Foundations of System Development

Prof. Dr. Martin Wirsing

04.10.2002

Data-Oriented System Development

Prof. Dr. Martin Wirsing

04.10.2002

Functional Models: Interpretation of Interfaces through Structures

Goals

- Learn to understand the relationship between signature, term and mathematical structures
- Understand formulas and their interpretation in structures
- Understand the notions of Σ -homomorphisms
- Abstract data types, initial and reachable algebras
- Learn to put in relationship similar algebras through $\Sigma\text{-homomorphisms}$

Algebras and Structures

- A Σ -algebra has for
- every sort a carrier set,
- every function symbol a function.

If signatures Σ also include predicate symbols, so you call them $\Sigma\text{-structures}.$

Definition 1 (Σ -Algebra):

Let $\Sigma = (S, F, P)$ be a signature.

- 1. A Σ -algebra A consists of
 - (a) a family $(A_s)_{s\in S}$ of not empty carrier sets and
 - (b) (total) functions $f^A : A_{s_1} \times \ldots \times A_{s_n} \to A_s$, for all $f \in F_{\langle \langle s_1, \ldots, s_n \rangle, s \rangle}$.
- 2. Moreover a Σ -structure has relations $p^A \subseteq A_{s_1} \times \ldots \times A_{s_n}$, for all $p \in P_{\langle s_1, \ldots, s_n \rangle}$
- 3. The class of all Σ -algebras is called $Alg(\Sigma)$, the class of all Σ -structures is called $Struct(\Sigma)$.

Example 1 (sig(BOOL0)-Algebras without "and", "or", "implies"):

1. The standard model ${\cal B}$ of boolean values

$$B_{Bool} = \{T, F\},\$$

$$true^B = T, \qquad false^B = F,\$$

$$not^B(T) = F, \qquad not^B(F) = T.$$

2. The structure NB on the natural numbers with

$$NB_{Bool} = \mathbb{N},$$

$$true^{NB} = 1, \qquad false^{NB} = 0,$$

$$not^{NB}(2i) = 2i + 1, \quad not^{NB}(2i + 1) = 2i$$

3. The structure ZB on integers

$$ZB_{Bool} = \mathbb{Z},$$

$$true^{ZB} = 1, \quad false^{ZB} = 0,$$

$$not^{ZB}(1) = 0, \quad not^{ZB}(0) = 1,$$

$$not^{ZB}(i) = i, \quad \text{for } i \text{ different from } 0, 1.$$

4. The structure ZB1 on integers with

$$ZB1_{Bool} = \mathbb{Z},$$

 $true^{ZB1} = 1,$ $false^{ZB1} = 0,$
 $not^{ZB}(1) = 0,$ $not^{ZB}(0) = 1,$
 $not^{ZB1}(i) = i + 1,$ for *i* different from 0, 1.

5. The trivial structure UB with

$$UB_{Bool} = 1,$$

$$true^{UB} = false^{UB} = 1,$$

$$not^{UB}(1) = 1,$$

Example 2 (Algebras for SET0 (set signature)):

1. Finite sets on \mathbb{Z} : $P^{fin}(\mathbb{Z})$

$$\begin{split} \mathsf{Elem}_{P^{fin}(\mathbb{Z})} &=_{def} \mathbb{Z} \\ \mathsf{Set}_{P^{fin}(\mathbb{Z})} &=_{def} \{M | M \subseteq \mathbb{Z}, \ M \text{ finite} \} \\ \{z\}^{P^{fin}(\mathbb{Z})} &=_{def} \{z\} \end{split}$$

 $\operatorname{empty}^{P^{fin}(\mathbb{Z})} =_{def} \emptyset$ $M_1 \cup^{P^{fin}(\mathbb{Z})} M_2 =_{def} M_1 \cup M_2$

2. Finite or infinite sets of integers: $P(\mathbb{Z})$

Elem_{P(Z)} =_{def} Z
Set_{P(Z)} =_{def} {
$$M | M \subseteq Z$$
}
for operations see previous example

