
Agile Software Development
A Planned, Story-Driven, Test-Based, Tool-Supported
Process for Well-Designed Software

Philip Mayer

Origins of „Agile“

• Before and around the year 2000
– Dissatisfaction with heavyweight software processes

– It was felt that these processes add too much overhead

– No place left for innovation and adaptation

• 2001
– „Agile Manifesto“: A definition of agile development by Kent Beck

(TDD), Martin Fowler (Refactoring), et al.

• Since then
– A multitude of agile processes has been introduced

– XP (eXtreme programming) and SCRUM are among the most well-
known ones

19.04.2010 Philip Mayer 2

The Agile Manifesto

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

© 2001, the above authors

this declaration may be freely copied in any form,

but only in its entirety through this notice.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James

Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

19.04.2010 Philip Mayer 3

The Head First Process

• This talk focusses on one
agile process compatible
with the manifesto

• The process is
– intended for groups of up to

10 people

– consists of simple rules and is
thus easy to learn

– follows the agile manifesto

• The accompanying book,
despite being fun to read,
describes a rigorous plan for
a development process

19.04.2010 Philip Mayer 4

The HFSD Process (1)

• Capturing and Managing Requirements

– The Customers Mental Image of the System

– User Stories and Tasks

– Estimation and Priority

• Planning and Controlling the Process

– Deciding on user stories and tasks for an iteration

– Big Board + Burn-Down-Chart: Know where you stand

– Learning from the process

• Testing

– Testing leads to confidence

– TDD vs. TBD

– Test Coverage

19.04.2010 Philip Mayer 5

The HFSD Process (2)

• Managing Bugs

– Bugs happen.

– Reproducing bugs: Test for bugs!

– Tracking bugs

• Productive (Team-Based) Development

– Using IDEs

– Using Version Control

– Build Management and Continuous Integration

• Good Design

– Visualising your system design with the UML

– Design principles like DRY, SRP, etc.

– Refactoring, Good-Enough Design

 19.04.2010 Philip Mayer 6

Part I/VI. Capturing and Managing
Requirements

19.04.2010 Philip Mayer 7

The Customer

• Software development is about shipping software
that brings the customers ideas to life.

• Which means

– Shipping software: The software must be completed,
executable, and delivered – on time, and on budget.

– Customers Ideas: The customer has a mental image of his
product. The software engineers job is to extract that
image and implement it.

19.04.2010 Philip Mayer 8

Requirements

• The customers mental image about his software is
captured as a set of requirements.

• Capturing requirements is not simple!

– There are usually lots of assumptions both on the
customer and IT side about the system to be built

– Customer might not be an IT expert, he doesn‘t know what
is possible or what is hard/easy to implement

• IT and customer MUST work together to extract the
correct requirements

• In a sense, IT is also a consultant on the tech parts

19.04.2010 Philip Mayer 9

Capturing Requirements (I)

• Requirements are captured in the form of
User Stories

• A user story captures one thing (and one thing only)
that the software needs to do for the customer

– A user story has a title and a short description

– The description should fit on a DIN A6 index card (if it is
too long, it needs to be split in two)

• User stories are customer-oriented.

– User stories are written with, and for, the customer

– They must be written in a language the customer can
understand

 19.04.2010 Philip Mayer 10

Capturing Requirements (II)

• User stories are created in a brainstorming meeting
with the customer

• Think Big.

– While capturing requirements, the sky is the limit.
Developers need to think with the customer – what else
could he want/need in his software?

– User Stories can be removed later on, but during this
phase, IT needs to make sure everything which possibly
matters is written down

• This technique is called blueskying (the sky is the
limit).

19.04.2010 Philip Mayer 11

Examples

• Good Story (customer-level):

19.04.2010 Philip Mayer 12

• Bad Story (too technical):

Other Techniques

• Two other techniques for eliciting requirements:

• Role Playing

– Developer acts as the software

– Customer acts as the user

• Observation

– Developers watch the customer do the tasks he would like
the software to support and write everything down

19.04.2010 Philip Mayer 13

Estimating (I)

• At some point, everybody agrees that the idea of the
system to be built is reflected in the user stories.

• The question is: How long will it take?

– Developers need to estimate each user story.

– An estimate is the number of days or hours a story takes
to implement

• After estimates are available, the customer can
prioritise the stories, such that the team knows what
to implement in which order.

