Prof. Dr. F. Kröger, Dr. M. Hölzl, F. Hacklinger

Probeklausur Informatik I WiSe 05/06 18. Januar 2006, 10–12 Uhr

Vorname	
Nachname	
Matrikelnummer	
Universität	□ Ludwig-Maximilians-Universität □ Technische Universität
Studienfach	□ Informatik (Diplom) □ Bioinformatik (Bachelor)
Fachsemester	

1	2	3	4	5	6	\sum	Note

a) Begründen Sie informell, warum folgende SML-Funktion für alle Eingaben $x\in\mathbb{Z}$ terminiert.

fun f x = if x = 0 then 0
else if x < 0 then f(
$$^{\sim}$$
x + 1)
else f(x-1)

b) Warum ergibt die Eingabe von

fun g x =
$$x * let x = 2 in x * x end + x$$
; in einer SML-Sitzung eine Fehlermeldung?

c) Ist die Funktion

- a) Geben Sie ein SML-Programm from To vom Typ $int * int \rightarrow int list$ an, so dass ein Aufruf from To(m, n) die Liste der ganzen Zahlen von m bis n zurückgibt. (Diese Liste ist leer, falls m > n.) Zum Beispiel gibt from To(5, 8) die Liste [5, 6, 7, 8] zurück.
- b) Geben Sie ein SML-Programm listpos vom Typ 'a list \rightarrow (int * 'a) list an, das jeder Liste l eine Liste l' zuordnet, deren Element an der Position i das Paar (i, l_i) ist, wobei l_i das i-te Element von l ist. Zum Beispiel soll listpos[3, 5, 9] die Liste [(1, 3), (2, 5), (3, 9)] ergeben.
- c) Geben Sie ein SML-Programm prefix vom Typ $string * string list \rightarrow string list$ an, so dass ein Aufruf prefix(p,l) eine Liste zurückgibt, deren i-tes Element die Konkatenation von p mit dem i-ten Element aus l ist. Zum Beispiel soll prefix("Dr. ", ["Maier", "Walter", "Huber"]) die Liste ["Dr. Maier", "Dr. Walter", "Dr. Huber"] zurückgeben.
- d) Geben Sie ein SML-Programm take3 vom Typ 'a list \rightarrow 'a list an, so dass ein Aufruf take3 l für eine Liste l mit n Elementen die ersten n/3 Elemente von l zurückgibt, falls n durch 3 teilbar ist, und in allen anderen Fällen eine Ausnahme auslöst.
- e) Geben Sie ein SML-Programm tfind vom Typ (' $a \rightarrow bool$) * ('a bintree) \rightarrow 'a list an, so dass ein Aufruf tfind(f,b) eine Liste l zurückgibt, für die gilt: l enthält genau die Knoten x von b, für die f(x) den Wert true ergibt.

Gegeben sei die folgende datatype-Deklaration:

Bei Elementen des Datentyps TwoThree, die in der Form two(d,t1,t2) dargestellt werden können, nennt man d den Inhalt und t1,t2 die direkten Substrukturen. Bei Elementen, die in der Form three(d,t1,t2,t3) dargestellt werden können, nennt man d den Inhalt und t1,t2,t3 die direkten Substrukturen. Elemente, die in der Form nothing dargestellt werden können, haben weder Inhalt noch direkte Substrukturen. Die Substrukturen eines Elements t des Datentyps TwoThree sind t selbst und alle Substrukturen der direkten Substrukturen von t.

- Geben Sie eine SML-Funktion flatten vom Typ 'a Two Three \rightarrow 'a list an, so dass ein Aufruf flatten(t) eine Liste mit den Inhalten aller Substrukturen von t zurückgibt.
- b) Geben Sie eine SML-Funktion count23 vom Typ 'a TwoThree \rightarrow int * int an, so dass ein Aufruf count23(t) ein Paar (n2, n3) zurückgibt, für das gilt:
 - n2 ist die Anzahl der Substrukturen von t, die in der Form two(d, t1, t2) dargestellt werden können.
 - n3 ist die Anzahl der Substrukturen von t, die in der Form three(d, t1, t2, t3) dargestellt werden können

Aufgabe 4 Bäume (5 Punkte)

Ein Baum, bei dem jeder Knoten beliebig viele Unterbäume haben kann, lässt sich durch folgende datatype-Deklaration beschreiben:

datatype 'a ntree = n_empty | n_build of 'a * ('a ntree) list

Die Knoten eines derartigen Baums sind induktiv definiert: n_empty hat keine Knoten, die Knoten von $n_build(k,ts)$ sind k und alle Knoten von Elementen aus ts.

Geben Sie eine SML-Funktion contains vom Typ "a*" a ntree \rightarrow bool an, so dass ein Aufruf contains(x,t) genau dann true zurückgibt, wenn x in t als Knoten vorkommt.

Betrachten Sie die folgende SML-Funktion:

fun f
$$(x, y) = if (x + y) < 0$$
 then ~1 else 1 + f(x + 2, y - 3)

- a) Werten Sie f(31,-28)aus. (Notieren Sie die Auswertung in "Kurzschreibweise".)
- b) Beweisen Sie, dass die Berechnung von f(x,y) für alle Werte $(x,y)\in\mathbb{Z}\times\mathbb{Z}$ terminiert.

Es sei $\Sigma = \{a, \ldots, z, A, \ldots, Z, _\}$. Eine Zeichenreihe $w \in \Sigma^*$ ist ein zulässiger Funktionsname in der Programmiersprache C, falls w nicht leer ist und eine der folgenden Bedingungen gilt:

- w beginnt nicht mit einem Unterstrich (_).
- w beginnt mit einem Unterstrich (_), gefolgt von einem Kleinbuchstaben (a-z), gefolgt von einer beliebigen (möglicherweise leeren) Zeichenreihe aus Σ^* .

Zum Beispiel sind ABC, printf, $_x$, $_aName$ zulässige Funktionsnamen in C-Programmen, die Zeichenreihen $__x$, $_X$ und $_Name$ dagegen nicht.

Wir setzen $\mathcal{L} = \{ w \in \Sigma^* \mid w \text{ ist zulässiger Funktionsname in C} \}.$

- a) Geben Sie eine BNF-Grammatik G mit Startzeichen S an, so dass $\mathcal{L}(S) = \mathcal{L}$.
- b) Leiten Sie printf und $_x$ aus dem Startsymbol S Ihrer Grammatik ab.