3. AVL-Trees on natural numbers

 $\begin{array}{l} \mathsf{Elem}_{AVL} =_{def} \mathbb{N} \\ \mathsf{Set}_{AVL} =_{def} \text{``all AVL-Trees''} \\ \mathsf{empty}^{AVL} =_{def} \text{``empty AVL-Tree''} \end{array} \begin{array}{l} \{z\}^{AVL} =_{def} \text{``one element AVL-Trees''} \\ AV_1 \cup^{AVL} AV_2 =_{def} \text{'`unification of AVL-Trees''} \end{array} \end{array}$

4. The one element structure \boldsymbol{U} for Set

5. Numbers for set

$$\begin{array}{ll} \mathsf{Elem}_{ZZ} =_{def} \mathbb{Z} \\ \mathsf{Set}_{ZZ} =_{def} \mathbb{Z} \\ \{z\}^{ZZ} =_{def} z \end{array} \quad \begin{array}{l} \mathsf{empty}^{ZZ} =_{def} 0 \\ z_1 \cup^{ZZ} z_2 =_{def} z_1 + z_2 \end{array} \end{array}$$

7

Term Algebra

Let $\Sigma = (S, F)$ be a sensible signature. The term algebra structure: We use T for $T(\Sigma, X)$. The carrier sets of T are the sets $T(\Sigma, X)_s$ for $s \in S$. The interpretation of function symbols is defined by:

$$f^T(a_1,\ldots,a_n) =_{def} f(a_1,\ldots,a_n) \quad \text{for } a_i \in T_{s_i}$$

Example 3 (Term algebra T): Ground term algebra T = T(BOOL0) with

$$\begin{split} T_{\mathsf{Bool}} &= T(\mathsf{BOOL0})_{Bool} & \{\mathsf{true},\mathsf{false}\}\\ \mathsf{true}^T &= \mathsf{true} & \mathsf{false}^T &= \mathsf{false}\\ \mathsf{not}^T(t) &= \mathsf{not}(t) & \mathsf{and so on.} \end{split}$$

Interpretation of Terms

Definition 2 (Term Interpretation):

Given Σ , X, Σ -algebra A

- 1. A assignment from X to A is a family of mappings $(v_s : X_s \to A_s)_{s \in S}$, written $v : X \to A$.
- 2. The interpretation $I_v: T(\Sigma, X) \to A$ of terms in A concerning v defines the following family of mappings:

(a)
$$(I_{v_s})(x) = v_s(x)$$
 for $s \in S$
(b) $I_{v_s}(f(t_1, \ldots, t_n)) = f^A(I_{v_{s1}}(t_1), \ldots, I_{v_{sn}}(t_n)),$
for all $f \in F_{\langle \langle s_1, \ldots, s_n \rangle, s \rangle}, t_1 \in T(\Sigma, X)_{s1, \ldots, t_n} \in T(\Sigma, X)_{sn}$
Instead of I_{v_s} we write I_v
For $t \in T(\Sigma, \{\emptyset\})$ we write t^B .

$\Sigma\text{-}\textbf{Formulas}$

Definition 3 (Σ -Formulas):

Let $\Sigma = (S, F, P)$ be a signature and X be a S-sorted family of variables.

1. An atomic $\Sigma\text{-}{\rm formula}$ has the form

$$p(t_1,\ldots,t_n)$$
 for $p \in P_{\langle s_1,\ldots,s_n \rangle}, t_1 \in T(\Sigma,X)_{s_1},\ldots,t_n \in T(\Sigma,X)_{s_n}$

Moreover for every sort $s \in S$ and all terms $t_1, t_2 \in T(\Sigma, X)_s$, $t_1 =_s t_2$

is an atomic formula.

- 2. The set of Σ -formulas $WFF(\Sigma)$ (well-formed formula) is the smallest set, that fulfils following properties (inductive definition):
 - (a) every atomic Σ -formula is in $WFF(\Sigma)$,
 - (b) if G_1, G_2 in $WFF(\Sigma)$, so $(\neg G_1)$ and $(G_1 \land G_2)$ as well,
 - (c) if G in $WFF(\Sigma)$, $x \in X_s$, so $(\forall x : s. G)$ in $WFF(\Sigma)$.

