Foundations of System Development

Martin Wirsing

in cooperation with Axel Rauschmayer

WS 05/06

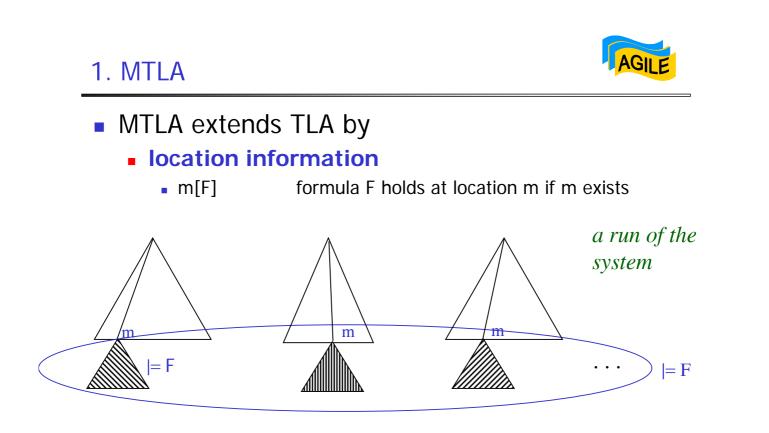
Ausblick: Systematische Entwicklung Mobiler Systeme

Goals

Modelling and Developing Systems Using UML and MTLA

- MTLA Mobile Temporal Logic of Actions
- State diagrams with mobility
- Correct state diagram refinement

Systematic Development of Mobile Systems

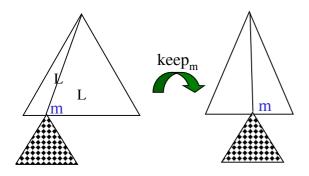


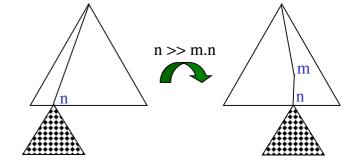
move actions

- keep_m the topology below m does not change
- n >> m.n the tree below n moves below m

More generally,

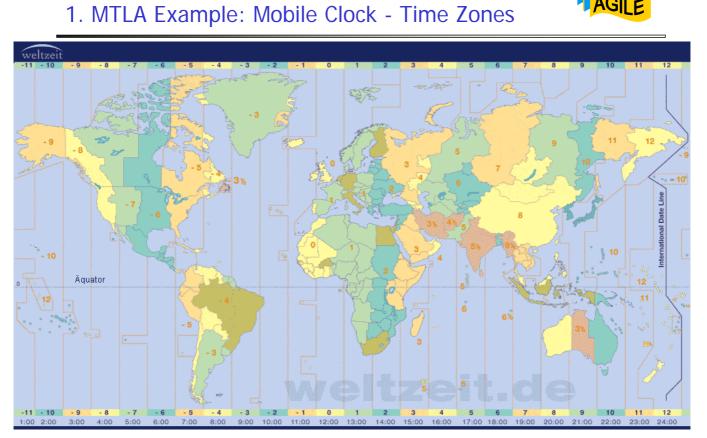
• $\alpha.n >> \beta.n$ the subtree of path α below n moves to the tree below β

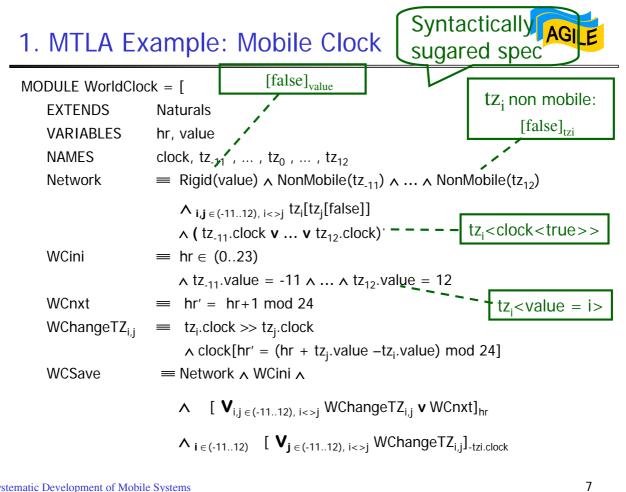




Systematic Development of Mobile Systems

AGILE





Systematic Development of Mobile Systems

1. MTLA Example: Mobile Clock

- Fairness conditions for Mobile Clock would be
 - Weak fairness of WCnxt
- No fairness requirement for WChangeTZ (the clock is allowed to remain in a time zone)
- The following specification