19.04.2010 Philip Mayer 14

Estimating (II)

• Estimation is done without the customer

• Estimation means attaching a number of hours or
days to each user story

• Each number should include time for

– Design

– Code

– Test

– Delivering (building + demoing)

• The whole project is the sum of estimates of all user
stories.

19.04.2010 Philip Mayer 15

How to estimate

• In agile development, the team as a whole is
responsible for the implementation

• Everybody should, in principle, be able to implement
each functionality. Thus, estimation takes everybody
into account

• To arrive at a number everybody is comfortable
with, developers should

– split the story into tasks

– estimate the tasks

19.04.2010 Philip Mayer 16

Tasks

• For implementing or estimating a user story, it is
split into tasks.

• A task specifies a piece of development to be carried
out by one developer

– Like a user story, it has a title and a description

– Usually written on a post-it attached to a user story.

• A user story is a combination of tasks

– Thus, the combined estimates for the tasks yield the user
story estimate.

19.04.2010 Philip Mayer 17

Task Examples

19.04.2010 Philip Mayer 18

Dealing with Assumptions

• The problem with estimates are assumptions

– ...about what is part of a story and what is not

– ...about the skills required, or the need to acquire them
first

– ...about the complexity of the task

• No assumption is a good assumption

– The aim is to get rid of as many assumptions as possible

– But they first need to be found

• Planning Poker can help here

19.04.2010 Philip Mayer 19

Planning Poker

• Planning Poker

– A certain task is selected

– Every developer thinks about the task and how long it will
take himself to implemented it, all things considered.

– Estimations are done in private

– The estimate is (covertly) written down on a card; the
cards are collected

– All cards are uncovered, the estimates yield a spread along
a timeline

• If the estimates differ a lot, this indicates less
condfidence and (probably) hidden assumptions

19.04.2010 Philip Mayer 20

Planning Poker II

• The goal is convergence

– The team must come up with a single estimate

– This might require asking the customer for clarification

– Still, everybody needs to be confident in the estimate

• In the end, estimates are written on a task post-it

• Note: A user story should, in general, not take longer
than a couple of days to implement

19.04.2010 Philip Mayer 21

...back to the customer

• The customer wants all of his user stories to be
implemented

• Due to the estimates, the developers now know how
long this will take

– Mostly, this will be too long.

– This means the time available must be extended or
functionality removed

– This is where priorities come into place

• The customer prioritises the user stories according
to his/her current needs.

19.04.2010 Philip Mayer 22

Prioritising

• The customer prioritises the stories. Important ones
get a higher priority and must be implemented first

– Customer must be assisted as stories might depend on
each other

– Priorities should be taken out of the set of
{10,20,30,40,50}, with 10 being most important

– Prorities are written on user story cards

• Based on estimates and priorities, user stories can
later be assigned a place in the development cycle.

– This is discussed later.

19.04.2010 Philip Mayer 23

Summary

• Requirements are captured as user stories

– With the customer, for the customer

• User stories are split into tasks

– By the developers

• Tasks, and thereby user stories, are estimated

– the aim is confidence by all developers

– ...and getting rid of assumptions

• The customer assigns priorities to the stories,
indicating which functionality should be
implemented first

19.04.2010 Philip Mayer 24

Part II/IV. Planning and Controlling the
Process

19.04.2010 Philip Mayer 25

Big Bang

• The Big Bang approach to software does NOT work:

• Also known as „going dark“

• No interaction with customer in the black cloud

• The problem: Requirements might have been misunderstood, or might
change. The resulting system is not what the customer wanted.

19.04.2010 Philip Mayer 26

* After two years of coding

We need something else...

Change is the only constant in SW development

• Agile Development builds heavily on communication
and the ability to react to change

• Requirements, Estimates, and Priorities might
change – but this is considered in the process and
dealt with in a controlled way.

19.04.2010 Philip Mayer 27

Iterative Development

• Milestones. The HFSD process is based on
milestones, which take about three months.

– A milestone, or version, is a major release of the software
which is a self-contained set of functionality.

