProperties of Algebras: Homomorphism, initial and reachable Structures 22

Example 8 (SETNATI):
Let SETNATI be following signature:

sig SETNATI =
sorts Set, Nat
ops empty : Set
{_} : Nat — Set
_U_:Set x Set — Set
zero : Nat
succ : Nat — Nat
end

and let K C Alg(SETNATI) be the class of algebras, that fulfil following properties:
. GUHUK)=(GUH)UK

2. GUH=HUG

3. GUG =G

4. GUempty =G

Then the algebra of finite sets of natural numbers is initial and satisfies exactly the
properties of K.

3
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IProperties of Algebras: Homomorphism, initial and reachable Structures 23

Lemma 2 (Let K be a class of Y-algebras and I € K initial in K.)
If I’ € K is isomorphic to I, then I’ is also initial in K.

Proof :
Let A € K be given. As I’ € K is isomorphic to I there is exactly one
YJ-homomorphism ¢ : I’ — 1.
As I is initial, there is exactly one >-homomorphism p: I — A.
So pog:I' — Ais a unique X-homomorphism from I — A

3
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IProperties of Algebras: Homomorphism, initial and reachable Structures 24

Definition 6 (Abstract Data Type):

A class K of X-algebras is called abstract data type, if K is closed under isomorphism,
l.e. if A€ K and B is isomorphic to A, so B € K as well.

Example 9 (Abstract Data Type):

1. The class of initial algebras of K forms an abstract data type.

2. The stroke number model and the binary number model form two isomorphic
elements of the class of initial algebras from NATO.
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25

Definition 7 (X-reachable):

A X-algebra A is called >-reachable,if every element of A is the interpretation of a
ground term, i.e. for all s € S and a € A, there is a ground term ¢ € T'(3) with
t4 = a.

Example 10 (X-reachable):

1. The standard model N = (N, 0, _+ 1) is NATO-reachable.

0 1 2
! ! !
zero™¥ succ(zero)V succ(succ(zero))V

2. No is NATO-reachable.

0 1
1 1
zero® succ(zero)™
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IProperties of Algebras: Homomorphism, initial and reachable Structures 26

3. Z is not NATO-reachable (because there is no surjective NAT0-homomorphism of
the term algebra of signature NATO to 7).

-2 0 1 2
! ! !
"junk” (Burstall, Goguen ca. 1980) zero® succ(zero)?V succ(succ(zero))V

3
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IProperties of Algebras: Homomorphism, initial and reachable Structures 27

Lemma 3 (Characterisation of 3-reachability)
A 3-algebra A is Y-reachable, iff there is a surjective Y-homomorphism from T'(X) to
A.

Proof :
Let p: T(X) — A be a X-homomorphism. Obviously the surjectivity of p is equivalent

to the reachability of A.

Corollary (Uniqueness of >-homomorphism)
Let A be Y-reachable. Then there is at most one >-homomorphism p: A — B from A
to B, which is defined by p(t*) = tB .

Proof :

Let p: A — B be a X-homomorphism. According to Lemma 1, p(t*) = tZ for any
ground term £. As A is Y-reachable, p is uniquely defined for all elements of carrier sets
of A.
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IProperties of Algebras: Homomorphism, initial and reachable Structures 28

Theorem 2 (Characterisation of Initiality)

Let > be a sensible signature, K a class of X-algebras, that are characterised by a set
FE of axioms of the form:

Vo1 :81... 20 8, G G without quantifiers
A X-algebra [ is initial in K iff
1. E holds in I,

2. I is Y-reachable,
3. for all ground terms ty,t5 € T(X),, s € S we have:

Ieti=t iff KEt =t
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IProperties of Algebras: Homomorphism, initial and reachable Structures 29

Theorem 3 (Existence of initial algebras)

Let > be a sensible signature, K a class of X-algebras, which is characterised by a set
E of conditional equations of the form:

UL = N...Nup, =0, — U ="1.
Then there exists an initial algebra I € K such that for all ground X-terms ¢4, t5

[l=ti =ty iff EFt, =t
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IProperties of Algebras: Homomorphism, initial and reachable Structures 30

Theorem 4 (Structural Induction)

Let X = (S, C), G first order X-formula, K be a class of reachable Y-algebras and
sec S.If

1. K = G|c/x] forall c € Cc s ("G holds for all constants”) and

2. K=Yy :s1... V21, ..., 8. Gleg| AN oo NGl = Glf(x1, ..oy Tn, 1, - - )]
for all f S C((s,...,s,sl,..,>s>

holds, then: K = Vx :s. G|z] holds.
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IProperties of Algebras: Homomorphism, initial and reachable Structures 31

Example 11 (Structural Induction):

1. The structural induction schema for natural numbers is:

G (zero) Va : Nat. G|z] = G|succ(z)]
Vx : Nat. G|x]

(Signature NATO = ({Nat}, {zero, succ}))
2. The structural induction schema for boolean values is:

G|true] G |false]
Va : Bool. G|x]

3. The structural induction schema for the sort list of LISTNATI is:

G|nil] Vy : Nat. Vs : List. G|[s] = G|cons(y, s)]
Vs : List. G|s]
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IFunctionaI Models: Interpretation of Interfaces through Structures 32

Notice, that this induction schema does not refer to the function symbols for natural
numbers and therefore applies to the signature LISTO:

sig LISTO =
sorts List, Elem
ops nil : List
cons : Elem x List — List
end

LISTO is not sensible, because there is no ground term for Elem. Therefore, the
notion of initiality can not be used.

3
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The Generalisation of Initiality: Free Extension

Definition 8 (Free Extension):
Let Xo = (S0, Fp), X1 be signatures with > C X5,

1. Let A be a Xj-algebra. The >y-Reduct Alx, of A is constructed by leaving out the
sorts and function symbols of A, that do not occur in X, formally:

(A|20)3 —def A, for all s € Sy
FAS =g fA forall f e F

2. Let K be a class of ¥;-algebras. A is called free extension of Alx,, if for every
B € K and every ¥p-homomorphism h : A|s,, — Blx, there is exactly one
>1-homomorphism h* : A — B with h*|g, = h.
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Summary

e Signatures are a formal approach to describe interfaces. A signature consists of
sorts, function symbols and predicate symbols.

e Interpretations can be given to interfaces by X-algebras and X-structures.

e Properties of interfaces resp. structures are described by X-formulas. We distinguish
propositional logic formulas, equations, conditional equations and general formulas
of predicate first order logic.

e In the class of Y-algebras, initial and reachable algebras are of particular interest.
Reachability implies the validity of structural induction. Initiality describes an
abstract data type, that fulfils exactly the required equations and is executable.

e The free extension generalizes the initiality theorem for generic data types.

BMMISS: Kurztitel, October 18, 2002
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