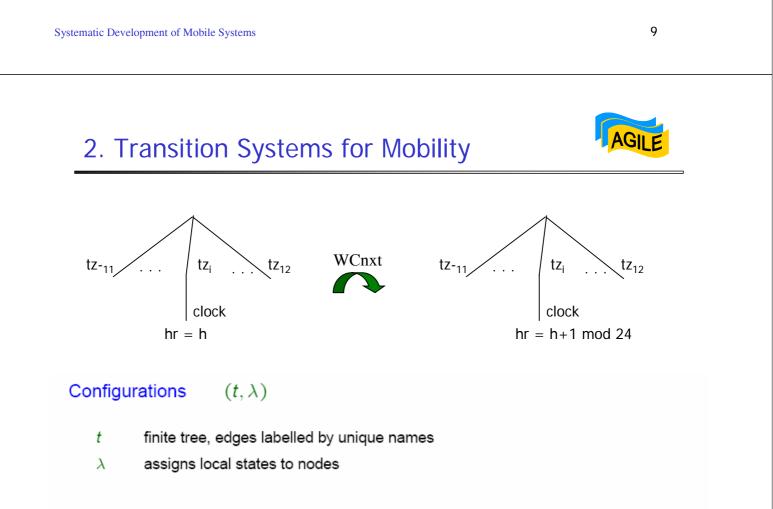
WC \equiv WCsave \wedge WF_{hr}(WCnxt)

ensures that the clock will always advance.

1. MTLA System Specifications

- MTLA system specifications add action formulas for change of locations:
 - Most MTLA system specifications are of the form Init ^ [Next]_v ^ [Next]_s ^ L where

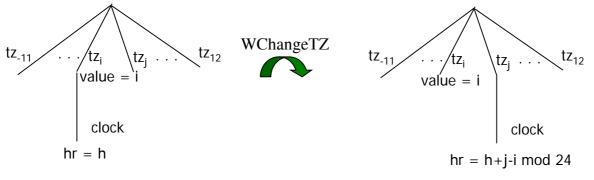
[Next]_S specifies that Next is unchanged or the location information S changes.



Computations $\sigma = (t_0, \lambda_0), (t_1, \lambda_1), \ldots$

2. Transition Systems for Mobility: Configurations

- A configuration is defined with respect to a non-empty universe |I| and a set V_f of (flexible) variables:
 - A configuration is a pair (t , λ) where
 - $t = (N_t, <_t)$ is a finite, non-empty tree and
 - $\lambda : N_t \times V_f \rightarrow |I|$ assigns a value to every variable in V_f at every location $n \in N_t$.
- Example



$$\lambda_0(\text{clock, hr}) = h,$$

 $\lambda_1(\text{clock, hr}) = (h+j-i) \mod 24$
Rigid values as in TLA: $\xi(tz_1, \text{ value}) = 1, \dots, \xi(tz_5, \text{ value}) = 5,$

Systematic Development of Mobile Systems

2. Transition Systems for Mobility: Trees

11

- A finite, non-empty tree t is given by a
 - strict partial order (N_t, <_t)
 - over a finite set $N_t \subset N$ of names
 - with distinctive root ε
- The subtree of a tree t = (N_t, <_t) rooted at node n is defined by

$$t \downarrow n = \begin{cases} (\{m \in \mathsf{N} | m <_t n\}, <'_t) & \text{if } n \in \mathsf{N}_t \\ \text{empty} & \text{otherwise} \end{cases}$$

• where <'_t is the restriction of <_t to the subtree of n, i.e. = $<_t \cap (\{m \in \mathbb{N} | m <_t n\} \times \{m \in \mathbb{N} | m <_t n\})$

- LTL is a logic for specifying properties of runs
- LTL formulas are built by using
 - first order logic operators (negation, implication, quantifiers),
 - modal operators for specifying temporal properties
 - F "F holds always; i.e. in all states of the run"
 - o F "F holds in the next state"

Systematic Development of Mobile Systems

3. pMLTL: Syntax

13

- Propositional Linear Temporal Logic for Mobility [Zappe 05]
- pMLTL is the propositional fragment of LTL extended by mobility operators.
- Syntax
 - Let V be a countable set of propositional variables and N a countable set of names (for representing locations).
 - Formulas are inductively defined by