• Iterations. Each milestone is split into iterations,
which take about four weeks (= 3 iterations per
milestone)

• An iteration is a short, balanced timeframe for working on
a set of user stories, producing a working piece of
software

19.04.2010 Philip Mayer 28

User Stories, Milestones, and
Iterations

• The HFSD process looks like this:

• In the Planning phase(s), user stories are added to
milestones and iterations based on the time they take, and
the priority they are assiged.

• The planning phase is, in general, not part of a milestone or
iteration; it stands in-between milestones and iterations

19.04.2010 Philip Mayer 29

Assigning User Stories

• Assigning user stories to an iteration is a
commitment by the team

– It says that the team is able to and will implement this
story in this iteration.

• But: How many user stories fit into an iteration?

19.04.2010 Philip Mayer 30

Reality

• In principle, an iteration is four weeks, which means 20
working days. Multiplied with the number of developers, this
yields the available time (say, 3 times 20 = 60 days)

• However: Estimates are based on ideal days or hours, i.e.
actual time spent on solutions. Unfortunately, the real world
keeps intruding with
– Installing Software

– Team Communication

– Paperwork

– Hardware breakdowns

• These things affect the actual time which is available for work

19.04.2010 Philip Mayer 31

Velocity

• Solution: The amount of working days available is reduced to
factor in these problems.

• The factor used is called team velocity.
– Velocity is unique for each team. It needs to be monitored and

changed over time

• As an initial factor, a value of 0.7 can be assumed.

• Thus, with 3 developers, an iteration has

 available for development work

19.04.2010 Philip Mayer 32

3 x 20 x 0.7 = 42 days

Selecting User Stories

• User Stories can now be selected according to the
number of days/hours available

• The highest-priority user stories are selected.

• The idea is to get as close to the maximum number
of days/hours available as possible

– However, do not go over the limit

– It is better to use lower-priority stories than to push the
limit

19.04.2010 Philip Mayer 33

Controlling the Process

• During an iteration, the user stories and their tasks
are realised by developers

– This includes design, test, implementation, and integration

• It is important to stay on track: If a user story or task
takes longer or shorter than expected, or if
additional problems come up, the team must know
about this.

• A Project Big Board is used to cover this information

19.04.2010 Philip Mayer 34

The Project Big Board (PBB)

19.04.2010 Philip Mayer 35

The Burn-Down Chart

19.04.2010 Philip Mayer 36

The Burn-Down-Chart (II)

19.04.2010 Philip Mayer 37

• The chart shows
– X-Axis: Working days left until the end of the iteration

– Y-Axis: Sum of task estimates yet to be done

– The straight line is the ideal burn-down rate: This is how we planned
our tasks against the time available.

• During an iteration, the current status is added:
– The sum of the remaining task estimates are plotted on the

intersection with remaining days

– If the point lies above the ideal burndown rate, the team is behind
schedule. Else, it is ahead of schedule

• The chart needs to be updated when tasks change their
status, are added or removed, or when estimates change

Problems

• If it becomes apparent that a user story takes longer than
expected, this shows up on the chart
– The customer must be notified/asked for clarification. Some user

stories/tasks must be scheduled for the next iteration

– The reason must be noted and taken into consideration for the next
estimation phase or, if it was a non-coding related problem, velocity.

• Unplanned Tasks, like new but important ideas of the
customer, bugs, or other maintenance work need to be
considered as tasks as well
• They get their own story, task, estimation, etc.

• Depending on their priority, they are handled immediately – in this
case, other stories are pushed back – or added to the „next“ section.

19.04.2010 Philip Mayer 38

Keeping Track of Things

• The Big Board must be continually updated

• This happens in Stand-Up Meetings, which should
take place every day, or at least once a week

– Short meetings (20 minutes)

– Heads-Up on the progress of every developer

– Changing the board

– Discussing problems like bugs, new tasks, re-scheduling,
etc.

• The intention is to keep the finger on the pulse of
the project

19.04.2010 Philip Mayer 39

Ending an Iteration

• An iteration comes to an end when time runs out.

• At this point, a running version of the software must
be available – if not all tasks/user stories were
handled, these have been pushed back before.

• A demo is given to the customer

– This may lead to new (change) tasks for the next iteration

19.04.2010 Philip Mayer 40

Moving to the next iteration

• Learning from the past

– Revisit estimates – why did they differ from the actual
time? What can be done better next time?

– Calculate the new velocity (for example, assuming 20 work
days, 3 developers, and 36 „estimated task days“ done):

– Velocity should only account for overhead, not as a buffer
for wrong estimates

• The next iteration begins just like the last.

