

Lehr- und Forschungseinheit für Programmierung und Softwaretechnik

Vorlesung am 5. Mai 2009

Serviceorientiertes E-Government

Zentrale Probleme in komplexen IT-Landschaften

Dr. Frank Sarre

Lehrbeauftragter der LMU München

Typische Aufgabengebiete in einem Unternehmen

Einkauf

Lieferanten Anfragen Bestellung Terminmanagement

Verkauf

Kunden Angebote Rechnungen Terminmanagement

Lager

Material
Fertigwaren
Chargenverwaltung
Verfallsüberwachung

Logistik

Flottenplanung Kapazitätsplanung Terminmanagement Lieferoptimierung

Konstruktion

Produktplanung Entwicklung Musterbau

Produktion

Produktionsplanung
Steuerung
Einzelfertigung
Serienfertigung

Dienstleistung

Personalverwaltung Einsatzplanung Abrechnung

Projekt-Management

Zeitplanung Ressourcenplanung Überwachung

Buchhaltung

Externes / internes Rechungswesen Anlagenbuchhaltung G&V / Bilanz

Controlling

Kostenrechnung Planung Steuerung Managementinfo

Personal

Lohn/Gehalt Personalplanung Zeitmanagement

Management

Planung Überwachung Steuerung

Marketing

Kunden Produkte Aktionen Veranstaltungen

Archivierung

Revisionssichere Langzeitspeicherung von Dokumenten

Dokumenten-Management

Aufgabenbezogene Speicherung von Dokumenten

Portale

Kunden Lieferanten Mitarbeiter • •

Viele weitere Bereiche

Beispiele für spezielle Branchenanforderungen

Automobilindustrie

- Serienfertigung mit Individualisierungen
- Just-in-time Beschaffung

Banken

- Management von Finanzprodukten
- Weltweite Transaktionen

Lebensmittelindustrie

- Chargenfertigung und Herkunftsnachweise
- Logistik mit Kühlkette

Öffentliche Verwaltung

Überwiegend völlig andere Aufgaben, die es sonst nirgends gibt,
 z.B. Melderegister, Handelsregister, Grundbuch, etc.

Selbst Unternehmen der gleichen Branche haben im Detail immer unterschiedliche Anforderungen.

Organisatorische Rahmenbedingungen (1)

- Meistens getrennte Verantwortlichkeiten der einzelnen Abteilungen, z.B. Vertrieb, Produktion, Logistik, etc.
 - → Häufig unkoordinierte Beschaffung von IT-Systemen
- Einzelne Funktionsbereiche können auch bei externen
 Dienstleistern liegen, z.B. Personal, Logistik, etc.
 - → Eingeschränkter Einfluss auf externe Rahmenbedingungen
- Es existieren häufig keine Gremien, um übergreifende Anforderungen zu definieren und abzustimmen.
 - → Keine Vereinheitlichung möglich
 - → Kein zentrales IT-Architekturmanagement möglich

Organisatorische Rahmenbedingungen (2)

- Die einzelnen Fachbereiche haben in der Regel unterschiedliche nicht-funktionale Anforderungen, u.a. in folgenden Bereichen:
 - Sicherheit (Integrität, Echtheit und Vertraulichkeit von Informationen)
 - Datenschutz (Verarbeitung personenbezogener Daten)
 - Verfügbarkeit (z.B. 7x24-Betrieb oder normale Bürozeiten)
 - Performance (z.B. Realtime-Maschinensteuerung oder Office-Betrieb)
 - → Einheitlicher Betrieb und Schnittstellen sind kompliziert
- Aufgrund von einer Zusammenlegung von verschiedenen
 IT-Anwendungen k\u00f6nnen einzelne Funktionsbereiche auch mehrfach vorhanden sein.
 - → Schwierige Konsolidierung von Anwendungen und Daten

Organisation und Aufgaben einer IT-Abteilung

Organisationsformen einer IT-Abteilung

- Zentrale Abteilung für alle Organisationseinheiten
- Komplette oder teilweise Auslagerung (Outsourcing)

Hauptaufgaben einer IT-Abteilung

- Planung und Betrieb der technischen Infrastruktur
- Beschaffung von IT-Komponenten
- Benutzer-Support
- Bereitstellung von fachlichen und technischen Diensten (Services) für die Abteilungen
- Entwickeln und Anpassen von Anwendungen

Typischerweise gehört die Organisation von abteilungsübergreifenden Abläufen nicht zu diesen Aufgaben.