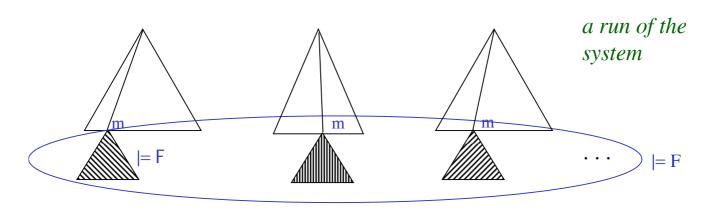
V | F => F | ¬ F | F | **o** F | m[F] | keep_m propositional (boolean) variables classical propositional logic "always", "next" mobility operators

F ::=

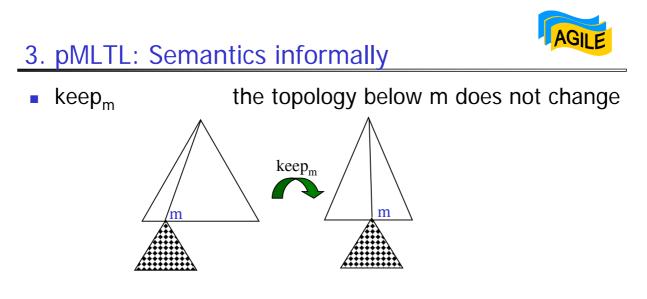
3. pLMTL: Semantics informally

Iocation information

- m[F] formula F holds at location m if m exists
- m<F> formula F holds at location m and m exists



Systematic Development of Mobile Systems



- "Move" can be expressed:
 - $n \gg m.n =_{def} n < true > \land o m < n < true > \land keep_n$

3. pMLTL: Semantics

- Let $\sigma = (t_0, \lambda_0)$, (t_1, λ_1) , . . . be a run, and n be a name.
- We define

 σ , n |= F "F holds for σ at node n" inductively:

- $\sigma, n \models v$ iff $n \in N_0^{\varepsilon}$ and $v \in \lambda_0(n)$
- $\sigma, n \models \neg F$ iff $\sigma, n \not\models F$
- $\sigma, n \models F \Rightarrow G$ iff $\sigma, n \not\models F$ or $\sigma, n \models G$

Systematic Development of Mobile Systems

- 3. pMLTL: Semantics (continued)
- $\sigma, n \models m[F]$ iff $m \not<_0 n$ or $\sigma, m \models F$
- $\sigma, n \models \mathsf{keep}_m$ iff $t_0 \downarrow n.m = t_1 \downarrow n.m$
- $\sigma, n \models \circ F$ iff $n \notin \mathsf{N}_1$ or $\sigma|_1, n \models F$
- $\sigma, n \models \Box F$ iff for all $i \ge 0$ either $n \notin N_j$ for some $j \le i$ or $\sigma|_i, n \models F$
- Validity
 - $\sigma \models F$ iff σ , $n \models F$ for all names n
 - |= F iff σ , n |= F for all names n and all runs σ

3. pMLTL: Derived Operators

- m<F> "F holds at m and m exists"
 - m<F> =_{def}¬m[¬F]
- "Move" can be expressed:
 - $n \gg m.n =_{def} n < true > \land om < n < true > \land keep_n$
- F "F holds eventually"
 - <>F =_{def} \neg (\neg F)

Systematic Development of Mobile Systems

19

AGIL

⇔ **o** S)

