
WS 05/06

Foundations of System Development

Martin Wirsing

in cooperation with
Axel Rauschmayer

2Systematic Development of Mobile Systems

Ausblick:
Systematische Entwicklung Mobiler Systeme

3Systematic Development of Mobile Systems

Goals

Modelling and Developing Systems Using
UML and MTLA

MTLA – Mobile Temporal Logic of Actions
State diagrams with mobility
Correct state diagram refinement

4Systematic Development of Mobile Systems

1. MTLA

MTLA extends TLA by
location information

m[F] formula F holds at location m if m exists

m

|= F |= F. . .
m m

a run of the
system

5Systematic Development of Mobile Systems

1. MTLA

move actions
keepm the topology below m does not change
n >> m.n the tree below n moves below m

More generally,
α.n >> β.n the subtree of path α below n moves to

the tree below β

n

m

n

n >> m.n

m

keepm

m
L

L

6Systematic Development of Mobile Systems

1. MTLA Example: Mobile Clock - Time Zones

7Systematic Development of Mobile Systems

MODULE WorldClock = [

EXTENDS Naturals

VARIABLES hr, value

NAMES clock, tz-11 , … , tz0 , … , tz12

Network Rigid(value) ∧ NonMobile(tz-11) ∧ … ∧ NonMobile(tz12)

∧ i,j ∈(-11..12), i<>j tzi[tzj[false]]

∧ (tz-11.clock v … v tz12.clock)

WCini hr ∈ (0..23)

∧ tz-11.value = -11 ∧ … ∧ tz12.value = 12

WCnxt hr’ = hr+1 mod 24

WChangeTZi,j tzi.clock >> tzj.clock

∧ clock[hr’ = (hr + tzj.value –tzi.value) mod 24]

WCSave Network ∧ WCini ∧

∧ �[vi,j ∈(-11..12), i<>j WChangeTZi,j v WCnxt]hr

∧ i ∈(-11..12)�[vj ∈(-11..12), i<>j WChangeTZi,j]-tzi.clock

1. MTLA Example: Mobile Clock
Syntactically
sugared spec

tzi non mobile:

�[false]tzi

�[false]value

tzi<clock<true>>

tzi<value = i>

8Systematic Development of Mobile Systems

1. MTLA Example: Mobile Clock

Fairness conditions for Mobile Clock would be
Weak fairness of WCnxt

No fairness requirement for WChangeTZ (the clock is
allowed to remain in a time zone)
The following specification
WC WCsave ∧

� WFhr(WCnxt)

ensures that the clock will always advance.

9Systematic Development of Mobile Systems

1. MTLA System Specifications

MTLA system specifications add action
formulas for change of locations:

Most MTLA system specifications are of the form
Init ∧ �[Next]v ∧ �[Next]S ∧ �L

where
[Next]S specifies that Next is unchanged

or the location information S changes.

10Systematic Development of Mobile Systems

2. Transition Systems for Mobility

tzi

clock

hr = h

tz-11 tz12. tzi

clock

hr = h+1 mod 24

tz-11 tz12.WCnxt

11Systematic Development of Mobile Systems

2. Transition Systems for Mobility: Configurations

A configuration is defined with respect to a non-empty universe |I| and
a set Vf of (flexible) variables:

A configuration is a pair (t , λ) where
t = (Nt ,<t) is a finite, non-empty tree and

λ : Nt ×Vf → |I| assigns a value to every variable in Vf at every location n ∈ Nt .

Example

λ0(clock, hr) = h, λ1(clock, hr) = (h+j-i) mod 24

Rigid values as in TLA: ξ(tz1, value) = 1, …, ξ(tz5, value) = 5,

tzi

clock

value = i

tz-11 tz12.tzj

hr = h

WChangeTZ
tzi

clock

value = i

tz-11 tz12.tzj

hr = h+j-i mod 24

12Systematic Development of Mobile Systems

2. Transition Systems for Mobility: Trees

A finite, non-empty tree t is given by a
strict partial order (Nt ,<t)

over a finite set Nt ⊂ N of names

with distinctive root ε

The subtree of a tree t = (Nt ,<t) rooted at node n is defined by

where <‘t is the restriction of <t to the subtree of n, i.e.