Typische Betriebsprobleme

- In "gewachsenen" IT-Landschaften muss die IT-Abteilung einen ganzen "Zoo" von unterschiedlichen IT-Systemen beherrschen.
- Eine umfassende Betriebsdokumentation über die Verflechtung aller Systeme fehlt in aller Regel.
- Wartungsfenster sind teilweise schwer zu finden, da hierfür auch Systeme abgeschaltet werden müssten, mit denen andere Systeme kommunizieren.
 - → Was passiert, wenn man ein System herunterfährt?
- Fehlerhafte Updates an einem System können zu Fehlern im Zusammenspiel mit anderen Systemen führen.
 - → Welche Systeme werden von einem Update betroffen sein?
- Batch-Prozesse vertragen sich oft mit dem Online-Betrieb nicht
- Eine sachgerechte Datensicherung aller Systeme ist oft schwierig

Grundlegende Begriffe

- Geschäftsprozess
- Standardsoftware vs. Individualsoftware
- Schnittstellen
- Management von Benutzeridentitäten und Berechtigungen (IAM)
- ERP
- EAI

Definition: Geschäftsprozess

Was ist ein Geschäftsprozess?

"Ein **Geschäftsprozess** (business process) ist eine funktions- und stellenübergreifende Folge von Schritten zur Erreichung eines geplanten Arbeitsergebnisses in einem Unternehmen. Diese Schritte heißen **Geschäftsprozessaktivitäten** (business process activities), kurz **Aktivitäten**.

Der Geschäftsprozess dient direkt oder indirekt zur Erzeugung einer Leistung für einen Kunden oder den Markt."

Quelle: "Quasar Enterprise – Anwendungslandschaften serviceorientiert gestalten"

"Ein Geschäftsprozess kann Teil eines anderen Geschäftsprozesses sein oder andere Geschäftsprozesse enthalten bzw. diese anstoßen." Quelle: Wikipedia

Beispiel: Verkauf von Individualreisen für Geschäftskunden

Eigenständige Anwendungen

 Für fast jede Aktivität oder jeden Geschäftsprozess in einem Unternehmen gibt es eigenständige, optimierte Speziallösungen.

Typische Eigenschaften solcher "Speziallösungen":

- In der Regel nur für einen Teilausschnitt aller
 Geschäftsprozesse eines Unternehmens entwickelt.
- Die Funktionen eines Aufgabenbereichs werden vollständig durch eine oder mehrere eigenständige Anwendungen abgebildet.
- Für die Durchführung der Aktivität oder den Geschäftsprozess ist kein **Datenaustausch** mit anderen Systemen erforderlich.
- Es werden keine Funktionen anderer Systeme genutzt.

Softwaretypen

- Standardsoftware
 - Einrichtung auf die speziellen Bedürfnisse durch Parametrisierung
 - Beispiele:
 - Finanzbuchhaltung
 - o PPS-System

Anmerkung:

Die beste Standardsoftware für einen Anwendungsbereich wird auch als "Best of Breed" bezeichnet

- Individualentwicklungen
 - Entwurf und Entwicklung einer Anwendung auf Basis der Anforderungen des Anwenders
- Mischformen
 - Standardsoftware mit individuell "hinzuprogrammierten" Programmteilen

Technische Basis

Server

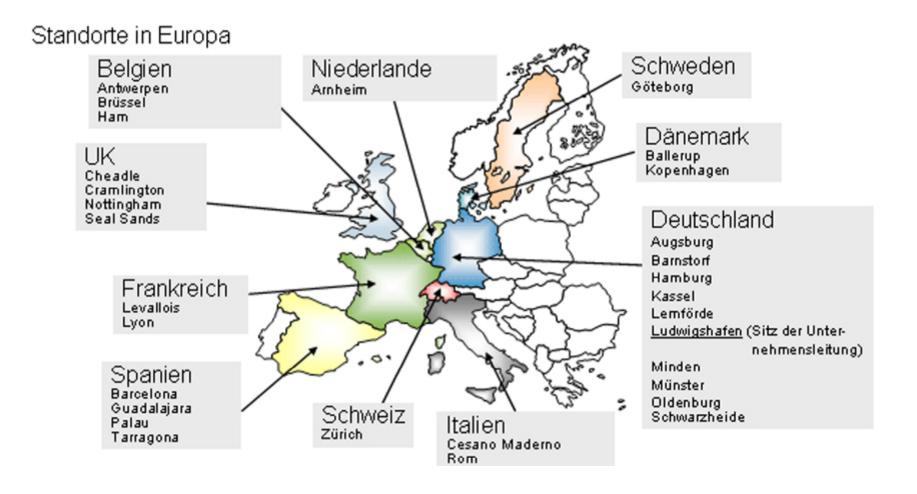
- Großrechner, Mainframes
- Midrange-Systeme, z.B. AS400
- UNIX / LINUX
- Windows