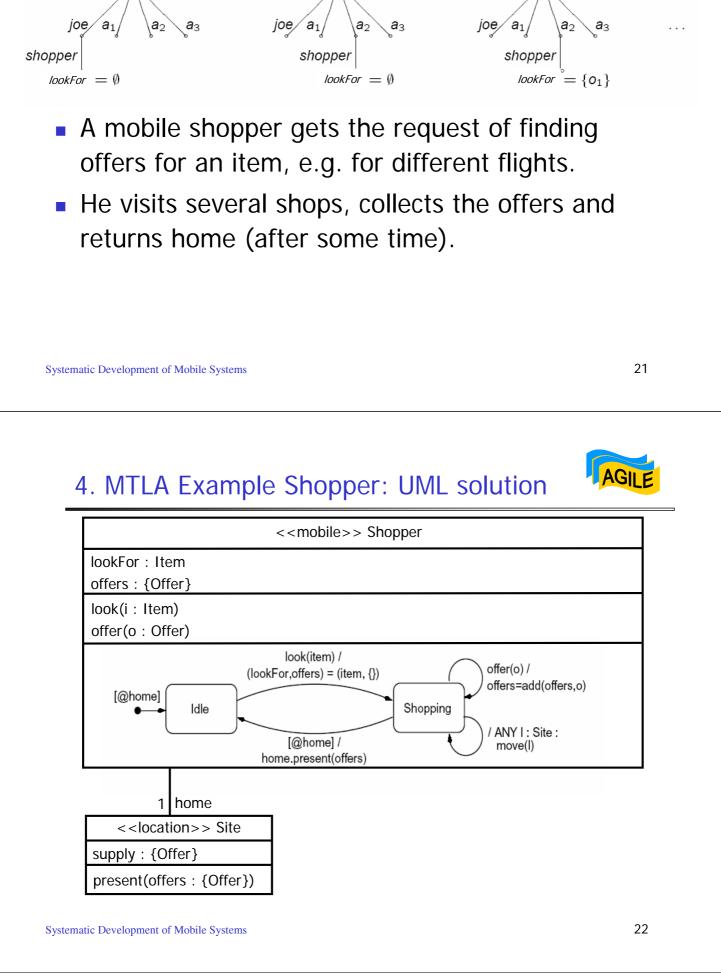
4. MTLA: Notations (for action formulas)

 For any action A, state function t, and any pure spatial formula S (i.e. not containing temporal operators), define

•
$$[\mathbf{A}]_t \equiv \mathbf{A} \mathbf{v} \mathbf{t} = \mathbf{t}'$$
 $[\mathbf{A}]_s \equiv \mathbf{A} \mathbf{v} (S)$

•
$$\langle A \rangle_t \equiv A \land \neg (t = t')$$

 $\langle A \rangle_{S} \equiv A \land \neg (S \Leftrightarrow oS)$ [A]_{-S} $\equiv [S \Rightarrow A]_{S}$



4. MTLA Example: Mobile Shopper

Assume: fixed, finite set Net of names, joe \in Site, shopper not in Site

Network topology Topology ≡ ∧ _{n,m ∈ Site} n <m[false]></m[false]>	all nodes present at top level	
Initial condition	shopping agent in domain joe	
Init ≡ joe <shopper<true>></shopper<true>	and in <u>"Idle" state</u>	
∧ shopper[ctl = "Idle"]	shopper.ctl = "idle"	
Prepare shopper to shop for item x	abbreviates: shopper < true > A	
Prepare(x) ≡	shopper [ctl = "idle"]	
shopper <true> ∧ o shopper<true></true></true>	shopping is (and stays) here	
∧ shopper[ctl = "Idle"]	state changes from "idle"	
∧ o shopper[ctl = "Shopping"]	to "shopping"	
∧ o shopper[lookFor = x ∧ offers = {}]	initialize lookFor and offers	

Systematic Development of Mobile Systems

Remaining state-changing actions

GetOffer ≡... get an offer and insert into "offers"

PickOffer ≡... select among offers in "offers"

Move among network nodes

Move _{n,m} ≡		
n <shopper<true>></shopper<	shopping agent is in n's domain	
<pre>^ shopper[ctl = "Shopping"]</pre>	and is in "Shopping" state	
∧ n.shopper >> m.shopper	shopper moves to m's domain,	
UNCHANGED(shopper.offers, shopper.lookFor, shopper.ctl)		
	preserving local state	

Overall specification (ignoring fairness)

Shopper ≡

Topology A Init

- ∧ [joe[($\exists x : Prepare(x)$) v PickOffer] v V_{n ∈ Site} n[GetOffer]]_{vars}
- $\land \land \land_{n \in Site} [V_{m \in Site} Move_{-}]_{-n.shopper}$

5. Mobile State Machines

State machines model the behavior of (single) objects.

