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Goals

e Learn how to specify
state-based concurrent systems in Maude:
e transition systems
e (concurrent) object-oriented systems.
= Understand the differences between
Rewriting Logic and Equational Logic.
» Understand the
computational and logical interpretations
of Rewriting Logic.
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Automata as Rewrite Systems

Example:
Consider the following possibly faulty candy automaton:

y
chng
ready nestle
cancel
\ %
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Automata as Rewrite Systems

The candy automaton in Maude:

mod CANDY-AUTOMATON is
sort State .

ops $ ready broken nestle m&m q : -> State .

rl
rl
rl
rl
rl
rl
rl
endm

[in] : 8§ => ready .
[cancel] : ready => § .

[1] : ready => nestle

[2] : ready => m&m .
[fault] : ready => broken .
[chng] : nestle => q .
[chng] : m&m => q .
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Rewrite Theories

A rewrite theory R is a triple R = (£, E, R), with:

e (X E)a equational theory, and

e Il a set of labeled rewrite rules of the form
l:t—t' <« cond, with [ a label, t,#' € Tx(X); for some
kind %, and cond a condition (involving the same
variables X) as explained below.
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Rewrite Theories

The most general form of a conditional rewrite rule is:

1t —t < (/\'u.‘- = uj) A (/\’Uj 185) A (/\-wk — wy),
J

k

i

that is, in general, the condition is a conjunction of
equations, memberships, and rewrites, where the variables
in all the E-terms t,t', u;, u!, v;, wg, wy, are contained in a
common set X. There is no requirement that vars(t) = X,
and no assumptions of confluence or termination. The rule
is called unconditional if the condition is empty.
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Rewrite Theories in Maude

= Rewrite theories are specified by system modules of the form
mod (X,E, R) endm

= With conditional rewrite rules of the form:
crl [1] £ => t* 1if cond

= A labelled transition system (Z, A, d) is represented in Maude as
follows:
m The set of states Z is represented by the sort State .
m Anytransition s -a-> sl is represented by a rewrite rule
rl [a] : s => sl
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Rewrite Rules as Transitions

Note that rewrite rules do not have an equational
interpretation. They are not understood as equations, but
as transitions, that in general cannot be reversed.

This is why, in a rewite theory (X, E, R) the equations in E
are totally different from the rules R, since equations and
rules have a totally different semantics.

However, operationally Maude will assume that the
equations in E are confluent, terminating, and sort
decreasing modulo some A C E, and will compute with such
equations and also with the rules in R by rewriting, vet
distinguishing equation simplification (the reduce command)
from rewriting with rules (the rewrite command).
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The rewrite Command
Maude can execute rewrite theories with the rewrite
command (can be abbreviated to rew). For example,

Maude> rew $ .
rewrite in CANDY-AUTOMATON : $
rewrites: 5 in Oms cpu (Oms real) (° rewrites/second)

result State: g

® In general:
rewrite {[ bound ]} {in module :} term .
Causes the specified term to be rewritten using the rules, equations,
and membership axioms in the given module. The default interpreter

for rules applies them using a top-down (lazy) strategy and stops
when the number of rule applications reaches the given bound.
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The search Command

Of course, since we are in a nondeterministic situation, the
rewrite command gives us one possible behavior among

many.

To systematically explore all behaviors from an initial state
we can use the search command, which takes two terms: a
ground term which is our initial state, and a term, possibly
with variables, which describes our desired target state.

Maude then does a breadth first search to try to reach the
desired target state. For example, to find the terminating
states from the § state we can give the command (where
the “1" in =>! specifies that the target state must be a
terminating state),
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The search Command

Maude> search in CANDY-AUTOMATON : $ =>! X:State

Solution 1 (state 2)

states: 5 rewrites: 5 in 267757978123ms cpu (Oms
real) (0 rewrites/second)

X:State --> broken

Solution 2 (state 5)

states: 6 vrewrites: 7 in 267757978123ms cpu (9ms
real) (0 rewrites/second)

X:State --> g

No more solutions.
states: 6 rewrites: 7 in 267757978123ms cpu (13ms

real) (0 rewrites/second)
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The search Command

Similarly, we can search for target terms reachable by one
rewrite step, one or more, or zero or more steps by typing
(respectively):

e searcht =>11¢ .
e search t =>+ t' .

e search t =>x% t' .
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The search Command

Maude> search in CANDY-AUTOMATON : $ =>* broken

Solution 1 (state 2)

states: 3 rewrites: 3 in 267758005139ms cpu (lms
real) (0 rewrites/second)

empty substitution

No more solutions.

states: 6 vrewrites: 7 in 267758005139ms cpu (2ms
real) (0 rewrites/second)
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A Children’s problem