Clients

- Fat-Client
- Terminal-Client
- Web-Oberflächen

Netzwerk

- Ethernet, Token-Ring im LAN
- Spezielle Maschinensteuerungen, z.B. CAN-Bus
- Weitverkehrsnetze mit Standleitungen oder Wählverbindungen


Softwaretechnik

- Alte Sprachen: COBOL, BS2000-Assembler, BASIC, C, 4GL, ...
- Moderne Sprachen: C++, Java, ...
- Architekturen: Monolith, Client/Server- oder Multi-Tier-Architektur

Geografische Verteilung

Beispiel: BASF IT-Services Europa

Schnittstellen

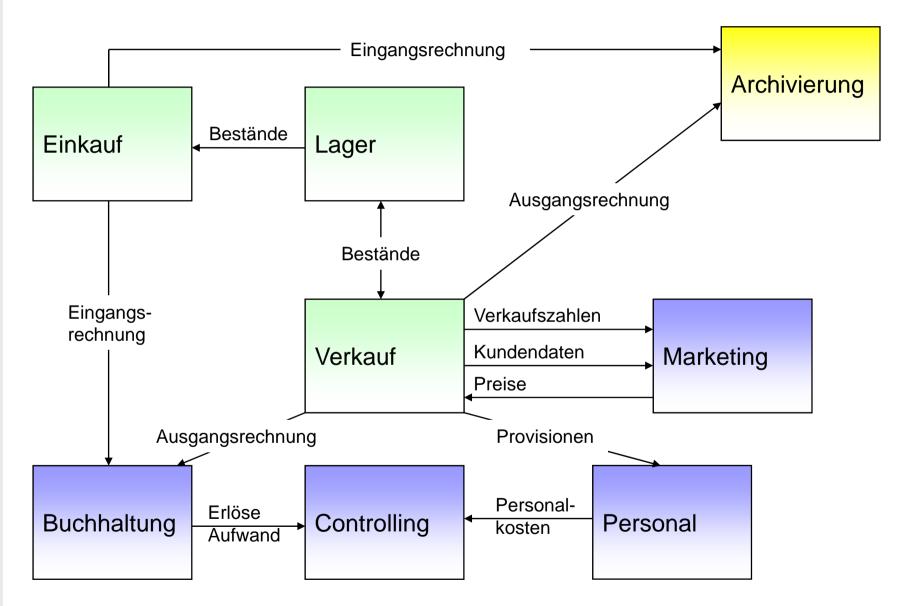
- Daten(austausch)schnittstellen
- Einfache Funktionsaufrufe (API)
- Komplexe Sequenzen von Funktionsaufrufen (→ Protokolle)

Daten(austausch)schnittstellen (1)

 In komplexen Anwendungslandschaften ist der Datenaustausch ein zentrales Thema.

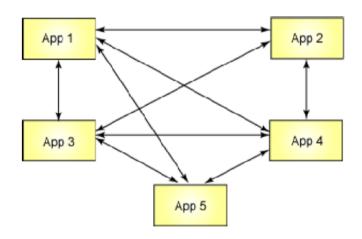
Beispiele

- a) Einfacher Datentransfer
 - o Buchungssätze
 - Verkaufszahlen
 - Adressdaten
- b) Komplexer Datentransfer
 - Behandlungsdaten (Gesundheitswesen)
 - Strukturierte Objekte (Produktionsauftrag)
- Übertragungsmethoden
 - Manuell (ausdrucken und wieder eingeben)
 - File-Transfer (Daten im Quellsystem in eine Datei schreiben und diese im Zielsystem wieder einlesen, manuell oder automatisiert)
 - Kommunikationsprotokolle (direkte Kommunikation zwischen Anwendungen oder über eine Zwischenschicht)


Daten(austausch)schnittstellen (2)

