Prof. Dr. F. Kröger, M. Hammer

Temporale Logik und Zustandssysteme Lösungsvorschlag

Aufgabe 3-1

Temporale Aussagen in LTL

(3 Punkte)

Seien A und B Formeln von \mathcal{L}_{LTL} . Geben Sie LTL-Formeln mit den folgenden jeweiligen informellen Bedeutungen an.

a) "Wenn A das nächste Mal gilt, gilt danach nie wieder B"

Lösung: $\Box(A \rightarrow \bigcirc \Box \neg B)$

b) "A gilt ab jetzt genau einmal"

Lösung: $\Diamond A \wedge \Box (A \rightarrow \bigcirc \Box \neg A)$

c) "A gilt ab jetzt mindestens zweimal"

Lösung: $\Diamond(A \land \Diamond \Diamond A)$

Aufgabe 3-2

Semantik von Formeln

(5 Punkte)

Sei A eine Formel der Logik LTL. Beweisen oder widerlegen Sie folgende Aussagen:

a) $\models (\Box A \rightarrow \Box B) \rightarrow \Box (A \rightarrow B)$

Lösung: Nicht allgemeingültig. Seien $A \equiv v_1, B \equiv v_2$ atomare Aussagen. Sei $K = (\eta_0, \eta_1, ...)$ eine Kripke-Struktur mit $\eta_i(v_2) = \text{ff für alle } i \in \mathbb{N}$ und

$$\eta_i(v_1) = \begin{cases} \text{tt} & \text{falls } i = 0 \\ \text{ff} & \text{sonst} \end{cases}$$

Es gilt $\not\models_{\overline{K}} \Box A$ und insofern $\not\models_{\overline{K}} (\Box A \to \Box B)$, aber $\mathsf{K}_0(A \to B) = \mathsf{ff}$, und insofern $\not\models_{\overline{K}} \Box (A \to B)$.

b) Ist A allgemeingültig, so auch $\Box A$, $\Diamond A$ und $\bigcirc A$.

Lösung: Eine korrekte Aussage. Sei A eine beliebige allgemeingültige Formel aus \mathcal{L}_{LTL} . Dann gilt für jede Kripke-Struktur K, daß $K_i(A) = \mathsf{tt}$ für alle $i \in \mathbb{N}$. Dann gilt auch:

- $K_i(A) = \text{tt für alle } j \geq i \text{ für beliebiges } i \in \mathbb{N}, \text{ und insofern } K_i(\Box A) = \text{tt.}$
- $\mathsf{K}_k(A) = \mathsf{tt}$ für ein beliebiges $k \geq i$, und insofern auch $\mathsf{K}_i(\lozenge A) = \mathsf{tt}$.
- und nach derselben Argumentation gilt auch $K_l(A) = \text{tt}$ für l = i + 1, und daher $K_i(OA) = \text{tt}$.
- c) $\models \Diamond \Box A \land \neg \Box \Diamond A$

Lösung: Nicht erfüllbare Formel. Die Negation $\Diamond \Box A \to \Box \Diamond A$ ist gerade das Gesetz **T9**.

Sei K beliebige Kripke-Struktur mit $\models_{\overline{K}} \Diamond \Box A$. Also gilt $K_k(A) = \text{tt für alle } k \geq j$ für ein $j \geq i$ (informell: irgendwann gilt immer A).

Annahme: Es gilt $\models_{\overline{K}} (\neg \Box \Diamond A)$, also $K_i(\Box \Diamond A) = ff$, also $K_{k'}(A) = ff$ für ein $k' \geq j'$ für alle $j' \geq i$ (informell: es gilt immer irgendwann nicht A). Wähle j' = j. Dann gäbe es ein $k' \geq j'$ mit $K_{k'} = ff$, Widerspruch zu $K_{k'}(A) = tt$.

d) $\models \Box(\Box(A \to \Box A) \to A) \to (\Diamond\Box A \to A)$

Lösung: Allgemeingültig. Sei K beliebig. Zu zeigen ist, daß aus $K_i(\Diamond \Box A \to A) = \text{ff folgt}$, daß $K_i(\Box(\Box(A \to \Box A) \to A)) = \text{ff}$.

Sei also $\mathsf{K}_i(\Diamond \Box A \to A) = \mathsf{ff}$. Dies gilt gdw. $\mathsf{K}_i(\Diamond \Box A) = \mathsf{tt}$ und $\mathsf{K}_i(A) = \mathsf{ff}$. Es gilt also $\mathsf{K}_k(A) = \mathsf{tt}$ für alle $k \geq j$ für ein $j \geq i$ (informell: irgendwann immer A). Es gilt ebenfalls $\mathsf{K}_i(A) = \mathsf{ff}$. Es gibt also ein $l \geq i$ mit $\mathsf{K}_l(A) = \mathsf{ff}$ und $\mathsf{K}_{l+1}(\Box A) = \mathsf{tt}$. Es gilt $\mathsf{K}_m(A \to \Box A) = \mathsf{tt}$ für alle $m \geq l$. Damit gilt $\mathsf{K}_l(\Box (A \to \Box A) \to A) = \mathsf{ff}$, und somit $\mathsf{K}_i(\Box (\Box (A \to \Box A) \to A)) = \mathsf{ff}$.

(5 Punkte)

Sei V eine Menge von Aussagenkonstanten. Die Menge Mod(A) für eine Formel A von $\mathcal{L}_{LTL}(V)$ ist definiert als

$$\operatorname{Mod}(A) = \{\mathsf{K} \mid \mathsf{K} \text{ ist temporale Struktur für } \mathbf{V} \text{ mit } \models_{\overline{\mathsf{K}}} A\}$$

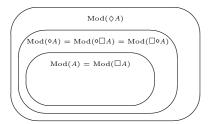
Geben Sie (als Diagramm) die Teilmengenbeziehungen zwischen folgenden Mengen an:

Mod(A), $Mod(\bigcirc A)$, $Mod(\bigcirc A)$, $Mod(\square A)$, $Mod(\square \bigcirc A)$, $Mod(\bigcirc \square A)$.

Lösung: Tatsächlich gibt es bei dieser Aufgabe nur drei unterscheidbare Mengen, denn $\operatorname{Mod}(A) = \operatorname{Mod}(\Box A)$ und $\operatorname{Mod}(\Box A) = \operatorname{Mod}(\Box A) = \operatorname{Mod}(\Box A)$. Die Inklusion ist demnach

$$Mod(A) \subseteq Mod(\bigcirc A) \subseteq Mod(\lozenge A)$$

Die Teilmengenbeziehung ist i.A. nicht echt, wie man für $A \equiv$ **false** sieht. Bei einem Diagramm wird diese Möglichkeit natürlich nicht verdeutlicht:



Abgabe: Mittwoch, den 8.11.2006, vor der Übung.