3. Further operators are defined as abreviations:

$$\begin{array}{ll} (G_1 \lor G_2) &=_{def} &\neg((\neg G_1) \land (\neg G_2)) \\ (G_1 \Longrightarrow G_2) &=_{def} & ((\neg G_1) \lor G_2) \\ (G_1 \equiv G_2) &=_{def} & ((G_1 \Longrightarrow G_2) \land (G_2 \Longrightarrow G_1) \\ (\exists x:s. \ G) &=_{def} & (\neg(\forall x:s. \ (\neg G))) \end{array}$$

The set of free variables of G is called FV(G). A formula G is called closed, if $FV(G) = \emptyset$.

- 4. A quantifier free formula is a Σ -formula without quantors.
- 5. A Horn formula has the form

$$\forall x_1: s_1, \dots, \forall x_m: s_m. \ G_1 \land \dots \land G_n \implies G$$

for atomic formulas G_i and G. If all G and G_i are equations we speak of a conditional equational formula or short of conditional equation.

Example 4 (Σ -Formulas):

1. $\forall x, y, z : \mathsf{Elem.} (x \circ y) \circ z = x \circ (y \circ z)$

is an universally quantified equation for the description of associativity.

- 2. $\forall x, y : \text{Nat. succ}(x) = \text{succ}(y) \implies x = y$ is a conditional equation for the description of injectivity of succ.
- 3. $\forall x : \text{Bool. } x = \text{true} \lor x = \text{false}$ defines, that the sort Bool has at most two elements.
- 4. $\forall x : \text{Bool. not}(\text{not}(x)) = x$ describes the idempotency of not.

Properties of Algebras: Homomorphism, initial and reachable Structures

Definition 4 (Σ -Homomorphism):

Let $\Sigma = (S, F)$ be the signature and let A, B be Σ -algebras

1. A Σ -homomorphism $(\rho : A \rightarrow B)$ is a family of mappings

$$(\rho_s: A_s \to B_s)_{s \in S}$$

with following properties:

For all function symbols $f \in F_{\langle \langle s_1, \dots, s_n \rangle s \rangle}$, and all $a_i \in A_{s_i}$, $i = 1, \dots, n$:

$$\rho_s(f^A(a_1,\ldots,a_n)) = f^B(\rho_{s_1}(a_1),\ldots,\rho_{s_n}(a_n))$$

2. A bijective Σ -homomorphism is called Σ -isomorphism. Two Σ -algebras A, B are called isomorphic, if there is a Σ -isomorphism from A to B.

Notice:

1. The equality is preserved by Σ -homomorphisms:

$$a_1 \stackrel{A}{=} a_2 \Rightarrow \rho_s(a_1) \stackrel{B}{=} \rho_s(a_2)$$

but **not** the inequality:

$$a_1 \neq^A a_2 \Rightarrow \rho_s(a_1) \neq^B \rho_s(a_2)$$

2. For structures a Σ -homomorphism requires additionally, that predicates are preserved:

for $p \in P_{\langle s_1, \ldots, s_n \rangle}$ and $a_i \in A_{s_i}$, $i = 1, \ldots, n$:

$$(a_1,\ldots,a_n) \in p^A \Rightarrow (\rho_{s_1}(a_1),\ldots,\rho_{s_n}(a_n)) \in p^B$$

Example 5 (NAT0-Algebras):

Let

- $N = \langle \mathbb{N}, 0, -+1 \rangle$ the standard model of natural numbers.
- $Z = \langle \mathbb{Z}, 0, -+1 \rangle$ the standard model of integers
- $N_2 = \langle \{0, 1\}, 0, -+1 \pmod{2} \rangle$
- $N_1 = \langle \{0\}, 0, id \rangle.$

be given. Then

- $in: N \to Z$ with in(x) = x "Embedding Homomorphism"
- $\rho_2: N \to N_2$ resp. $\rho_2^Z: Z \to N_2$ with $\rho_2(x) = \rho_2^Z(x) = x \mod 2$
- $\rho_1: N_2 \to N_1$ with $\rho_1(x) = 0$

are homomorphisms.

