
1

WS 05/06

Foundations of Systems
Development

Martin Wirsing

in cooperation with
Axel Rauschmayer

2Equational Specification in Maude

M. Wirsing: Foundations of System Development

Goals

• Get to know algebraic specifications

• Write first specifications with Maude

• Order-sorted signatures and specifications

2

3Equational Specification in Maude

M. Wirsing: Foundations of System Development

Algebraic Specifications
Definition:
Let Σ = (S, E) be a signature and E a set of (closed) Σ-formulas.
• SP=<Σ,E> is called an algebraic specification.
• If E is a set of equations, SP is called an equational specification.

Moreover, depending on the semantics we distinguish
loose specification and initial algebra specifications:
• The semantics of a loose specification SP is given by

the class of all models of SP:

Mod(SP) =def { A ∈ Alg(SP) | A |= E }
• The semantics of an initial algebra specification SP is given by

all initial models of SP:

I(SP) =def {A ∈ Mod(SP) | A is initial in Mod(SP)}

4Equational Specification in Maude

M. Wirsing: Foundations of System Development

Maude

• Maude is an executable specification language for equational
specifications and term rewriting.

• Maude is being developed by Jose Meseguer and his group at
Univ. of Illinois and by the group of Carolyn Talcott at SRI.

• You can download Maude 2.0 from the Maude web page
http://maude.cs.uiuc.edu. Chapter 2 in the Maude 2.0 manual
(also in that web page) explains how you start Maude and
interact with it.

3

5Equational Specification in Maude

M. Wirsing: Foundations of System Development

Maude Functional Modules and Theories

In Maude,
• A loose specification is called theory,

declared with the syntax
th <name> is (Σ,E) endth

Maude theories are not executable!

• An initial specification is called functional module,
declared with syntax

fmod <name> is (Σ,E) endfm

6Equational Specification in Maude

M. Wirsing: Foundations of System Development

Maude Theories
• The trivial theory consisting of one sort

fth TRIV is

sort Elt .

endfth

• The theory of partial orderings
fth PARTIAL-ORDER is

protecting BOOL .

including TRIV .

op _<=_ : Elt Elt -> Bool .

vars X Y Z : Elt .

ceq X <= Z = true if X <= Y and Y <= Z [nonexec label transitive] .
ceq X = Y if X <= Y /\ Y <= X [nonexec label antisymmetric] .
eq X <= X = true [nonexec label reflexive] .

endfth

4

7Equational Specification in Maude

M. Wirsing: Foundations of System Development

Natural Numbers (prefix syntax)
fmod NAT-PREFIX is

sort Natural .

op 0 : -> Natural .
op s : Natural -> Natural .
op plus : Natural Natural -> Natural .

vars N M : Natural .

eq plus(N,0) = N .
eq plus(N,s(M)) = s(plus(N,M)) .

endfm

Maude> red plus(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : plus(s(s(0)), s(s(0))) rewrites: 3 in
-10ms cpu (0ms real) (~rewrites/second)
result Natural: s(s(s(s(0))))
Maude>

8Equational Specification in Maude

M. Wirsing: Foundations of System Development

Natural Numbers (mixfix syntax)
fmod NAT-MIXFIX is

sort Natural .

op 0 : -> Natural .
op s_ : Natural -> Natural .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .
eq N + s M = s(N + M) .
eq N * 0 = 0 .
eq N * s M = N + (N * M) .

endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0

5

9Equational Specification in Maude

M. Wirsing: Foundations of System Development

Lists of Natural Numbers
fmod NAT-LIST is

protecting NAT-MIXFIX .
sort List .

op nil : -> List .
op _._ : Natural List -> List .
op length : List -> Natural .

var N : Natural .
var L : List .

eq length(nil) = 0 .
eq length(N . L) = s length(L) .

endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil)
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0

10Equational Specification in Maude

M. Wirsing: Foundations of System Development

Specifying partial functions in total algebras?
Problem
• How to specify partial functions in a framework of algebras with

total functions?
• Consider for example defining a function

first that takes the first element of a list of natural numbers,
or
a predecessor function p that assigns to each natural number its

predecessor.
What can we do? If we define,

op first : List -> Natural .
op p_ : Natural -> Natural .

we have then the awkward problem of having to define
the values of first(nil) and of p 0, which in fact are

undefined.