“Crossing the river” :
A shepherd needs to transport to the other side of a river a
wolf, a goat, and a cabbage:
m The boat has only room for himself and another item.
= In the absence of the shepherd, the wolf would eat the goat.
m |n the absence of the shepherd, the goat would eat the cabbage.
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Crossing the River in Maude

= Representation of the two sides of the river:

sort Side .

ops left right : -> Side .
= The shepherd and his belongings are objects with an attribute

indicating their location.

ops s w g c : Side -> Group .

op __ : Group Group -> Group [assoc comm]
= The outcome of crossing the river.

op change : Side -> Side .

eq change(left) = right .

eq change(right) = left .
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Crossing the River in Maude

= Equations specify that the wolf eats the goat, and the goat the
cabbage, if the shepherd leaves them alone:
ceq w(S) g(S) s(S’) = w(S) s(s’) if s =/= 8§’
ceqg c(S) g(S) w(S’) s(S’) = g(S) w(S’) s(S")
if s =/=S”
= Transitions specify crossing the river as expected.
rl [shepherd-alone] : s(S) => s(change(S))
rl [wolf] : s(S) w(S) => s(change(S)) w(change(S))
rl [goat] : s(S) g(S) => s(change(S)) g(change(S))

rl [cabbage] : s(S) c(S) => s(change(S)) c(change(S))

M. Wirsing: Foundations of System Development

ris
mls




State-based Systems in Maude 17

Crossing the River in Maude

= There exists a correct solution:

Maude> search in CROSSING-RIVER
s(left) w(left) g(left) c(left) =>*
s(right) w(right) g(right) c(right)

Solution 1 (state 27)
states: 28 rewrites: 154 in 267758336123ms cpu (27ms real)
(0 rewrites/second)

empty substitution

No more solutions.
states: 28 rewrites: 170 in 267758336123ms cpu (41lms real)
(0 rewrites/second)
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Crossing the River in Maude

= Show the search graph:
Maude> show search graph
state 0, Group: s(left) w(left) g(left) c(left)

arc 0 ===> state 1 (rl s(S) w(S) => s(change(S))
w(change (S)) [label wolf] .)

arc 1 ===> state 2 (rl s(S) g(S) => s(change(S))
g(change(S)) [label goat] .)

arc 2 ===> state 3 (rl s(S) c(S) => s(change(S))
c(change(S)) [label cabbage] .)

arc 3 ===> state 4 (rl s(S) => s(change(S)) [label

shepherd-alone] .)

state 27, Group: s(right) w(right) g(right) c(right)
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Crossing the River in Maude

Maude> show path 27 . ***Show shortest path to state 27

state 0, Group: s(left) w(left) g(left) c(left)

===[ rl s(S) g(S) => s(change(S)) g(change(S)) [label goat]
]===>

state 2, Group: s(right) w(left) g(right) c(left)

===[ rl s(S) => s(change(S)) [label shepherd-alone] . ]===>

state 7, Group: s(left) w(left) g(right) c(left)

===[ rl s(S) w(S) => s(change(S)) w(change(S)) [label wolf]
]:::>

state 13, Group: s(right) w(right) g(right) c(left)

===[ rl s(S) g(S) => s(change(S)) g(change(S)) [label goat]
]:::>

state 20, Group: s(left) w(right) g(left) c(left)

===[ rl s(S) c(S) => s(change(S)) c(change(S)) [label cabbagel
]===>

state 25, Group: s(right) w(right) g(left) c(right)

===[ rl s(S) => s(change(S)) [label shepherd-alone] . ]===>

state 26, Group: s(left) w(right) g(left) c(right)

===[ rl s(S) g(S) => s(change(S)) g(change(S)) [label goat]
]:::>

state 27, Group: s(right) w(right) g(right) c(right)
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(Concurrent) Object-based Systems

One of the most useful and important classes of concurrent
systems is that of concurrent object systems, made out of
concurrent objects, which encapsulate their own local state
and can interact with other objects in a variety of ways,
including both synchronous interaction, and asynchronous
communication by message passing.
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Concurrent Object Systems in Maude

It is of course possible to represent a concurrent object
system as a rewrite theory with somewhat different
modeling styles and adopting different notational
conventions.

What follows is a particular style of representation that has
proved useful and expressive in practice, and that is
supported by Full Maude's object-oriented modules.