19.04.2010 Philip Mayer 41

36 / (20 x 3) = 0.6

Summary

• Iterative development is used to stay close on track with the
customers ideas
– Customer is always kept „in the loop“

– Allows for constant change
• After every iteration, re-evaluation of user stories and priorities is possible

• Detection of misunderstandings, wrong assumptions, etc.

• Keeping up with changes in the customers ideas

• A Controlled Process is used to stay on top of problems
– The team knows the progress. No hidden „bombs“ waiting to go off

– The customer knows the progress, too

– Transparent schedule

19.04.2010 Philip Mayer 42

Part III/VI: Testing

19.04.2010 Philip Mayer 43

Testing

• Testing is one of the most important tasks in
software development.

• A test is an executable piece of code which executes
part of the system and verifies the output

– For example, test code might start a new game and verify
afterwards that is has indeed been started

• A test may have two results:

– Pass (Green): Everything went as expected

– Fail (Red): The system failed to meet requirements

19.04.2010 Philip Mayer 44

Writing Tests

• Tests are written for, and as part of, the
implementation of tasks.

– There should be a test for each important functionality
realised by the task

– A task is not fully implemented if there are no associated
tests.

• A good test leads to developer confidence in code.
Passing tests of a task should means that

– The functionality really works as expected

– If the functionality is refactored, or new code added and
the tests still work, nothing was broken („safety net“)

 19.04.2010 Philip Mayer 45

How to write tests

• Ideas for writing tests:

– Main functionality (e.g.: Test that the main path works)

– Branch-Based Testing (e.g.: Check that there is a test for
every branch of every condition)

– Proper Error Handling (e.g.: Check methods correctly deal
with null inputs, closed resources, failed connections)

– Working as Documented (e.g.: If the APIDOC defines rules
for a method, tests these rules)

– Resource Constraint Handling (e.g.: The system should
gracefully handle denied requests for resources such as
database connections)

19.04.2010 Philip Mayer 46

Testing in agile processes

• In agile development, tests are an integral part of each
iteration – they are NOT deferred to the end of the
project

• Tests can be written by hand, or using Test Frameworks.

– The most well-known one for Java is JUnit.

– The advantage is a proven, solid infrastructure and an
existing test-runner with reporting functionality.

• All tests should be automatable. This ensures that they
can be run again and again (this is called regression
testing)

19.04.2010 Philip Mayer 47

Code-And-Test

• The standard method for writing unit
tests is code-and-test
– The code for the task is written

– Immediately afterwards, the tests for the
task are written

• This ensures that each task has tests

• JUnit uses a bar for showing passed
and failed tests
– Red Bar: At least one test failed.

– Green Bar: All tests passed.

• The aim is to keep the bar green.

19.04.2010 Philip Mayer 48

TDD

• Another method is Test-Driven-Development (TDD)

• In TDD, tests are written before the code

– This means that all tests fail initally (due to compile errors or
functionality just not being there)

– The next step is to get the test to pass – implement the simplest thing
that could possible to get a green bar

– Afterwards, refactor the code for the next test.

• TDD, in general, leads to more testable code as testing drives
the implementation

• The goal here is red – green – refactor. First, the code should
work, and then it is cleaned up.

19.04.2010 Philip Mayer 49

Using Mocks

• Ideally, the code under test has no external
dependencies

• This is mostly not the case

– for example, a currency converter class might need a
database for for retrieving exchange rates

– To test such the currency converter class, the database
access object is replaced by a mock object.

• A mock object is a stand-in for real object which
implements the same interface, and just returns
constant values for a particular test

19.04.2010 Philip Mayer 50

Tests, Tests, Tests

• Testing is, in principle, a neverending activity

• The main criteria for moving on is confidence

– This is either the feeling that the tests adequately cover
the functionality implemented in a task

– ...or reaching a certain code coverage with the tests.

• Code Test Coverage is the percentage of code tested

• Tools like EclEmma for Eclipse calculate this
percentage based on the test cases

19.04.2010 Philip Mayer 51

Summary

• Agile development does not work without tests!

– Tests are executable requirements

– Tests ensure that existing functionality still works after
changes (regression testing)

• Testing gives developers confidence (and a safety
net) for boldly moving forward to the next task.

