
1

WS 05/06

Foundations of System Development

Martin Wirsing

in cooperation with
Axel Rauschmayer

2Equational Specification in Maude

M. Wirsing: Foundations of System Development

Goals

Get to know

• constructor subsignatures

• equational simplification modulo equations

2

3Equational Specification in Maude

M. Wirsing: Foundations of System Development

Constructor Subsignature

Let T = (Σ,E) be an equational theory with equations E

that are ground confluent and terminating.

Then a subsignature Ω is called the constructor subsignature for

T = (Σ,E) iff:

1. Ω ⊂ Σ

2. Ω has the same poset of sorts (S,≤) as Σ, and

3. Ω is the smallest signature satisfying (1) and (2) above

and such that its terms contain all canonical forms:

CanΣ,E|Ω ⊂ TΩ .

We call Ω a subsignature of (absolutely) free constructors if

the equality CanΣ,Ε|Ω = TΩ holds.

4Equational Specification in Maude

M. Wirsing: Foundations of System Development

Constructor Subsignature
• In Maude, we indicate the constructor subsignature by declaring

the ctor attribute.

• Example
fmod NAT-MIXFIX is

sort Natural .

op 0 : -> Natural [ctor] .

op s_ : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s M = s(N + M) .

endfm

The annotations indicate the, in this case (absolutely) free,
constructor subsignature.

3

5Equational Specification in Maude

M. Wirsing: Foundations of System Development

Constructor Subsignature
The subsignature of constructors is not always (absolutely) free.

Example
fmod NAT-3 is

sort Natural .

op 0 : -> Natural [ctor] .

op s_ : Natural -> Natural [ctor] .

op _+_ : Natural Natural -> Natural .

vars N M : Natural .

eq N + 0 = N .

eq N + s M = s(N + M) .

eq s s s 0 = 0 .

endfm

CanΣ,E,Natural = {0, s 0, s s 0}. Therefore, CanΣ,E|W is different from TΩ.

6Equational Specification in Maude

M. Wirsing: Foundations of System Development

Constructor Subsignature
Note that

a given subsort overloaded operator may be a constructor, while
another subsort overloaded version of the same operator may not be.

Example
fmod INTEGER is

sorts Zero Natural NzNatural Negative NzNegative Integer .

subsorts Zero NzNatural < Natural < Integer .

subsorts Zero NzNegative < Negative < Integer .

op 0 : -> Zero [ctor] .

op s_ : Natural -> NzNatural [ctor] .

op s_ : Integer -> Integer .

op p_ : Negative -> NzNegative [ctor] .

op p_ : Integer -> Integer .

var I : Integer .

eq p s I = I . eq s p I = I .

endfm

defines a free constructor subsignature for the integers.

4

7Equational Specification in Maude

M. Wirsing: Foundations of System Development

Equational Simplification modulo Equations
• Equations as attributes of Operators

In Maude, we allow certain equations, namely

associativity, commutativity, and identity
to be declared as attributes of operators by means of

assoc, comm, and id: _

• Mathematically, this means that the alg. specification is of the form
(Σ, E ∪ A) with

• E the equations explicitly given in the module, and

• A the equations implicitly declared by attributes such as

assoc, comm, and id:_.

• Operationally, this means is that

we can apply the equations in E modulo the axioms A.

8Equational Specification in Maude

M. Wirsing: Foundations of System Development

Equational Simplification modulo Equations

Example
The equation N + 0 = N applies to

• the term s(0)+(0+s(0)) modulo associativity of + ; and to

• the term 0+s(0) modulo commutativity of + .

5

9Equational Specification in Maude

M. Wirsing: Foundations of System Development

Example of Simplification modulo Equations
Lists modulo associativity and identity, with membership:
fmod LIST-AID is

protecting NAT .

sort List .

subsort Nat < List .

op nil : -> List .

op _;_ : List List -> List [assoc id: nil] .

op _in_ : Nat List -> Bool .

var N : Nat . vars L L’ : List .

eq N in L ; N ; L’ = true .

eq N in L = false [owise] .

endfm

reduce in LIST-AID : 7 in 3 ; 4 ; 9 .
result Bool: false
==
reduce in LIST-AID : 7 in 4 ; 3 ; 7 .
result Bool: true

10Equational Specification in Maude

M. Wirsing: Foundations of System Development

Example of Simplification modulo Equations
Lists modulo associativity, with membership:
More patterns need to be considered without the identity attribute.

fmod LIST-A is
protecting NAT . sort List . subsort Nat < List .

op nil : -> List .

op _;_ : List List -> List [assoc] .

op _in_ : Nat List -> Bool .

var N : Nat . vars L L’ : List .

eq nil ; L = L .

eq L ; nil = L .

eq N in N = true .

eq N in N ; L = true .

eq N in L ; N = true .

eq N in L ; N ; L’ = true .

eq N in L = false [owise] .

endfm

6

11Equational Specification in Maude

M. Wirsing: Foundations of System Development

Example of Simplification modulo Equations

reduce in LIST-A : 7 in 3 ; 4 ; 9 .
result Bool: false
==
reduce in LIST-A : 7 in 4 ; 3 ; 7 .
result Bool: true

12Equational Specification in Maude

M. Wirsing: Foundations of System Development

Examples of Simplification modulo Equations
Multisets modulo associativity, commutativity, and identity.
fmod MSET-ACID is

protecting NAT .

sort MSet .

subsort Nat < MSet .

op nil : -> MSet .

op _;_ : MSet MSet -> MSet [assoc comm id: nil] .

op _in_ : Nat MSet -> Bool .

var N : Nat . var S : MSet .

eq N in N ; S = true .