History and predecessors

- 1950's: Finite State Machines: Huffmann, Mealy, Moore
- 1987: Harel Statecharts: conditions and hierarchical (and/or) states

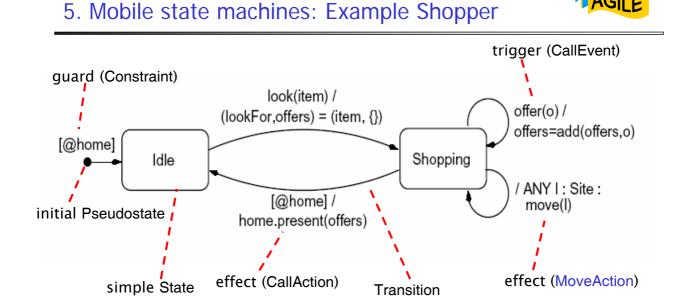
 S_1

- 1994: ROOM Charts: run-to-completion (RTC) step
- State machines model behavior
 - using states interconnected ...
 - with transitions triggered ...
 - by event occurrences.

Goal of the extension to mobility

 include location information and move operations into the state machine behaviour

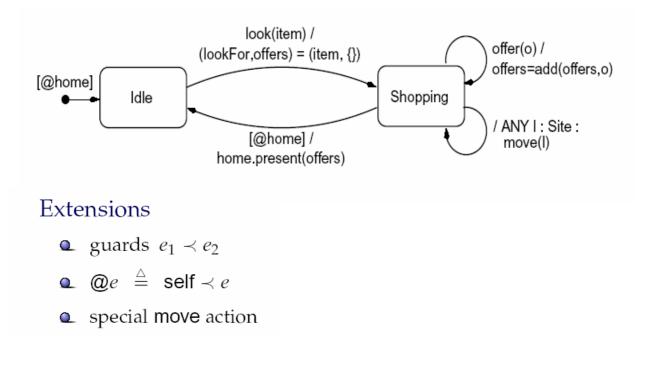
Systematic Development of Mobile Systems



trigger [guard] / effect

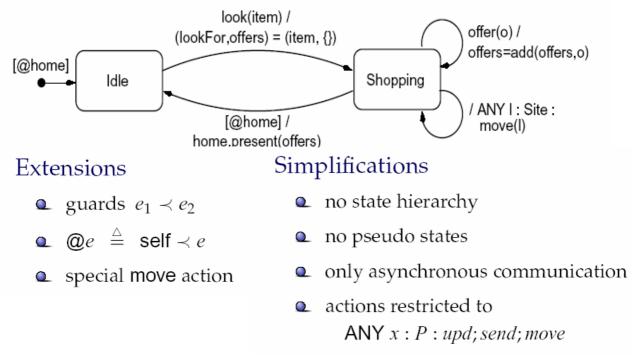
 S_2

5. Mobile state machines: Example Shopper



Systematic Development of Mobile Systems

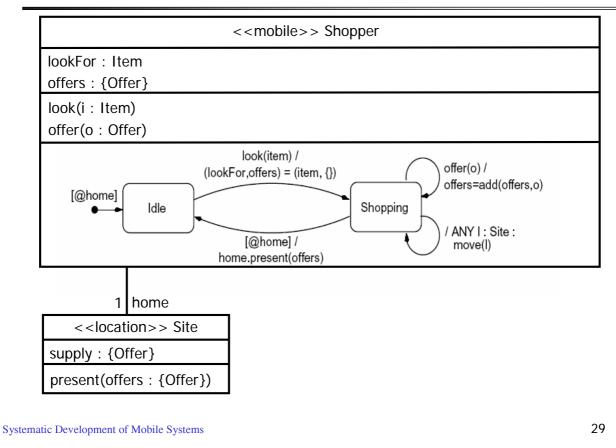
5. Mobile state machines: Example Shopper



27

AGIL

5. Mobile state machines: Example Shopper



5. Mobile state machines: MTLA Semantics

UML mobile state machines

- semi-formal graphical notation
- semantics and formal foundation non-obvious
- no notion for reasoning on mobile systems
- no abstract notion of refinement

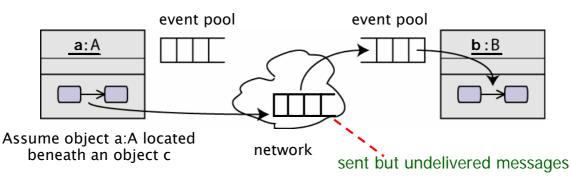
Translation of state machines to MTLA

- Define control states and event queues
- Translate every transition
- Specify the behaviour of the whole state machine/several state machines