=

13Systematic Development of Mobile Systems

3. pMLTL:
Linear Temporal Logic

LTL is a logic for specifying properties of runs
LTL formulas are built by using

first order logic operators (negation, implication,
quantifiers),
modal operators for specifying temporal properties

� F “ F holds always; i.e. in all states of the run”
O F “ F holds in the next state”

14Systematic Development of Mobile Systems

3. pMLTL: Syntax

Propositional Linear Temporal Logic for Mobility
[Zappe 05]
pMLTL is the propositional fragment of LTL
extended by mobility operators.
Syntax

Let V be a countable set of propositional variables and
N a countable set of names (for representing locations).
Formulas are inductively defined by

F ::= V propositional (boolean) variables
| F => F | ¬ F classical propositional logic
| � F | O F “always” , “next”
| m[F] | keepm mobility operators

15Systematic Development of Mobile Systems

3. pLMTL: Semantics informally

location information
m[F] formula F holds at location m if m exists
m<F> formula F holds at location m and m exists

m

|= F |= F. . .
m m

a run of the
system

16Systematic Development of Mobile Systems

3. pMLTL: Semantics informally

keepm the topology below m does not change

m

keepm

m

“Move” can be expressed:
n >> m.n =def n<true> ∧ O m<n<true>> ∧ keepn

17Systematic Development of Mobile Systems

3. pMLTL: Semantics

Let σ = (t0,λ0), (t1,λ1), . . . be a run, and n be a name.
We define

σ, n |= F “F holds for σ at node n”
inductively:

18Systematic Development of Mobile Systems

3. pMLTL: Semantics (continued)

Validity
σ |= F iff σ, n |= F for all names n

|= F iff σ, n |= F for all names n and all runs σ

19Systematic Development of Mobile Systems

3. pMLTL: Derived Operators

m<F> “F holds at m and m exists”
m<F> =def ¬ m[¬ F]

“Move” can be expressed:
n >> m.n =def n<true> ∧ O m<n<true>> ∧ keepn

<> F “F holds eventually”
<> F =def ¬ �(¬ F)

20Systematic Development of Mobile Systems

4. MTLA: Notations (for action formulas)

For any action A, state function t, and any pure
spatial formula S (i.e. not containing temporal
operators), define

[A]t ≡ A v t = t’ [A]S ≡ A v (S O S)

<A>t ≡ A ∧ ¬(t = t’) <A>S ≡ A ∧ ¬(S O S)

[A]-S ≡ [S => A]S

21Systematic Development of Mobile Systems

4. MTLA Example: Mobile Shopper

A mobile shopper gets the request of finding
offers for an item, e.g. for different flights.

He visits several shops, collects the offers and
returns home (after some time).

lookFor lookForlookFor

22Systematic Development of Mobile Systems

4. MTLA Example Shopper: UML solution

<<mobile>> Shopper

lookFor : Item
offers : {Offer}

look(i : Item)
offer(o : Offer)

<<location>> Site

supply : {Offer}

present(offers : {Offer})

home1

23Systematic Development of Mobile Systems

4. MTLA Example Shopper:
Direct specification in MTLA

Assume: fixed, finite set Net of names, joe ∈ Site, shopper not in Site

Network topology

Topology ≡ ∧ n,m ∈ Site n<m[false]> all nodes present at top level

Initial condition
Init ≡ joe<shopper<true>> shopping agent in domain joe. . .

∧ shopper[ctl = “Idle”] . . . and in “Idle” state

Prepare shopper to shop for item x
Prepare(x) ≡

shopper<true> ∧ O shopper<true> shopping is (and stays) here
∧ shopper[ctl = “Idle”] state changes from “idle” . . .
∧ O shopper[ctl = “Shopping”] . . . to “shopping”
∧ O shopper[lookFor = x ∧ offers = {}] initialize lookFor and offers

shopper.ctl = “idle”
abbreviates: shopper<true> ∧
shopper[ctl = “idle”]

24Systematic Development of Mobile Systems

4. MTLA Example Shopper (continued)
Remaining state-changing actions
GetOffer ≡. . . get an offer and insert into “offers”
PickOffer ≡. . . select among offers in “offers”

Move among network nodes
Moven,m ≡

n<shopper<true>> shopping agent is in n’s domain
∧ shopper[ctl = “Shopping”] and is in “Shopping” state
∧ n.shopper >> m.shopper shopper moves to m’s domain,
∧ UNCHANGED(shopper.offers, shopper.lookFor, shopper.ctl)

preserving local state

Overall specification (ignoring fairness)
Shopper ≡

Topology ∧ Init

∧ � [joe[(∃ x : Prepare(x)) v PickOffer] v vn ∈ Site n[GetOffer]]vars

∧ ∧ n ∈ Site � [vm ∈Site Moven,m]-n.shopper

25Systematic Development of Mobile Systems

5. Mobile State Machines

State machines model the behavior of (single) objects.
History and predecessors

1950’s: Finite State Machines: Huffmann, Mealy, Moore
1987: Harel Statecharts: conditions and hierarchical (and/or) states
1994: ROOM Charts: run-to-completion (RTC) step

State machines model behavior
using states interconnected …
with transitions triggered …
by event occurrences.