- Typische Eigenschaften von Daten(austausch)schnittstellen
 - Definierter Informationsinhalt
 - Definierter Kommunikationsablauf
 - Transformation von Zeichensätzen
 - Mapping von Dateninhalten
- Physische Ausprägung
 - File
 - Kommunikationsprotokoll
- Zeitlicher Ablauf
 - Synchron
 - Asynchron

Einfacher Datenaustausch



Typische Schnittstellenprobleme

- Punkt-zu-Punkt-Kopplung
- Häufig individuelle, nicht standardisierte Schnittstellen
- Gelegentlich Ad-hoc-Schnittstelle ohne detaillierte Analyse
- Ungenügende Kapselung
- Bei zahlreichen Anwendungen treten viele Schnittstellen auf
- Mit jedem neuen System steigt die Komplexität
- Hohe Fehleranfälligkeit
- Schwer wartbar, da bei Änderungen an einem System evtl. mehrere Systeme adaptiert werden müssen (Release-Festigkeit!)
- Bei Änderung der "Lokation" eines Systems müssen alle verbundenen Systeme entsprechend angepasst werden
- Pufferung von Daten bei Ausfall eines Systems?

Teillösungen für Schnittstellenprobleme

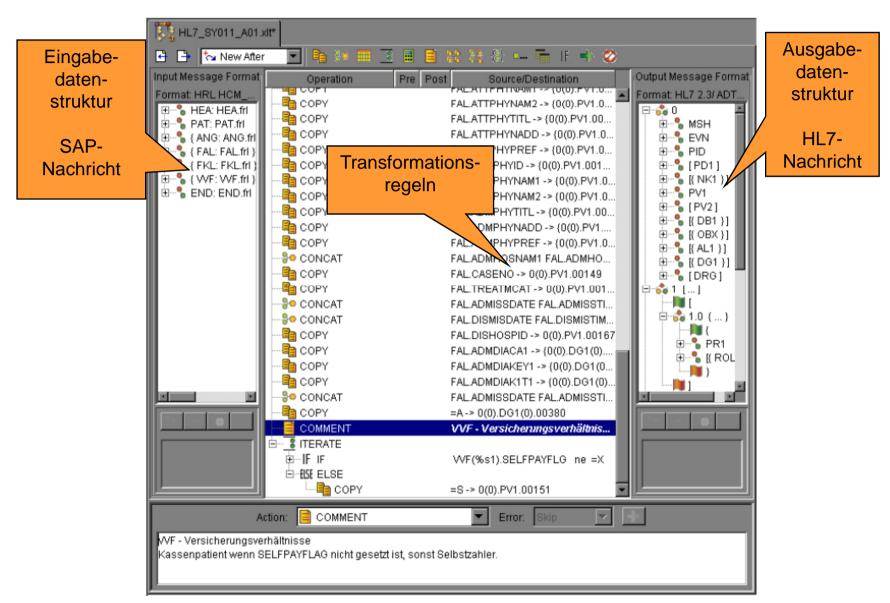
Spezielle Kommunikationsserver

Beispiele: eGate (JCAPS), Cloverleaf im Gesundheitswesen

- Datentransformationen
- Einfache Routing-Regeln
- Verbesserte Transparenz

Komplexe Middleware-Lösungen

Beispiele: DCE, CORBA, Websphere MQ


- Datentransformationen
- Komplexe Routing-Regeln
- Hohe Transparenz durch Verzeichnisdienst, Pufferung und Adapter
- Verteilte Transaktionen

Es handelt sich überwiegend um sehr komplexe Werkzeuge. Die Verwendung proprietärer Standards legt den Anwender auf einen Hersteller / ein Produkt fest.

Beispiel: Cloverleaf HL7-Transformation

Aufruf entfernter Funktionen

Aufruf von Funktionen anderer Systeme

- Abfrage von Daten
- Verifikation / Prüfung von Daten
- Trigger für das Starten oder Stoppen von Anwendungen

Typische Umsetzungen

- Remote Procedure Calls (RPC)
- Remote Method Invocation (RMI)

Anmerkung:

Auch hier ist die Nutzung von Middleware-Schichten möglich, um die (Software-) Verteilung und die technische Basis der aufrufenden und aufgerufenen Systeme zu verbergen.