eq N in S = false [owise] .

endfm
reduce in MSET-ACID : 7 in 3 ; 4 ; 9 .
result Bool: false
==
reduce in MSET-ACID : 7 in 4 ; 3 ; 7 .
result Bool: true

7

13Equational Specification in Maude

M. Wirsing: Foundations of System Development

Examples of Simplification modulo Equations

Multisets modulo associativity and commutativity.

fmod MSET-ACID is

protecting NAT .

sort MSet .

subsort Nat < MSet .

op nil : -> MSet .

op _;_ : MSet MSet -> MSet [assoc comm] .

op _in_ : Nat MSet -> Bool .

var N : Nat . var S : MSet .

eq N in N = true .

eq N in N ; S = true .

eq N in S = false [owise] .

endfm

14Equational Specification in Maude

M. Wirsing: Foundations of System Development

Examples of Simplification modulo Equations

reduce in MSET-ACID : 7 in 3 ; 4 ; 9 .

result Bool: false

==
reduce in MSET-ACID : 7 in 4 ; 3 ; 7 .
result Bool: true

8

15Equational Specification in Maude

M. Wirsing: Foundations of System Development

Equational Simplification modulo A
The above examples and reduce commands illustrate

equational simplification modulo A, for A any combination

of associativity, commutativity, and identity axioms.

Let T = (Σ,E ∪ A) be a theory whose equations E are

admissible as equational simplification rules.

Then, we can define a binary relation on terms in T,

denoted →E/A, and

called one-step equational simplification modulo A, by

as follows:

t →E/A t′ if, and only, if t ≡A u →E v ≡A t′.

16Equational Specification in Maude

M. Wirsing: Foundations of System Development

Equational Simplification modulo A
• Note that, denoting equivalence classes modulo A by [t],

simplification modulo A defines also a relation (with the

same notation) on T/A as follows:

[t] →E/A [t′] if, and only, if t →E/A t′.

• Conceptually, this is the best way of thinking of this form of equational

simplification:

• we think of equivalence classes [t] modulo A as

abstract data structures

(e.g., strings for A associativity,

and multisets for A associativity and commutativity)

• we think of →E/A as acting not on terms, but on such abstract data stuctures

(for example, string rewriting, and multiset rewriting).

9

17Equational Specification in Maude

M. Wirsing: Foundations of System Development

Another Example of Simplification modulo A
Sets of natural numbers by simplifying

multisets of natural numbers modulo associativity and commutativity,

using identity and idempotency equations.

fmod NAT-SET is protecting NATURAL .

sort NatSet .

subsort Natural < NatSet .

op empty : -> NatSet [ctor] .

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm label set

union] .

var X : NatSet .

eq empty X = X [label identity] .

eq X X = X [label idempotency] .

endfm

18Equational Specification in Maude

M. Wirsing: Foundations of System Development

Caveats of Simplification modulo A
Equational simplification modulo identity is trickier:

Example
fmod NAT-SET’ is protecting NAT .

sort NatSet .

subsort Natural < NatSet .

op empty : -> NatSet [ctor] .

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm id: empty] .

var X : NatSet .

eq X X = X .

endfm

The innocent-looking idempotency equation is nonterminating, since,

denoting by ≡ACI the congruence modulo associativity, commutativity, and identity,
we have,

empty ≡ACI empty empty →E empty ≡ACI empty empty →E . . .

10

19Equational Specification in Maude

M. Wirsing: Foundations of System Development

Caveats of Simplification modulo A

We can avoid this nontermination problem by giving instead a careful
equation, where

we restrict idempotency to pairs of elements
(yet, with the same effect, sice this ensures that all repeated elements will
be eliminated) by means of the (now terminating) equation:

var N : Natural .

eq N N = N .

20Equational Specification in Maude

M. Wirsing: Foundations of System Development

All Results Generalize Modulo

Under reasonable assumptions on A,

all the concepts on equational simplification generalize in a natural way

to equational simplification modulo A.

We define the relation

→E/A* as the reflexive and transitive closure of →E/A.

The definitions of confluence and termination are the same,

replacing →E by →E/A: we have

• soundness, and

• for confluent equations completeness,

of equational simplification modulo A.

11

21Equational Specification in Maude

M. Wirsing: Foundations of System Development

All Results Generalize Modulo

• The concepts of canonical term algebra and of

constructor subsignature also generalize,

except that now canonical forms are equivalence classes modulo A,

(Notation: CanΣ,E/A) and if Ω are the constructors we have,

CanΣ,E/A|Ω ⊂ TΩ/A.

• We call the constructors free modulo A if we in fact have,

CanΣ,E/A|Ω = TΩ/A.

• Example
The constructors in NAT-SET are not free modulo associativity and

commutativity;

e.g. the multiset 0 0 0 is not in canonical form.

22Equational Specification in Maude

M. Wirsing: Foundations of System Development

All Results Generalize Modulo

Functional modules in Maude are of the form

fmod (Σ, E ∪ A) endfm,

where we assume E confluent and terminating modulo A.

• Mathematical semantics:
initial algebra TΩ/E ∪ A.

• Operational semantics:
equational simplification with E modulo A.

• Both semantics coincide in the canonical term algebra,

since we have the Σ–isomorphism

TΩ/E ∪ A = CanΣ,E/A
~

12

23Equational Specification in Maude

M. Wirsing: Foundations of System Development

Summary
• In Maude, we indicate the constructor subsignature by

declaring the ctor attribute.
• Maude supports equational simplification modulo all

combinations of
associativity, commutativity, identity.

• All concepts such as canonical term algebra,
soundness, and completeness generalize in a natural
way to equational simplification modulo.