Goal of the extension to mobility
include location information and move operations into the state
machine behaviour

26Systematic Development of Mobile Systems

5. Mobile state machines: Example Shopper

simple State

trigger (CallEvent)
guard (Constraint)

initial Pseudostate

effect (CallAction) Transition
effect (MoveAction)

27Systematic Development of Mobile Systems

5. Mobile state machines: Example Shopper

28Systematic Development of Mobile Systems

5. Mobile state machines: Example Shopper

29Systematic Development of Mobile Systems

5. Mobile state machines: Example Shopper

<<mobile>> Shopper

lookFor : Item
offers : {Offer}

look(i : Item)
offer(o : Offer)

<<location>> Site

supply : {Offer}

present(offers : {Offer})

home1

30Systematic Development of Mobile Systems

5. Mobile state machines: MTLA Semantics

UML mobile state machines
semi-formal graphical notation
semantics and formal foundation non-obvious
no notion for reasoning on mobile systems
no abstract notion of refinement

Translation of state machines to MTLA
Define control states and event queues
Translate every transition
Specify the behaviour of the whole state
machine/several state machines

31Systematic Development of Mobile Systems

5. Semantics of state machines
Basic Idea

event pool event pool

Assume object a:A located
beneath an object c

a b

Communicating state machines

network
sent but undelivered messages

32Systematic Development of Mobile Systems

5. Semantics of mobile state machines
Basic Idea

ε. msgs = …

event pool event pool

Representation in MTLA

Assume object a:A located
beneath an object c

a b

Communicating state machines

network
sent, but undelivered messages

a

self = …
ctl =…
evts = …

self = …
ctl =…
evts = …

b

control state of a

received messages of a

c

object identity (does never change)

33Systematic Development of Mobile Systems

5. Semantics of mobile state machines:
Example Transition Translation

State machine of shopper

Translation to MTLA
α

Translation of guard [@home]

Translation of ANY l : move(l)

∧ l∈Loc [false]l.ag

34Systematic Development of Mobile Systems

6. Refinement of mobile systems

Operation refinement
decompose high-level operations
represented by implication (stuttering invariance)

(Action Refinement as in TLA, see earlier)

Spatial decomposition (Location Refinement)
refine high-level location n into a tree (with root named n)
in general also distribute local state of n

Virtualisation of locations (Location and Move
Refinement)

implement high-level location n by structurally different
hierarchy
preserve external behavior : n hidden from high-level
interface

35Systematic Development of Mobile Systems

6.1 Refinement of Mobile State Machines:
Operation Refinement of Shopper

<<mobile>> Shopper

lookFor : Item
offers : {Offer}

look(i : Item)
offer(o : Offer)

<<location>> Site

supply : {Offer}

present(offers : {Offer})

home1

36Systematic Development of Mobile Systems

6.1 Operation Refinement of Shopper

Refine state Shopping by 4 states:

37Systematic Development of Mobile Systems

6.1 State Machine Refinement

State machine refinement is based on
an invariant InvR of the refined state machine,

an abstraction function Abs: StateR → StateM

mapping the states of R to the corresponding states of M,

a global hypothesis H on the refined system (e.g. Assumptions H
on the spatial hierarchy.

Example
Invariant of refined shopper:

(ag.ctl = Returning => @home) ∧ ag.loc ∈ Site

Abs maps the states

Ready, Arrived, WaitOffer, and Returning to state Shopping

Global hypothesis: Here an assumption on the spatial hierarchy:

∀ s ∈ Site : nbs(s) ⊂ Site

38Systematic Development of Mobile Systems

6.1 Example: Refinement Proof
Inductive invariant: RfndShopper => � Inv(ag):

The only non-trivial case is the transition Arrived2ReturningRfndShopper to state
Returning: because of the guard, Inv(ag) holds in the post state

Step simulation
Initial State: H ∧ InitRfndShopper => InitShopper(ag): Obvious

Any action of RfndShopper implies validity of corresponding high-level action:
lookRfndShopper implies lookShopper: holds obviously (actions have identical definition);

moveRfndShopper implies moveShopper : holds because of global hypothesis on neighbours;

Arrived2ReadyRfndShopper : stuttering step for Shopper;

Arrived2WaitOfferRfndShopper : stuttering step for Shopper;

offerRfndShopper implies lookShopper: holds obviously (actions have identical definition);

Arrived2ReturningrRfndShopper : stuttering step for Shopper;

Returning2IdleRfndShopper implies presentShopper : holds because of inductive invariant.