Beispiel: Flugbuchung in einer Reisebüroanwendung

Identity- und Access Management (IAM) – (1)

- Jeder Systemnutzer muss am Computer, im Netzwerk und in den Anwendungen, die er benutzt, identifiziert werden können.
- Betriebssysteme stellen Standardmethoden für die Authentifizierung von Benutzern zur Verfügung, z.B. UNIX-Berechtigungssystem, Windows Active Directory.
- Anwendungen haben meistens ihre eigene Benutzerdatenbank, um Benutzer zu authentisieren.
- Aufgrund der Heterogenität der Systeme ist eine einheitliche zentrale Identität des Benutzers nicht gegeben. Ein und derselbe Benutzer muss auf mehreren Systemen eingerichtet und administriert werden.
 - → Mehrere Benutzernamen und Passwörter für jeden Benutzer
- Idealvorstellung wäre ein Single Sign On (SSO), bei dem sich ein Benutzer nur einmal am System anmelden muss und alle Anwendungen entsprechend seiner jeweiligen Berechtigung nutzen kann.

Identity- und Access Management (IAM) – (2)

Access Management

- Die Verwaltung der Zugriffsrechte auf Anwendungen oder bestimmte Daten wird als "Access Management" bezeichnet.
- Jeder authentisierte Benutzer hat üblicherweise definierte Rechte.
- Berechtigungen müssen wie die Benutzer selbst in jeder einzelnen Anwendung administriert werden.
- → Keine zentrale Übersicht über Berechtigungen eines Benutzers

Tools

- Verzeichnisdienste f
 ür zentrale Benutzerverwaltung: LDAP & Co.
- Komplette "Identity Management Suites" sollen die zentrale Administration von Identitäten <u>und</u> Zugriffsrechten ermöglichen.

Voraussetzung ist die Unterstützung durch die Anwendungen bzw. die Verfügbarkeit von Adaptern!

→ Keine vollständig durchgängige Lösung

Zwischenbilanz

- Für jede Aufgabe gibt es **eigenständige Lösungen**, die entweder aus historischen Gründen noch vorhanden sind oder aufgrund herausragender Eigenschaften ausgewählt wurden ("Best of Breed").
- Manche Funktionen und Daten sind in einzelnen Anwendungen mehrfach und uneinheitlich vorhanden.
- Der Einsatz solcher Lösungen erfordert in der Regel einen komplexen Datenaustausch.
- Es gibt zahlreiche Tools, die den Datenaustausch unterstützen.
- Es existiert häufig keine zentrale Steuerung der Abläufe für einen Geschäftsprozess oder zwischen mehreren Geschäftsprozessen.

Zwischenfrage:

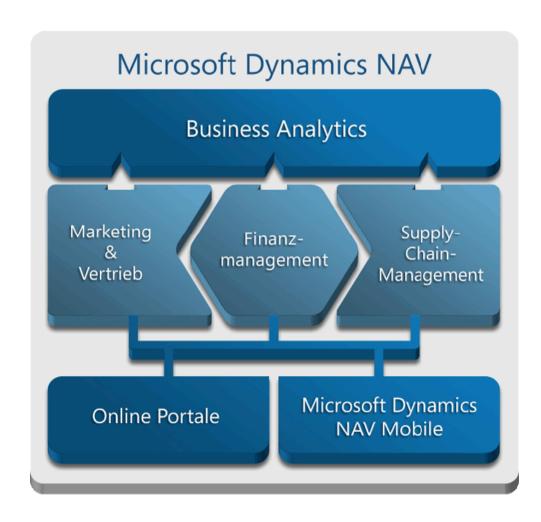
Wer soll für die Koordination der IT-Lösung hinsichtlich der Geschäftsprozesse und Aktivitäten verantwortlich sein?

Enterprise Resource Planning (ERP)

- Klassisches, "integriertes" Softwarepaket
- Versuch, zentrale Geschäftsprozesse mit einem einzigen Anwendungssystem abzudecken
- Anpassung auf die speziellen Bedürfnisse des Anwenders
 - a) Änderungen im Programmcode der Software
 - b) Erweiterungen durch zusätzliche Programmierungen
 - c) Einstellen von (Konfigurations-) Parametern
 - d) Eingabe / Pflege von Stammdaten
- Zentralisiertes IAM innerhalb des ERP-Systems

Beispiele:

SAP R/3, Microsoft Dynamics NAV (Navision), Sage, zahlreiche weitere Systeme mit teilweise spezieller Branchenausrichtung (sog. Branchensoftware oder Branchenpakete)