It is also possible to define object-oriented modules in Core
Maude using the conf attribute to specify an associative
commutative multiset union operators as a constructor of
configurations of objects and messages; the freurite
command then ensures object and message fair executions
(see the Maude 2.0 manual).
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Concurrent Object Systems in Maude

To model a concurrent object system as a rewrite theory,
we have to explain two things:

e how the distributed states of such a system are
equationally axiomatized and modeled by the initial
algebra of an equational theory (%,|E), and

e how the concurrent interactions between objects are
axiomatized by rewrite rules.
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Concurrent Object Systems in Maude
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Distributed Object States

= The concurrent state of an object-oriented system, often called a
configuration,

has typically the structure of a multiset made up, of
objects and messages.

sorts Conf Object Msg
subsort Object Msg < Conf

*** multiset union

op _: Conf Conf -> Conf [assoc comm id: null]

M. Wirsing: Foundations of System Development ™Mis
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Objects

An object in a given state is represented as a term
(O:Clar:viy...,0Gn:Vn)

where O is the object’s name or identifier, C is its class, the
a;'s are the names of the object’'s attribute identifiers, and
the v;'s are the corresponding values.

The set of all the attribute-value pairs of an object state is
formed by repeated application of the binary union operator
_ which also obeys structural laws of associativity,
commutativity, and identity; i.e., the order of the
attribute-value pairs of an object is immaterial.
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Configurations

The value of each attribute shouldn't be arbitrary: it should
have an appropriate sort, dictated by the nature of the
attribute. Therefore, in Full Maude object classes can be
declared in class declarations of the form,

class C'| @y : 81,...,85, % Sy .

where (' is the class name, and s; is the sort required for
attribute a;.

In Core Maude classes are formalized similarly as in FOOSE:

op C : -> Cid
op al :_ : sl -> Attribute
M. Wirsing: Foundations of System Development ™Mis
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Example: Simple Asynchronous Communication

= Consider a system consisting of 3 objects:
a buffer, a sender and a receiver.

" A buffer stores a list of integers in its q attribute. Lists of
integers are built using an associative list concatenation
operator, _._ with identity nil, and integers are regarded as
lists of length one. The name of the object reading from
the buffer is stored in its reader attribute; such names
belong to a sort 0id of object identifiers. Therefore, the
class declaration for buffers is,

class Buffer | q : IntList, reader: 0id .
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Example: Simple Asynchronous Communication

The sender and receiver objects store an integer in a cell
attribute that can also be empty (mt) and have also a
counter (ent) attribute. The sender stores also the name of
the receiver in an additional attribute.

class Sender | cell: Int?, cnt: Int, receiver: 0id .

class Receiver | cell: Int?, cnt: Int .

where Int? is a supersort of Int having a new constant mt.
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Messages

The messages sent by a sender object have the form,

(to Z : E from (Y,N))

where Z is the name of the receiver, E is the number sent, Y
is the name of the sender, and N is the value of its counter
at the time of the sending.

The syntax of messages is user-definable; it can be declared
in Full Maude by message operator declarations. In our
example by:

msg (to _ : _ from (_,_)) : 0id Int 0Oid Int -> Msg .
M. Wirsing: Foundations of System Development nlg
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“Soup of Objects and Messages”

The associativity and commutativity of a configuration's
multiset structure make it very fluid. We can think of it as
“soup” in which objects and messages float, so that any
objects and messages can at any time come together and
participate in a concurrent transition corresponding to a
communication event of some kind.

In general, the rewrite rules in R describing the dynamics of
an object-oriented system can have the form,
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Object Rewrite Rules
ri My M, (O Fy | attsy) ... (O, : Fopy | atts,y,)
— 0y, : F] | atts})).. (O, : F| | atts] )

(Q1: Dy | attsy)...(Qp : Dy | atts}))

M. M,
if C
where r is the label, the Ms are message expressions,
i1,...,1 are different numbers among the original 1,...,m,
and C is the rule’s condition.
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Object Rewrite Rules
That is, a number of objects and messages can come
together and participate in a transition in which some new
objects may be created, others may be destroyed, and
others can change their state, and where some new
messages may be created.
If two or more objects appear in the lefthand side, we call
the rule synchronous, because it forces those objects to
jointly participate in the transition. If there is only one
object and at most one message in the lefthand side, we
call the rule asynchronous.
M. Wirsing: Foundations of System Development nlg
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Example: Simple Asynchronous Communication

rl [read] : < X : Buffer | q: L . E, reader: Y >
< Y : Sender | cell: mt, cnt: N >
=> < X : Buffer | q: L, reader: Y >
<Y : Sender | cell: E, cnt: N + 1 >

rl [send] : < Y : Sender | cell: E, cnt: N, receiver: Z >
=> < Y : Sender | cell: mt, cnt: N > (to Z : E from (Y,N))

rl [receive] : < Z : Receiver | cell: mt, cnt: N >
(to Z : E from (Y,N))
=> < Z : Receiver | cell: E, cnt: N + 1 >

where E and N range over Int, L over IntList, X, Y, Z over
0id, and L.E is a list with last element E.
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Example: Simple Asynchronous Communication

Notice that the read rule is synchronous and the send and
receive rules asynchronous.