39Systematic Development of Mobile Systems

6.2 Spatial decomposition

Suppose visiting agents are kept in a “dock” location

Still conforms to the original specification
formula Shopper doesn’t mention locations dock, in, out
location shopper is still below location a1

40Systematic Development of Mobile Systems

6.2 Application to State Machines
Introducing sublocations

41Systematic Development of Mobile Systems

6.2 Application to State Machines
Introducing sublocations

Acceptable spatial refinement
Invariant of docked shopper:

(ag.ctl = Incoming => @loc) ∧ ag.loc ∈ Site
Abs maps the states

Incoming, Docked to state Arrived
Global hypothesis:
Each site contains and is associated with an “in” location
and a ”dock” location

∧ l∈Site ∧ l.l_in<true> ∧ l.l_dock<true>

∧ incoming(l.self) = l_in.self ∧ dock(l.self) = l_dock.self

42Systematic Development of Mobile Systems

6.2 Spatial decomposition in detail

Refined move actions

Ready2Incoming ≡ move to incoming location maps to high-level move

∧ ag.ctl = Ready ∧ ag.ctl’ = Incoming ∧ …

Vl∈Loc (l.self ∈ nbs(loc) ∧ ag.loc’ = l.self ∧ ε.ag >> l.l_in.ag)

Because: ε.ag >> l.l_in.ag ≡ (ag<true> ∧ O l.l_in.ag<true> ∧ keepag)

implies (ag<true> ∧ O l.ag<true> ∧ keepag) ≡ ε.ag >> l.ag

Incoming2Docked ≡ move to docked location invisible at high level
∧ ag.ctl = Incoming ∧ ag.ctl’ = Docked ∧ …

∧ Vl∈Loc (ag.loc = l.self ∧ ε.ag >> l.l_dock.ag) (well-defined because of hypothesis)

Because: Invariant @loc implies l.ag<true>;

with ε.ag >> l.l_dock.ag we get

l.ag >> l.l_dock.ag ≡ (l.ag<true> ∧ O l.l_dock.ag<true> ∧ keepag)

This implies (l.ag<true> ∧ O l.ag<true> ∧ keepag) ≡ l.ag >> l.ag

The refined specification again implies the original one.

43Systematic Development of Mobile Systems

6.2 Spatial decomposition: general case

Usually, decomposition requires distribution of state

Refinement is then expressed as Impl => ∃ a.x : Spec
local state variable x hidden from high-level interface;
refinement mapping for realising x has to be defined

44Systematic Development of Mobile Systems

6.2 Application to State Machines:
Distribution of agent state

45Systematic Development of Mobile Systems

6.2 Application to State Machines:
Distribution of agent state

Straightforward extension of proof obligations
hiding of high-level state components (lookFor, offers)
extend refinement mapping to compute hidden state

dt.tgt → lookFor, dt.res → offers

invariant ensures preservation of observable behavior

46Systematic Development of Mobile Systems

6.3 Virtualisation of locations

Modify spatial hierarchy

Location n hidden from interface: Impl => ∃n : Spec
Preserve external behavior, except for location n

47Systematic Development of Mobile Systems

6.3 Application to State Machines: Slow Shopper

Modification of spatial hierarchy with transit not in Site
non-atomic moves invalidate � (Vl∈Site l.ag<true>)
have weaker refinement at system level

Impl => ∃ ag : Spec

! Nonstandard
def of ∃ !

48Systematic Development of Mobile Systems

Summary: MTLA and Mobile State Machines

MTLA – Mobile Temporal Logic of Actions :
Specification logic of mobile systems

Spatio-temporal refinement

Mobile UML state machines
support move actions and location information

Formal Semantics in MTLA

Spatial refinement concepts explained at UML level
state machine refinement (operation refinement)

introducing sublocations

distribution of agent state

virtualisation of locations