6

11Equational Specification in Maude

M. Wirsing: Foundations of System Development

Some Common Mistakes
• not ending declarations for sorts, operators, etc. with a

space followed by a period, e.g.,
sort Natural
op 0 : -> Natural .
op s : Natural -> Natural

• not putting enough parentheses to disambiguate
expressions, e.g., p s s 0 + 0

• not leaving spaces between a mixfix operator and its
arguments, e.g., 0+0

12Equational Specification in Maude

M. Wirsing: Foundations of System Development

Order-sorted signatures
Solution:
Recognize that these functions are partial, but

become total on appropriate subsorts
NeList < List of nonempty lists, and
NzNatural < Natural of nonzero natural numbers.

If we define,
op s_ : Natural -> NzNatural .

op _._ : Natural List -> NeList .

op first : NeList -> Natural .

op p_ : NzNatural -> Natural .

everything is fine.

Subsorts also allow us to overload operator symbols. For example,
Natural < Integer , and
op _+_ : Natural Natural -> Natural

op _+_ : Integer Integer -> Integer

7

13Equational Specification in Maude

M. Wirsing: Foundations of System Development

Order-sorted Natural Numbers
fmod NATURAL is

sorts Natural NzNatural .
subsorts NzNatural < Natural .
op 0 : -> Natural .
op s_ : Natural -> NzNatural .
op p_ : NzNatural -> Natural .
op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq p s N = N .
eq N + 0 = N .
eq N + s M = s(N + M) .

endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0)
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0

14Equational Specification in Maude

M. Wirsing: Foundations of System Development

Order-sorted Lists
fmod NAT-LIST-II is

protecting NATURAL .

sorts NeList List .

subsorts NeList < List .

op nil : -> List .

op _._ : Natural List -> NeList .

op length : List -> Natural .

op first : NeList -> Natural .

var N : Natural .

var L : List .

eq length(nil) = 0 .

eq length(N . L) = s length(L) .

eq first(N . L) = N .

endfm

8

15Equational Specification in Maude

M. Wirsing: Foundations of System Development

Order-sorted Signature (mathematically)
• An order-sorted signature Σ is a triple

Σ = ((S, Σw,s)(w,s) ∈ S∗ x S ,<),
where ((S, Σw,s)(w,s) ∈ S∗ x S ,<) is an S-sorted signature, and
where < is a partial order relation on S called subsort inclusion.
That is, < is a binary relation on S which is:

irreflexive: ¬(x<x) and
transitive: x<y and y<z imply x<z

• Of course, any such relation < has an associated
≤ relation that is reflexive, antisymmetric, and transitive,

and we will move back and forth between < and ≤.
• Note: Unless specified otherwise, by a signature in Maude we will

always mean an order-sorted signature.

16Equational Specification in Maude

M. Wirsing: Foundations of System Development

Connected Components
• Given a signature Σ, we can define an equivalence

relation
≡≤ between sorts s, s’ ∈ S

as the smallest relation such that:
if s ≤ s’ or s’ ≤ s then s ≡≤ s ′
if s ≡≤ s’ and s’ ≡≤ s’’ then s ≡≤ s’’

• We call the equivalence classes modulo ≡≤ the
connected components of the poset order (S, ≤).

• Intuitively, when we view the poset as a directed acyclic
graph, they are the connected components of the graph.

9

17Equational Specification in Maude

M. Wirsing: Foundations of System Development

Connected Components Example

S/≡≤ =
{ Integer, NzInteger, Natural, NzNatural}, {NeList, List}, {Bool, Prop} }

18Equational Specification in Maude

M. Wirsing: Foundations of System Development

Subsort vs. Ad-hoc Overloading
• In general, the same operator name may have different declarations

in the same signature Σ.
For example, in the NATURAL module we have,
op _+_ : Natural Natural -> Natural .

op _+_ : NzNatural NzNatural -> NzNatural .

• When we have two operator declarations,
f : w → s, and f : w’ → s’ ,

with w and w’ strings of equal length, then:
(1) if w ≡≤ w’ and s ≡≤ s’ , we call them subsort overloaded;
(2) otherwise, e.g, + for Natural and for “exclusive or” in Bool,

we call them ad-hoc overloaded.

10

19Equational Specification in Maude

M. Wirsing: Foundations of System Development

Order-Sorted Algebras

20Equational Specification in Maude

M. Wirsing: Foundations of System Development

Summary
• Maude is an executable language for equational

specifications.
• Loose specifications are called theories, initial algebra

specifications are called functional modules.
• In Maude partial functions are modelled by total

functions on subsorts.
• Subsort overloading vs. ad-hoc overloading of functions.