Of course, these rules are applied modulo the associativity
and commutativity of the multiset union operator, and
therefore allow both object synchronization and message
sending and receiving events anywhere in the configuration,
regardless of the position of the objects and messages.

We can then consider the rewrite theory R = (£, E. R)
axiomatizing the object system with these three object
classes, with R the three rules above (and perhaps other
rules, such as one for the receiver to write its contents into
another buffer object, that are omitted).

M. Wirsing: Foundations of System Development ™Mis
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Rewriting Logic in General

Given a rewrite theory R = (X, E, ¢, R), the sentences that it

proves are universally quantified rewrites of the form,

(VX)t — t/, with t,t' € Ty, g(X)g, for some kind k, which are

obtained by finite application of the following rules of
deduction:

L] ReerXiVity For each t € TE(X), m
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Rewriting Logic in General
e Equality.
VX)u—v EFNWX)Ju=v FEF (¥VX)v=1
VX)u — o
e Congruence. For each f: k... k, — k in X, with
{(1,....n} = (f) = {1, -, Jm}s With t; € Ts (X,
1 <i<mn, and with ¢} € TE(X),CJ.:_ 1<1<m,
(VX)tj, —th, ... (VX)t, — 1)
(VX) f(tl,‘ ..,tjl,...,tjm,...,tn) — f(tls "‘-‘t;il’""t;'m?""t”)
e Transitivity
(VX) t1 — to (VX) to — 3
(VX)t; — 13
M. Wirsing: Foundations of System Development nlg
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Rewriting Logic in General
e Replacement. For each finite substitution

0:X — Tx(Y), with, say, X = {x1,...,2,}, and
6(x;) =pi, 1 <1 <n, and for each rule in R of the form,

[:(vX)t —t <= (/\uf- ='u,;)/\(/\'uj :SJ)/\(/\'uJ;: — wy,)
i i k

with Z = {z;,,...,2,, }, the set of unfrozen variables in ¢
and ¢/, then,

(AY) pj. — w5,)
(A (VY) 0(ui) = 0(uz)) A (A;(VY) B(0;) 2 85) A (AR(VY) B(wy) — O(wp)
(VY) 6(t) — 0'(t')
where for x € X — Z, 0'(x) = 0(x), and for x;, € Z,
0'(z;,) =0, 1<r<m.
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Rewriting Logic in General

Reflexivity
t t
Equality
. v
r . ]
U (a
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Rewriting Logic in General

Congruence f

Replacement
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Rewriting Logic in General

Transitivity
————————— —
i1 ta
to
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Computational Meaning of Rewrite Rules

Rewriting logic is a computational logic to specify
concurrent systems. Its inference system allows us to infer
all the possible finitary concurrent computations of a
system specified as a rewrite theory R as follows:

e Reflexivity is just the possibility of having idle
transitions

¢ Equality means that states are equal modulo F
e Congruence is a general form of sideways parallelism

¢ Replacement combines an atomic transition at the top
using a rule with nested concurrency in the substitution

e Transitivity is sequential composition.
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Computational and Logical Readings

A rewrite theory R = (X, E, R) has two closely related, yet
different, readings, one computational, and another logical.

Computationally, a rewrite theory specifies a concurrent
system, whose set of states is (a kind in) the initial algebra
Tgm. Then, each rewrite rule specifies a parameterized
family of concurrent transitions in the system.

Logically, a rewrite theory specifies a logic, whose set of
formulas is (a kind in) the initial algebra Tx,g. Then, each
rewrite rule specifies an inference rule in the logic.
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Example: Implicational Logic in Maude
mod MINIMALR is sorts SentConstant Formula Configuration .
subsorts SentConstant < Formula < Configuration .
op ~—+_ : Formula Formula -> Formula .
op empty : => Configuration .
op _ : Configuration Configuration -> Configuration [assoc comm id: empty]
vars A B (' : Formula .
rl [ax.K] : empty
=» mmmmm
A= (B = A
rl [ax.8] : empty
ED e e e e e e
(A= B) =+ ((A (B =3C)) = A=0C)).
rl [mp] : A= B A
=3 mmmmm e ——————
B .
endm
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Computational and Logical Readings
The point is that we have the following equivalences
between these two readings:
State — Term +— Formula
Computation +— Rewriting +— Proof
Distributed +——+ Algebraic +— Logical
Structure Structure Structure
M. Wirsing: Foundations of System Development nlg
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Summary
= Rewriting Logic provides a mathematical basis for modelling
concurrent distributed systems including object-oriented systems.
= Dynamic behaviour and, in particular, concurrent transitions are
defined by rewrite rules.
= Distributed configurations are represented by terms

where the distribution structure is algebraically defined by initial
algebras of equational theories.

M. Wirsing: Foundations of System Development ™Mis

23