AGI

5. Semantics of state machines **Basic Idea**

Communicating state machines

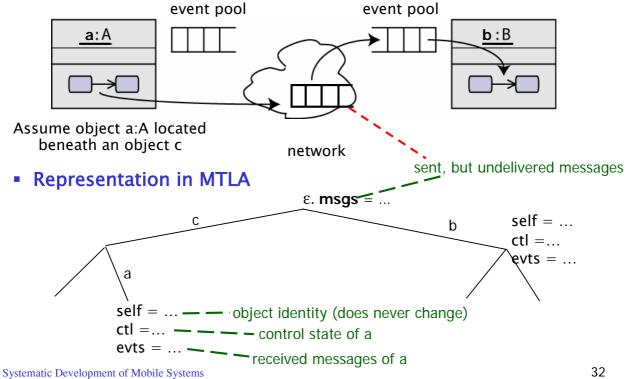


Systematic Development of Mobile Systems

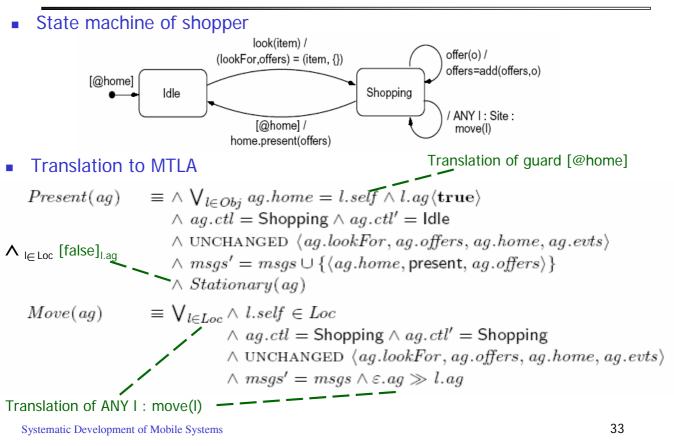
5. Semantics of mobile state machines **Basic Idea**

31

Communicating state machines



5. Semantics of mobile state machines: Example Transition Translation

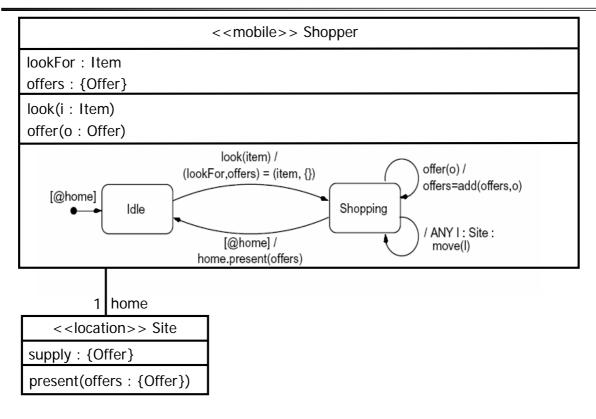


6. Refinement of mobile systems

Operation refinement

- decompose high-level operations
- represented by implication (stuttering invariance) (Action Refinement as in TLA, see earlier)
- Spatial decomposition (Location Refinement)
 - refine high-level location *n* into a tree (with root named *n*)
 - in general also distribute local state of n
- Virtualisation of locations (Location and Move Refinement)
 - implement high-level location n by structurally different hierarchy
 - preserve external behavior : n hidden from high-level interface

6.1 Refinement of Mobile State Machines: Operation Refinement of Shopper



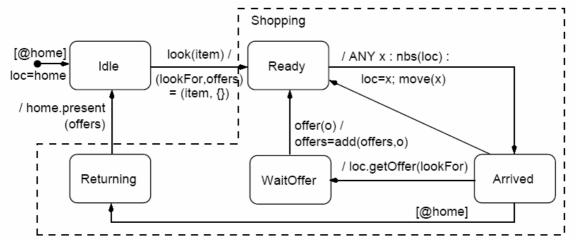
Systematic Development of Mobile Systems

35

6.1 Operation Refinement of Shopper

	«location» Site	home	«mobile» Shopper
nbs	name : String	1	lookFor : Item
*	supply : {Offers}		offers : {Offer}
	getOffer(i : Item)	loc	look(i : Item)
	present(offers : {Offer})	1	offer(o : Offer)

Refine state Shopping by 4 states:



6.1 State Machine Refinement

State machine refinement is based on

- an invariant Inv^R of the refined state machine,
- an abstraction function Abs: State^R → State^M
 mapping the states of R to the corresponding states of M,
- a global hypothesis H on the refined system (e.g. Assumptions H on the spatial hierarchy.
- Example
 - Invariant of refined shopper:

 $(ag.ctl = Returning \implies @home) \land ag.loc \in Site$

- Abs maps the states
 Ready, Arrived, WaitOffer, and Returning to state Shopping
- Global hypothesis: Here an assumption on the spatial hierarchy:

 $\forall s \in Site : nbs(s) \subset Site$

Systematic Development of Mobile Systems

6.1 Example: Refinement Proof

Inductive invariant: RfndShopper => Inv(ag):

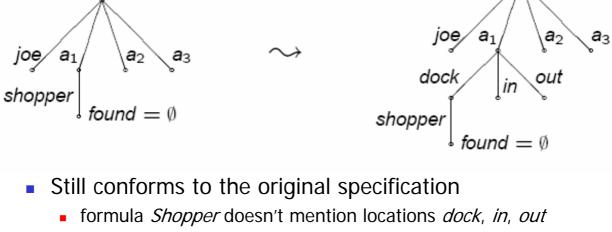
The only non-trivial case is the transition Arrived2Returning^{RfndShopper} to state Returning: because of the guard, Inv(ag) holds in the post state

Step simulation

- Initial State: H ^ Init^{RfndShopper} => Init^{Shopper}(ag): Obvious
- Any action of RfndShopper implies validity of corresponding high-level action:
 - look^{RfndShopper} implies look^{Shopper}: holds obviously (actions have identical definition);
 - move^{RfndShopper} implies move^{Shopper}: holds because of global hypothesis on neighbours;
 - Arrived2Ready^{RfndShopper} : stuttering step for Shopper;
 - Arrived2WaitOffer^{RfndShopper} : stuttering step for Shopper;
 - offer^{RfndShopper} implies look^{Shopper}: holds obviously (actions have identical definition);
 - Arrived2Returningr^{RfndShopper} : stuttering step for Shopper;
 - Returning2Idle^{RfndShopper} implies present^{Shopper} : holds because of inductive invariant.

6.2 Spatial decomposition

Suppose visiting agents are kept in a "dock" location



location shopper is still below location a₁

Systematic Development of Mobile Systems



6.2 Application to State Machines Introducing sublocations

- Acceptable spatial refinement
 - Invariant of docked shopper:

 $(ag.ctl = Incoming \implies @loc) \land ag.loc \in Site$

Abs maps the states

Incoming, Docked to state Arrived

Global hypothesis:

Each site contains and is associated with an "in" location and a "dock" location

 \land _{I < Site} \land I.I_in<true> \land I.I_dock<true>

 \land incoming(I.self) = I_in.self \land dock(I.self) = I_dock.self

Systematic Development of Mobile Systems

6.2 Spatial decomposition in detail

∧ ag.ctl = Ready ∧ ag.ctl' = Incoming ∧ ... $V_{I \in Loc}$ (I.self \in nbs(loc) ∧ ag.loc' = I.self ∧ ε .ag >> I.I_in.ag)

Refined move actions
■ Ready2Incoming =

Because: ɛ.ag >> I.I_in.ag ≡ (ag<true> ∧ o I.I_in.ag<true> ∧ keep_{ag})

implies (ag<true> \land o l.ag<true> \land keep_{ag}) = ε .ag >> l.ag

 Incoming2Docked ≡ move to docked location invisible at high level
 ∧ ag.ctl = Incoming ∧ ag.ctl' = Docked ∧ …

with $\epsilon.ag >> I.I_dock.ag~$ we get

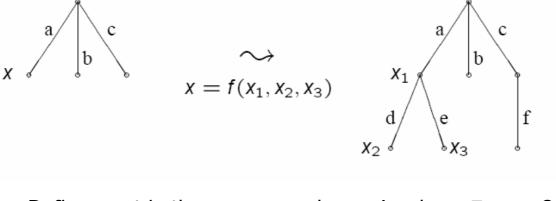
 $l.ag >> l.l_dock.ag \equiv (l.ag < true > \land o \ l.l_dock.ag < true > \land keep_{ag})$