• A task is done if the tests pass.

19.04.2010 Philip Mayer 52

Afterthought

Fear leads to anger, anger leads
to hate, hate leads to suffering

19.04.2010 Philip Mayer 53

No tests lead to fear

Part IV/IV: Managing Bugs

19.04.2010 Philip Mayer 54

Bugs

• It is a simple, but inevitable fact of life that bugs
happen.

– Bugs occur all the time during initial development of a
task. Such problems can be fixed on-the-go.

– More Bugs are found through testing, which is part of
implementing a task. They can be fixed before finishing a
task.

– Unfortunately, some bugs are only found after a task or
story has been committed or even delivered. The later
they are found, the harder they are to fix (usually).

19.04.2010 Philip Mayer 55

Tracking Bugs

• In agile development, bugs are accepted as a fact of
life – nothing to be (too) ashamed of.

• A bug is therefore treated like a normal task

– A bug report is made => a task description

– The task is given an estimate and a priority (as usual)

– It is scheduled (as usual)

• A bug task is attached to an existing user story, or a
new user story is created for it

19.04.2010 Philip Mayer 56

A bug report

• A bug report should consist of

– Summary – one sentence

– Steps to Reproduce – from a well-defined state of the
system, what needs to be done to reproduce the bug?

– What was expected, and what did happen – to ensure
everybody knows what was perceived as a problem

– Version, Platform, Location Information – bugs may be
different in different versions, on different platforms, or on
differen URLs

– Severity and Priority – how disastrous is the bug? How
soon should it be fixed?

19.04.2010 Philip Mayer 57

Testing for Bugs

• Bugs have a nasty habit of reappearing.

• Therefore,

– Like a usual task, a bug-fixing task MUST include a test
which reproduces the exact circumstances the bug was
found in

– The test is added to regression testing (as usual) to ensure
the bug does not occur again.

• Finally: When fixing a bug, look out for similar issues
in the code.

19.04.2010 Philip Mayer 58

Summary

• Bugs are treated like tasks

– They are written down on a post-it and attached to a user
story

– They are estimated, prioritised, and scheduled

– Tests are written.

19.04.2010 Philip Mayer 59

Part V/VI: Productive (Team-Based)
Development

19.04.2010 Philip Mayer 60

Productive Development

• Productive development means:

– Using an IDE for managing and controlling code,
dependencies, and libraries

– Using version control to merge the work of multiple
developers in a controlled fashion

– Using continuous integration for ensuring up-to-date,
tested builds (manually, or automated)

19.04.2010 Philip Mayer 61

Using IDEs

• An integrated development environment offers much more
than just a code editor...
– Integrated build system (background building)

– Refactoring support (includes changing references)

– Integrated documentation (source code of the entire Java API and
libraries)

– Code Navigation (jump to definition, references, call hierarchy, etc.)

– Integrated test runners (JUnit and others)

– Version Control support (CVS, Subversion...)

• An IDE makes programming productive and gives developers
control and confidence over their code

19.04.2010 Philip Mayer 62

Version Control

• Problems arise when multiple developers work on
the same source code:

– Changes might happen to the same file which must be
merged

– Changes might need to be rolled back because of
conflicting features

– Traceability is needed to be able to determine the origin of
an artefact

• Version Control Systems exist to address these
problems.

19.04.2010 Philip Mayer 63

How version control works (I)

• We use the centralised version control system
Subversion (the successor to CVS), for which a client
is included in Eclipse. It consists of

– The server, which contains the definitive current copy of
all files plus the history of all files since the beginning of
the project

– A number of clients, which developers use to work on the
source code
• A developer can download (checkout) the current version of the

files, edit them, and then upload the files again (commit)

• At any time, the newest version can be re-downloaded while
keeping (if possible) local changes (update)

19.04.2010 Philip Mayer 64

How version control works (II)

19.04.2010 Philip Mayer 65

• The server hosts a repository of (source code) files

• Each file (and folder) has a revision number

• The current revision is called the head revisision

Basic version control operations

• Checkout
– means copying the repository content to an empty local directory to

work on it.

• Update
– means copying the repository content to an existing local directory.

This operation attempts to merge changes on the server with local
changes. If automatic merging fails (merge conflicts), the user is
prompted and must resolve problems manually.

