
1

WS 05/06

Foundations of System Development

Martin Wirsing

in cooperation with
Axel Rauschmayer

2State-based Systems in Maude

M. Wirsing: Foundations of System Development

Goals

• Learn how to specify

state-based concurrent systems in Maude:

• transition systems

• (concurrent) object-oriented systems.

• Understand the differences between

Rewriting Logic and Equational Logic.

• Understand the

computational and logical interpretations

of Rewriting Logic.

2

3State-based Systems in Maude

M. Wirsing: Foundations of System Development

Automata as Rewrite Systems
Example:
Consider the following possibly faulty candy automaton:

4State-based Systems in Maude

M. Wirsing: Foundations of System Development

Automata as Rewrite Systems
The candy automaton in Maude:

3

5State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewrite Theories

6State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewrite Theories

4

7State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewrite Theories in Maude
Rewrite theories are specified by system modules of the form

mod (Σ,E, R) endm

With conditional rewrite rules of the form:
crl [l] t => t’ if cond .

A labelled transition system (Z, A, δ) is represented in Maude as
follows:

The set of states Z is represented by the sort State .

Any transition s –a-> s1 is represented by a rewrite rule
rl [a] : s => s1 .

8State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewrite Rules as Transitions

5

9State-based Systems in Maude

M. Wirsing: Foundations of System Development

The rewrite Command

In general:
rewrite {[bound]} {in module :} term .

Causes the specified term to be rewritten using the rules, equations,
and membership axioms in the given module. The default interpreter
for rules applies them using a top-down (lazy) strategy and stops
when the number of rule applications reaches the given bound.

10State-based Systems in Maude

M. Wirsing: Foundations of System Development

The search Command

6

11State-based Systems in Maude

M. Wirsing: Foundations of System Development

The search Command
Maude> search in CANDY-AUTOMATON : $ =>! X:State .

Solution 1 (state 2)

states: 5 rewrites: 5 in 267757978123ms cpu (0ms
real) (0 rewrites/second)

X:State --> broken

Solution 2 (state 5)

states: 6 rewrites: 7 in 267757978123ms cpu (9ms
real) (0 rewrites/second)

X:State --> q

No more solutions.
states: 6 rewrites: 7 in 267757978123ms cpu (13ms

real) (0 rewrites/second)

12State-based Systems in Maude

M. Wirsing: Foundations of System Development

The search Command

7

13State-based Systems in Maude

M. Wirsing: Foundations of System Development

The search Command

Maude> search in CANDY-AUTOMATON : $ =>* broken .

Solution 1 (state 2)

states: 3 rewrites: 3 in 267758005139ms cpu (1ms
real) (0 rewrites/second)

empty substitution

No more solutions.

states: 6 rewrites: 7 in 267758005139ms cpu (2ms
real) (0 rewrites/second)

14State-based Systems in Maude

M. Wirsing: Foundations of System Development

A Children’s problem
“Crossing the river” :
A shepherd needs to transport to the other side of a river a

wolf, a goat, and a cabbage:
The boat has only room for himself and another item.
In the absence of the shepherd, the wolf would eat the goat.

In the absence of the shepherd, the goat would eat the cabbage.

8

15State-based Systems in Maude

M. Wirsing: Foundations of System Development

Crossing the River in Maude
Representation of the two sides of the river:
sort Side .

ops left right : -> Side .

The shepherd and his belongings are objects with an attribute
indicating their location.
ops s w g c : Side -> Group .

op __ : Group Group -> Group [assoc comm] .

The outcome of crossing the river.
op change : Side -> Side .

eq change(left) = right .

eq change(right) = left .

16State-based Systems in Maude

M. Wirsing: Foundations of System Development

Crossing the River in Maude
Equations specify that the wolf eats the goat, and the goat the
cabbage, if the shepherd leaves them alone:
ceq w(S) g(S) s(S’) = w(S) s(S’) if S =/= S’ .

ceq c(S) g(S) w(S’) s(S’) = g(S) w(S’) s(S’)

if S =/= S’ .

Transitions specify crossing the river as expected.
rl [shepherd-alone] : s(S) => s(change(S)) .

rl [wolf] : s(S) w(S) => s(change(S)) w(change(S)) .

rl [goat] : s(S) g(S) => s(change(S)) g(change(S)) .

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S)) .

9

17State-based Systems in Maude

M. Wirsing: Foundations of System Development

Crossing the River in Maude
There exists a correct solution:

Maude> search in CROSSING-RIVER :

s(left) w(left) g(left) c(left) =>*

s(right) w(right) g(right) c(right) .