This implies (l.ag<true> \land o l.ag<true> \land keep_{ag}) = l.ag >> l.ag

The refined specification again **implies** the original one.

move to incoming location maps to high-level move

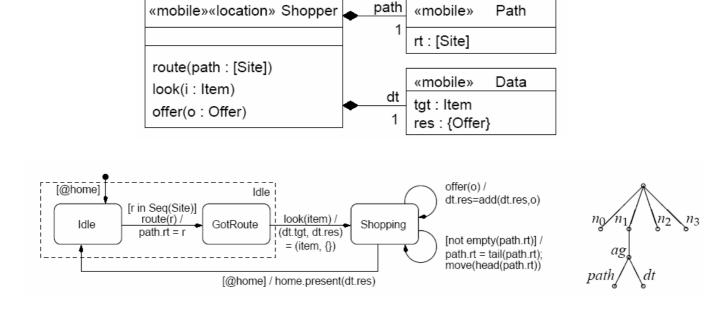
Usually, decomposition requires distribution of state



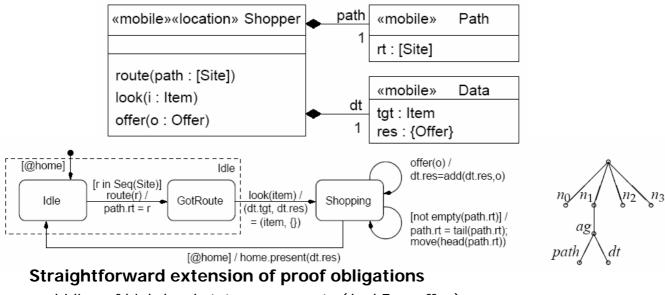
- Refinement is then expressed as $Impl => \exists a.x : Spec$
- local state variable x hidden from high-level interface; refinement mapping for realising x has to be defined

Systematic Development of Mobile Systems

6.2 Application to State Machines: Distribution of agent state



6.2 Application to State Machines: Distribution of agent state

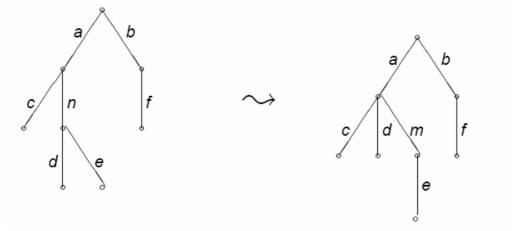


- hiding of high-level state components (*lookFor*, *offers*)
- extend refinement mapping to compute hidden state
 - $dt.tgt \rightarrow lookFor, dt.res \rightarrow offers$
- invariant ensures preservation of observable behavior

Systematic Development of Mobile Systems

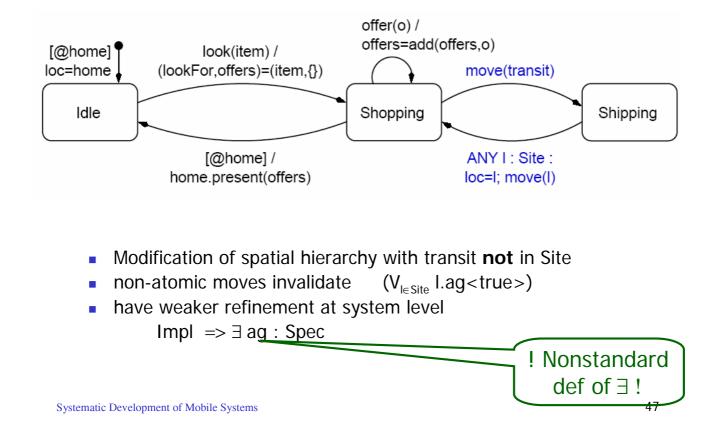
6.3 Virtualisation of locations

Modify spatial hierarchy



- Location *n* hidden from interface: $Impl => \exists n : Spec$
- Preserve external behavior, except for location n

6.3 Application to State Machines: Slow Shopper



Summary: MTLA and Mobile State Machines

- MTLA Mobile Temporal Logic of Actions :
 - Specification logic of mobile systems
 - Spatio-temporal refinement

Mobile UML state machines

- support move actions and location information
- Formal Semantics in MTLA
- Spatial refinement concepts explained at UML level
 - state machine refinement (operation refinement)
 - introducing sublocations
 - distribution of agent state
 - virtualisation of locations