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Goals

• Get to know algebraic specifications

• Write first specifications with Maude

• Order-sorted signatures and specifications
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Algebraic Specifications
Definition:
Let Σ = (S, E) be a signature and E a set of (closed) Σ-formulas.
• SP=<Σ,E> is called an algebraic specification.  
• If E is a set of equations, SP is called an equational specification.

Moreover, depending on the semantics we distinguish
loose specification and initial algebra specifications: 
• The semantics of a loose specification SP is given by

the class of all models of SP:    

Mod(SP) =def { A ∈ Alg(SP) | A |= E }
• The semantics of an initial algebra specification SP is given by

all initial models of SP:    

I(SP) =def {A ∈ Mod(SP) | A is initial in Mod(SP)}
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Maude

• Maude is an executable specification language for equational
specifications and term rewriting.

• Maude is being developed by Jose Meseguer and his group at  
Univ. of Illinois and by the group of Carolyn Talcott at SRI.

• You can download Maude 2.0 from the Maude web page
http://maude.cs.uiuc.edu. Chapter 2 in the Maude 2.0 manual
(also in that web page) explains how you start Maude and 
interact with it. 
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Maude Functional Modules and Theories

In Maude,
• A loose specification is called theory,

declared with the syntax
th <name> is (Σ,E) endth

Maude theories are not executable!

• An initial specification is called functional module, 
declared with syntax

fmod <name> is (Σ,E) endfm
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Maude Theories
• The trivial theory consisting of one sort

fth TRIV is

sort Elt .

endfth

• The theory of partial orderings
fth PARTIAL-ORDER is

protecting BOOL .

including TRIV .

op _<=_ : Elt Elt -> Bool .

vars X Y Z : Elt .

ceq X <= Z = true if X <= Y and Y <= Z [nonexec label transitive] .
ceq X = Y if X <= Y /\ Y <= X [nonexec label antisymmetric] .
eq X <= X = true [nonexec label reflexive] .

endfth
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Natural Numbers (prefix syntax)
fmod NAT-PREFIX is

sort Natural . 

op 0 : -> Natural . 
op s : Natural -> Natural . 
op plus : Natural Natural -> Natural . 

vars N M : Natural . 

eq plus(N,0) = N . 
eq plus(N,s(M)) = s(plus(N,M)) . 

endfm

Maude> red plus(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : plus(s(s(0)), s(s(0))) rewrites: 3 in 
-10ms cpu (0ms real) (~rewrites/second)
result Natural: s(s(s(s(0))))
Maude>

8Equational Specification in Maude 

M. Wirsing: Foundations of System Development

Natural Numbers (mixfix syntax)
fmod NAT-MIXFIX is

sort Natural . 

op 0 : -> Natural . 
op s_ : Natural -> Natural . 
op _+_ : Natural Natural -> Natural . 
op _*_ : Natural Natural -> Natural . 

vars N M : Natural . 

eq N + 0 = N . 
eq N + s M = s(N + M) . 
eq N * 0 = 0 . 
eq N * s M = N + (N * M) . 

endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0 
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
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Lists of Natural Numbers
fmod NAT-LIST is

protecting NAT-MIXFIX . 
sort List .

op nil : -> List . 
op _._ : Natural List -> List . 
op length : List -> Natural . 

var N : Natural . 
var L : List . 

eq length(nil) = 0 . 
eq length(N . L) = s length(L) . 

endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) 
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
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Specifying partial functions in total algebras?
Problem
• How to specify partial functions in a framework of algebras with

total functions?
• Consider for example defining a function

first that takes the first element of a list of natural numbers, 
or
a predecessor function p that assigns to each natural number its

predecessor. 
What can we do? If we define, 

op first : List -> Natural .
op p_ : Natural -> Natural .

we have then the awkward problem of having to define
the values of first(nil) and of p 0, which in fact are

undefined. 