Solution 1 (state 27)

states: 28 rewrites: 154 in 267758336123ms cpu (27ms real)
(0 rewrites/second)

empty substitution

No more solutions.

states: 28 rewrites: 170 in 267758336123ms cpu (41ms real)
(0 rewrites/second)

18State-based Systems in Maude

M. Wirsing: Foundations of System Development

Crossing the River in Maude
Show the search graph:

Maude> show search graph .

state 0, Group: s(left) w(left) g(left) c(left)

arc 0 ===> state 1 (rl s(S) w(S) => s(change(S))
w(change(S)) [label wolf] .)

arc 1 ===> state 2 (rl s(S) g(S) => s(change(S))
g(change(S)) [label goat] .)

arc 2 ===> state 3 (rl s(S) c(S) => s(change(S))
c(change(S)) [label cabbage] .)

arc 3 ===> state 4 (rl s(S) => s(change(S)) [label
shepherd-alone] .)

. . .

state 27, Group: s(right) w(right) g(right) c(right)

. . .

10

19State-based Systems in Maude

M. Wirsing: Foundations of System Development

Crossing the River in Maude
Maude> show path 27 . ***Show shortest path to state 27
state 0, Group: s(left) w(left) g(left) c(left)
===[rl s(S) g(S) => s(change(S)) g(change(S)) [label goat] .

]===>
state 2, Group: s(right) w(left) g(right) c(left)
===[rl s(S) => s(change(S)) [label shepherd-alone] .]===>
state 7, Group: s(left) w(left) g(right) c(left)
===[rl s(S) w(S) => s(change(S)) w(change(S)) [label wolf] .

]===>
state 13, Group: s(right) w(right) g(right) c(left)
===[rl s(S) g(S) => s(change(S)) g(change(S)) [label goat] .

]===>
state 20, Group: s(left) w(right) g(left) c(left)
===[rl s(S) c(S) => s(change(S)) c(change(S)) [label cabbage] .

]===>
state 25, Group: s(right) w(right) g(left) c(right)
===[rl s(S) => s(change(S)) [label shepherd-alone] .]===>
state 26, Group: s(left) w(right) g(left) c(right)
===[rl s(S) g(S) => s(change(S)) g(change(S)) [label goat] .

]===>
state 27, Group: s(right) w(right) g(right) c(right)

20State-based Systems in Maude

M. Wirsing: Foundations of System Development

(Concurrent) Object-based Systems

11

21State-based Systems in Maude

M. Wirsing: Foundations of System Development

Concurrent Object Systems in Maude

22State-based Systems in Maude

M. Wirsing: Foundations of System Development

Concurrent Object Systems in Maude

12

23State-based Systems in Maude

M. Wirsing: Foundations of System Development

Concurrent Object Systems in Maude

24State-based Systems in Maude

M. Wirsing: Foundations of System Development

Distributed Object States
The concurrent state of an object-oriented system, often called a

configuration,

has typically the structure of a multiset made up, of

objects and messages.

sorts Conf Object Msg .

subsort Object Msg < Conf .

*** multiset union

op _ _ : Conf Conf -> Conf [assoc comm id: null] .

13

25State-based Systems in Maude

M. Wirsing: Foundations of System Development

Objects

26State-based Systems in Maude

M. Wirsing: Foundations of System Development

Configurations

In Core Maude classes are formalized similarly as in FOOSE:
op C : -> Cid .
op a1 :_ : s1 -> Attribute .

. . .

14

27State-based Systems in Maude

M. Wirsing: Foundations of System Development

Example: Simple Asynchronous Communication
Consider a system consisting of 3 objects:

a buffer, a sender and a receiver.

28State-based Systems in Maude

M. Wirsing: Foundations of System Development

Example: Simple Asynchronous Communication

15

29State-based Systems in Maude

M. Wirsing: Foundations of System Development

Messages

30State-based Systems in Maude

M. Wirsing: Foundations of System Development

“Soup of Objects and Messages”

16

31State-based Systems in Maude

M. Wirsing: Foundations of System Development

Object Rewrite Rules

32State-based Systems in Maude

M. Wirsing: Foundations of System Development

Object Rewrite Rules

17

33State-based Systems in Maude

M. Wirsing: Foundations of System Development

Example: Simple Asynchronous Communication

34State-based Systems in Maude

M. Wirsing: Foundations of System Development

Example: Simple Asynchronous Communication

18

35State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewriting Logic in General

36State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewriting Logic in General

19

37State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewriting Logic in General

)

38State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewriting Logic in General

20

39State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewriting Logic in General

40State-based Systems in Maude

M. Wirsing: Foundations of System Development

Rewriting Logic in General

21

41State-based Systems in Maude

M. Wirsing: Foundations of System Development

Computational Meaning of Rewrite Rules

42State-based Systems in Maude

M. Wirsing: Foundations of System Development

Computational and Logical Readings

22

43State-based Systems in Maude

M. Wirsing: Foundations of System Development

Example: Implicational Logic in Maude

44State-based Systems in Maude

M. Wirsing: Foundations of System Development

Computational and Logical Readings

23

45State-based Systems in Maude

M. Wirsing: Foundations of System Development

Summary
Rewriting Logic provides a mathematical basis for modelling
concurrent distributed systems including object-oriented systems.

Dynamic behaviour and, in particular, concurrent transitions are
defined by rewrite rules.

Distributed configurations are represented by terms

where the distribution structure is algebraically defined by initial
algebras of equational theories.