Proof Homomorphism condition for $\rho_2 : N \to N_2$: $\rho_2(\operatorname{zero}^N) = 0 = \operatorname{zero}^{N2}$ $\rho_2(\operatorname{succ}^N(x)) = \rho_2(x+1) = (x+1) \mod 2$ $\operatorname{succ}^{N2}(\rho_2(x)) = \operatorname{succ}^{N2}(x \mod 2) =$ $((x \mod 2) + 1) \mod 2 = (x+1) \mod 2$

Lemma 1 (Σ -Homomorphism) Let be $\rho : A \to B$ a Σ -homomorphism. Then for any ground term $t \in T(\Sigma)$:

$$\rho(t^A) = t^B$$

Proof : By structural induction

Example 6 (Non-Existence of Homomorphisms):

1. There is no Nat0-homomorphism $\rho: N_2 \rightarrow N$.

Proof by contradiction

Assume there is such a homomorphism. Then according to Lemma 1 we would have

$$\rho(\operatorname{succ}(\operatorname{succ}(\operatorname{zero}))^{N_2}) = \operatorname{succ}(\operatorname{succ}(\operatorname{zero}))^N = 2, \quad \rho(\operatorname{zero}^{N_2}) = \operatorname{zero}^N = 0$$

and

$$\operatorname{succ}(\operatorname{succ}(\operatorname{zero}))^{N_2} = \operatorname{zero}^{N_2}$$

thus we obtain a contradiction:

$$2 = \rho(\operatorname{succ}(\operatorname{succ}(\operatorname{zero}))^{N_2}) = \rho(\operatorname{zero}^{N_2}) = 0$$

So there is no homomorphism $\rho: N_2 \to N$.

Definition 5 (Initiality):

A Σ -algebra I is called initial in K, if

1. $I \in K$

2. for all $B \in K$ there exists exactly one Σ -homomorphism $\rho: I \to B$.

Example 7 (Initiality):

Let $\boldsymbol{\Sigma}$ be a sensible signature.

- 1. The ground term algebra $T(\Sigma)$ is initial in $Alg(\Sigma)$: Let $A \in Alg(\Sigma)$. The family of mappings $eval_s : T(\Sigma)_s \to A_s$ with $eval(t) = t^A$ is a Σ -homomorphism. Because of $eval(f(t_1, \ldots, t_n)) = f^A(eval(t_1), \ldots, eval(t_n))$ eval is a Σ -homomorphism.
- 2. The standard model $N = \langle \mathbb{N}, 0, -+1 \rangle$ of natural numbers is initial in $Alg(NAT\theta)$.

$$\mathbb{N} = \begin{array}{ccc} 0 & 1 & 2 & \dots \\ \uparrow & \uparrow & \uparrow \\ zero & succ(zero) & succ(succ(zero)) \end{array}$$

3. Other interpretations of $sig(NAT\theta)$ like Z, N_2 , N_1 are not initial in $Alg(NAT\theta)$.

Theorem 1 (Equality in initial algebras) Let $\Sigma = (S, F)$ be a sensible signature, K a class of Σ -algebras and $I \in K$ initial in K. Then for all ground terms $t_1, t_2 \in T(\Sigma)_s$, $s \in S$ the following holds:

$$I \models t_1 = t_2 \qquad \text{iff} \qquad K \models t_1 = t_2$$

Proof Initiality

" \Rightarrow " Let $I \models t_1 = t_2$ and $A \in K$. By definition $t_1^I = t_2^I$ holds. As I is initial, there is exactly one Σ -homomorphism $\rho: I \to A$. Thus Lemma 1 implies:

$$t_1^A = \rho(t_1^I) = \rho(t_2^I) = t_2^A$$

" \leftarrow " Let $K \models t_1 = t_2$. Because of $I \in K$ we have $I \models t_1 = t_2$.