6

11Equational Specification in Maude 

M. Wirsing: Foundations of System Development

Some Common Mistakes
• not ending declarations for sorts, operators, etc. with a 

space followed by a period, e.g., 
sort Natural
op 0 : -> Natural .
op s : Natural -> Natural

• not putting enough parentheses to disambiguate 
expressions, e.g., p s s 0 + 0

• not leaving spaces between a mixfix operator and its 
arguments, e.g., 0+0
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Order-sorted signatures
Solution:
Recognize that these functions are partial, but

become total on appropriate subsorts
NeList < List of nonempty lists, and
NzNatural < Natural of nonzero natural numbers.

If we define, 
op s_ : Natural -> NzNatural .

op _._ : Natural List -> NeList . 

op first : NeList -> Natural . 

op p_ : NzNatural -> Natural . 

everything is fine. 

Subsorts also allow us to overload operator symbols. For example, 
Natural < Integer , and 
op _+_ : Natural Natural -> Natural

op _+_ : Integer Integer -> Integer
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Order-sorted Natural Numbers
fmod NATURAL is

sorts Natural NzNatural . 
subsorts NzNatural < Natural . 
op 0 : -> Natural . 
op s_ : Natural -> NzNatural .
op p_ : NzNatural -> Natural . 
op _+_ : Natural Natural -> Natural . 

vars N M : Natural . 

eq p s N = N . 
eq N + 0 = N . 
eq N + s M = s(N + M) . 

endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) 
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0
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Order-sorted Lists
fmod NAT-LIST-II is 

protecting NATURAL . 

sorts NeList List . 

subsorts NeList < List .

op nil : -> List . 

op _._ : Natural List -> NeList . 

op length : List -> Natural . 

op first : NeList -> Natural . 

var N : Natural . 

var L : List . 

eq length(nil) = 0 . 

eq length(N . L) = s length(L) . 

eq first(N . L) = N . 

endfm
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Order-sorted Signature (mathematically)
• An order-sorted signature Σ is a triple 

Σ = ((S, Σw,s)(w,s) ∈ S∗ x S ,<), 
where ((S, Σw,s)(w,s) ∈ S∗ x S ,<) is an S-sorted signature, and 
where < is a partial order relation on S called subsort inclusion. 
That is, < is a binary relation on S which is:

irreflexive: ¬(x<x) and
transitive: x<y and y<z imply x<z

• Of course, any such relation < has an associated 
≤ relation that is reflexive, antisymmetric, and transitive, 

and we will move back and forth between < and ≤. 
• Note: Unless specified otherwise, by a signature in Maude we will 

always mean an order-sorted signature.
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Connected Components
• Given a signature Σ, we can define an equivalence 

relation
≡≤ between sorts s, s’ ∈ S 

as the smallest relation such that: 
if s ≤ s’ or s’ ≤ s then s ≡≤ s ′
if s ≡≤ s’ and s’ ≡≤ s’’ then s ≡≤ s’’

• We call the equivalence classes modulo ≡≤ the 
connected components of the poset order (S, ≤). 

• Intuitively, when we view the poset as a directed acyclic 
graph, they are the connected components of the graph.
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Connected Components Example

S/≡≤ = 
{ Integer, NzInteger, Natural, NzNatural}, {NeList, List}, {Bool, Prop} }
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Subsort vs. Ad-hoc Overloading
• In general, the same operator name may have different declarations 

in the same signature Σ. 
For example, in the NATURAL module we have, 
op _+_ : Natural Natural -> Natural .

op _+_ : NzNatural NzNatural -> NzNatural . 

• When we have two operator declarations, 
f : w → s, and f : w’ → s’ , 

with w and w’ strings of equal length, then: 
(1) if w ≡≤ w’ and s ≡≤ s’ , we call them subsort overloaded; 
(2) otherwise, e.g, + for Natural and for “exclusive or” in Bool, 

we call them ad-hoc overloaded.
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Order-Sorted Algebras
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Summary
• Maude is an executable language for equational

specifications.
• Loose specifications are called theories, initial algebra 

specifications are called functional modules.
• In Maude partial functions are modelled by total 

functions on subsorts.
• Subsort overloading vs. ad-hoc overloading of functions.