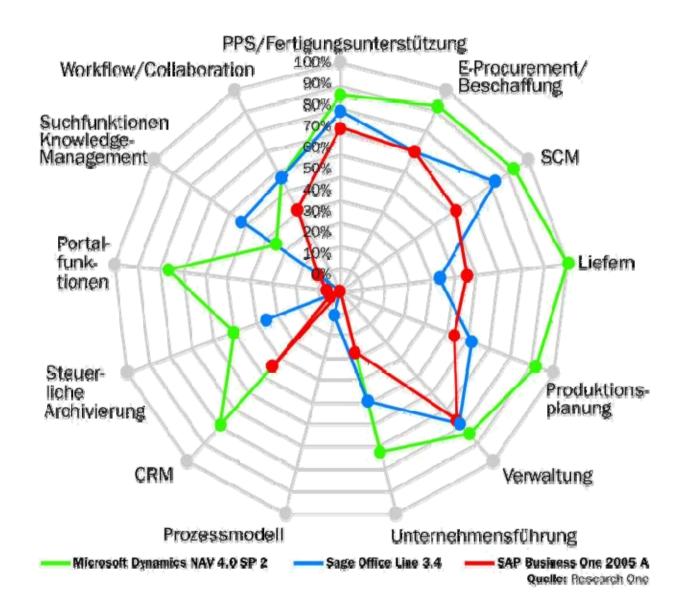

Beispiel: SAP-Anwendungsportfolio

Analytics	Financial Analytics			Ope	Operations Analytics				Workforce Analytics			
Financials	Financial SCM	Treasury		ТУ	Financial Accounting			Managemen Accounting		Coporate Governance		
Human Capital	Talent Management				Workforce Process Management				Workforce Deployment			
Procurement	I Proclirement I			Inventory Warehousemgmt.			In-/Outbound Logistics		Transportation Management			
Manufacturing				Manufacturing Execution			Product Development		Lifecycle Data- management			
Sales / Service	Sales Order Management				Aftermarket Sales and Service			Professional Service Delivery				
Corporate Serv.	Real Estates	•		Project Portfoli		vel mt.			Quali Mgmt	,	Global Trade	

Beispiel: Microsoft Dynamics NAV

Vorteile und Nachteile eines ERP-Systems

Vorteile


- Die Datenintegration vermindert die Anzahl der Schnittstellen.
- Die Zusammenfassung von Funktionen vereinfacht das System.
- Die Vereinheitlichung der Benutzeroberfläche erleichtert die Bedienung.
- Es kann eine Kostenreduzierung erzielt werden, wenn das System ausreichende Funktionen bietet.

Nachteile

- Viele Funktionen eines Standard ERP-Systems sind für spezielle Verwendungszwecke nicht ausreichend.
- Die Möglichkeiten für individuelle Anpassungen sind teilweise begrenzt oder sehr teuer.
- Es sind weiterhin Schnittstellen für die Anbindung von Spezialsystemen erforderlich.

Beispiel: ERP-Funktionsabdeckung

Enterprise Application Integration (EAI)

- Prozessorientierte Integration einzelner Anwendungssysteme auf Basis standardisierter Schnittstellen (meist proprietär)
 Beispiele:
 - SAP Netweaver
 - Microsoft BizTalk
 - IBM Websphere Business Integration
- Anwendungsübergreifende Prozesssteuerung häufig gegeben
- EAI ermöglicht die Integration von Einzelanwendungen und unterstützt so den "Best-of-Breed"-Ansatz sehr gut

Adapter, die für die Kopplung von Anwendungen benötigt werden, sind oft non-standard und auf Dauer schwer wartbar

Zusammenfassung

- In großen IT-Systemen sind zahlreiche Aufgaben zu erledigen, die mit bisherigen Mitteln beträchtliche Aufwände auslösen.
- Der Überblick über das gesamte System ist unvollständig;
 die **Dokumentation** ist lückenhaft und schlecht gepflegt.
- Der Betrieb ist häufig sehr aufwendig und kostenintensiv.
- Die Flexibilität ist aufgrund zahlreicher Abhängigkeiten eingeschränkt.
- Eine **Wiederverwendung** von Funktionen ist aufgrund der Struktur der IT-Anwendungen praktisch nicht möglich.
- Änderungen an Geschäftsprozessen können zu aufwendigen Änderungen in der IT-Landschaft führen.
- Es fehlt an einer globalen Methodik und an den passenden
 Werkzeugen zur durchgängigen Abbildung von Geschäftsprozessen.