Example 8 (SETNATI): Let SETNATI be following signature: **sig** SETNATI =

sorts	Set, Nat
ops	empty : Set
	$\{_\}:Nat oSet$
	$_ \cup _: Set \times Set \to Set$
	zero : Nat
	succ:Nat oNat

end

and let $K \subseteq Alg(\mathsf{SETNATI})$ be the class of algebras, that fulfil following properties: 1. $G \cup (H \cup K) = (G \cup H) \cup K$

- 2. $G \cup H = H \cup G$
- 3. $G \cup G = G$
- 4. $G \cup empty = G$

Then the algebra of finite sets of natural numbers is initial and satisfies exactly the properties of K.

Lemma 2 (Let K be a class of Σ -algebras and $I \in K$ initial in K.) If $I' \in K$ is isomorphic to I, then I' is also initial in K.

Proof :

Let $A \in K$ be given. As $I' \in K$ is isomorphic to I there is exactly one Σ -homomorphism $\phi : I' \to I$.

As I is initial, there is exactly one Σ -homomorphism $\rho: I \to A$. So $\rho \circ \phi: I' \to A$ is a unique Σ -homomorphism from $I' \to A$.

Definition 6 (Abstract Data Type):

A class K of Σ -algebras is called abstract data type, if K is closed under isomorphism, i.e. if $A \in K$ and B is isomorphic to A, so $B \in K$ as well.

Example 9 (Abstract Data Type):

- 1. The class of initial algebras of K forms an abstract data type.
- 2. The stroke number model and the binary number model form two isomorphic elements of the class of initial algebras from NAT0.

Definition 7 (Σ -reachable): A Σ -algebra A is called Σ -reachable, if every element of A is the interpretation of a ground term, i.e. for all $s \in S$ and $a \in A_s$ there is a ground term $t \in T(\Sigma)$ with $t^A = a$.

Example 10 (Σ -reachable):

2. N_2

1. The standard model $N = (\mathbb{N}, 0, -+1)$ is NAT0-reachable.

3. Z is not NAT0-reachable (because there is no surjective NAT0-homomorphism of the term algebra of signature NAT0 to Z).

$$\underbrace{\cdots - 2 \quad - 1}_{\uparrow} \qquad \begin{array}{c} 0 & 1 & 2 \\ \uparrow & \uparrow & \uparrow \\ \text{''junk'' (Burstall, Goguen ca. 1980)} & \text{zero}^N & \text{succ}(\text{zero})^N & \text{succ}(\text{succ}(\text{zero}))^N \end{array}$$

Lemma 3 (Characterisation of Σ -reachability)

A Σ -algebra A is Σ -reachable, iff there is a surjective Σ -homomorphism from $T(\Sigma)$ to A.

Proof :

Let $\rho: T(\Sigma) \to A$ be a Σ -homomorphism. Obviously the surjectivity of ρ is equivalent to the reachability of A.

Corollary (Uniqueness of Σ -homomorphism) Let A be Σ -reachable. Then there is at most one Σ -homomorphism $\rho: A \to B$ from A to B, which is defined by $\rho(t^A) = t^B$.

Proof :

Let $\rho: A \to B$ be a Σ -homomorphism. According to Lemma 1, $\rho(t^A) = t^B$ for any ground term t. As A is Σ -reachable, ρ is uniquely defined for all elements of carrier sets of A.

Theorem 2 (Characterisation of Initiality)

Let Σ be a sensible signature, K a class of Σ -algebras, that are characterised by a set E of axioms of the form:

 $\forall x_1: s_1 \dots x_n: s_n. G$ G without quantifiers

- A Σ -algebra I is initial in K iff
- 1. E holds in I,
- 2. I is Σ -reachable,
- 3. for all ground terms $t_1, t_2 \in T(\Sigma)_s$, $s \in S$ we have:

 $I \models t_1 = t_2 \quad \text{iff} \quad K \models t_1 = t_2$

Theorem 3 (Existence of initial algebras)

Let Σ be a sensible signature, K a class of Σ -algebras, which is characterised by a set E of conditional equations of the form:

 $u_1 = v_1 \wedge \ldots \wedge u_n = v_n \implies u = v.$

Then there exists an initial algebra $I \in K$ such that for all ground Σ -terms t_1, t_2

 $I \models t_1 = t_2$ iff $E \vdash t_1 = t_2$.

Theorem 4 (Structural Induction)

Let $\Sigma = (S, C)$, G first order Σ -formula, K be a class of reachable Σ -algebras and $s \in S$. If

- 1. $K \models G[c/x]$ for all $c \in C_{\epsilon,s}$ ("G holds for all constants") and
- 2. $K \models \forall y_1 : s_1 \dots \forall x_1, \dots, x_n : s. \ G[x_1] \land \dots \land G[x_n] \implies G[f(x_1, \dots, x_n, y_1, \dots)]$ for all $f \in C_{\langle \langle s, \dots, s, s_1, \dots, \rangle s \rangle}$

holds, then: $K \models \forall x : s. \ G[x]$ holds.

Example 11 (Structural Induction):

1. The structural induction schema for natural numbers is:

$$\frac{G(\mathsf{zero}) \qquad \forall x : \mathsf{Nat.} \ G[x] \implies G[\mathsf{succ}(x)]}{\forall x : \mathsf{Nat.} \ G[x]}$$

$$(Signature NAT0 = ({Nat}, {zero, succ}))$$

2. The structural induction schema for boolean values is:

$$\frac{G[\mathsf{true}] \qquad G[\mathsf{false}]}{\forall x : \mathsf{Bool.} \ G[x]}$$

3. The structural induction schema for the sort list of LISTNATI is:

$$\begin{array}{ccc} G[\mathsf{nil}] & \forall y : \mathsf{Nat.} \ \forall s : \mathsf{List.} \ G[s] \implies G[\mathsf{cons}(y,s)] \\ & \forall s : \mathsf{List.} \ G[s] \end{array}$$

Notice, that this induction schema does not refer to the function symbols for natural numbers and therefore applies to the signature LIST0:

```
sig LIST0 =
```

sorts	List, Elem
ops	nil : List
	$cons:Elem\timesList\toList$

end

LISTO is not sensible, because there is no ground term for Elem. Therefore, the notion of initiality can not be used.

The Generalisation of Initiality: Free Extension

Definition 8 (Free Extension):

Let $\Sigma_0 = (S_0, F_0), \Sigma_1$ be signatures with $\Sigma_0 \subseteq \Sigma_1$.

1. Let A be a Σ_1 -algebra. The Σ_0 -Reduct $A|_{\Sigma_0}$ of A is constructed by leaving out the sorts and function symbols of A, that do not occur in Σ_0 , formally:

$$\begin{array}{rcl} (A|_{\Sigma_0})_s &=_{def} & A_s & \text{ for all } s \in S_0 \\ f^{A|_{\Sigma_0}} &=_{def} & f^A & \text{ for all } f \in F_0 \end{array}$$

2. Let K be a class of Σ_1 -algebras. A is called free extension of $A|_{\Sigma_0}$, if for every $B \in K$ and every Σ_0 -homomorphism $h : A|_{\Sigma_0} \to B|_{\Sigma_0}$ there is exactly one Σ_1 -homomorphism $h^* : A \to B$ with $h^*|_{\Sigma_0} = h$.

Summary

- Signatures are a formal approach to describe interfaces. A signature consists of sorts, function symbols and predicate symbols.
- Interpretations can be given to interfaces by $\Sigma\text{-algebras}$ and $\Sigma\text{-structures}.$
- Properties of interfaces resp. structures are described by Σ-formulas. We distinguish propositional logic formulas, equations, conditional equations and general formulas of predicate first order logic.
- In the class of Σ -algebras, initial and reachable algebras are of particular interest. Reachability implies the validity of structural induction. Initiality describes an abstract data type, that fulfils exactly the required equations and is executable.
- The free extension generalizes the initiality theorem for generic data types.