• Checkin
– means adding the local changes to the repository on the server. This

operation attempts to merge local changes into the (maybe also
changed) revision on the server. If automatic merging fails (merge
conflicts), the user is prompted to resolve manually.

 19.04.2010 Philip Mayer 66

Other version control features

• Additional features

– Tagging: A certain revision is tagged with a name (like
Iteration3Final, such that it can be found and
compared later
• Tagging should be used for every iteration end or release, and

maybe in-between

– Branching: A separate repository based on the head
repository is created, which allows for testing out new
ideas
• The main branch is called trunk.

• Branching should be used very sparingly, for example for handling
fixes for a version 1.1 while 2.0 is in preparation

19.04.2010 Philip Mayer 67

Best practises

• Committing a new revisions should only be done

– ... if the code compiles.

– ...after running all test cases

– ...with a commit message which precisely says what has
been changed or newly implemented (with a reference to
the task)

• After a commit, perform an update and run all test
cases again to ensure nothing was broken.

19.04.2010 Philip Mayer 68

Building Code

• Eclipse already contains mechanisms for building
software

– This includes compiling java source code...

– ...an export mechanism as an executable JAR file

– ...and building arbitrary other elements by means of ant
scripts

• Ensuring passing tests is still the responsibility of the
developer

– In small and simple projects, this can be done manually

– For larger, more complex projects, a dedicated system for
compiling and testing might be necessary

 19.04.2010 Philip Mayer 69

Continuous Integration System

• A continous integration system reacts to checkins or
on a timer

– Checks out all code

– Builds the project

– Runs all tests

• The result of the CI run is placed on a website, or
mailed to all developers

• A well-known CI tool is CruiseControl.

19.04.2010 Philip Mayer 70

Summary

• Productive development can be reached by using
effective tools

– IDEs for code control, refactoring, and library management

– Version control systems for handling code merges and
conflicts

– Continuous integration, manually or automatically, for
ensuring passing tests throughout the development

19.04.2010 Philip Mayer 71

Part VI/VI: Good Design

19.04.2010 Philip Mayer 72

Good Design

• Good software design is a science of its own

– Must match the software type (business, embedded, ...)

– Must following company style

• But: There are rules which apply everywhere

– Visualising complicated parts

– Keeping it simple

– Readable Code

– Re-Use (Design Pattern, Libraries)

– SRP / DRY

– Refactoring

19.04.2010 Philip Mayer 73

Visualising Software

• The Unified Modelling Language (UML) is a visual
design tool for software

• The static parts, in particular class diagrams, are a
great tool for planning (parts of) the software

– Idea: Focus on the overall structure, not on details

• Diagrams also serve as documentation of the
software for new developers

19.04.2010 Philip Mayer 74

Keeping it simple

• The job of developers is implementing the task at
hand – nothing more.

• This means

Implement the simplest thing that could possibly work

• The aim is not to get caught up in „what might be
needed in the future“

• Instead, implement the task at hand, and implement
it well.

19.04.2010 Philip Mayer 75

Readable Code

• This is (obviously) WRONG:

It was hard to write, it should be hard to read

• Code should be designed to be easy to read

– „Speaking“ Code
• Use long, self-explanatory variable and method names

• Use the formatter to ensure everything looks the same

• Prefer code to documentation

– But: Use JavaDoc if the code contains gotchas
• i.e. It is not obvious why it was written this way

19.04.2010 Philip Mayer 76

Re-Use

• Do not reinvent the wheel

• Mostly, there are already
solutions for your problems

• Check for applicable design
patterns

• Check the (Java) API, check
for external libraries

• Talk to your team!

19.04.2010 Philip Mayer 77

SRP

• Single Responsibility Principle (SRP)

– If a certain task is split across several classes, all of them
need to change if the task changes (or if new tasks are
added). This is called a „ripple effect“

– Result: maintenance nightmare

• Solution: Each class should have only one
responsibility

– The aim is having high cohesion

– Maintaining the code is easier as one only has to look in
one place

19.04.2010 Philip Mayer 78

DRY

• Don‘t Repeat Yourself (DRY)

– Never copy&paste code within your project

– If a bug is found in copied code, it needs to be changed
everywhere

– Result: maintenance nightmare (again)

• Solution: Use inheritance or delegation to factor out
common functionality

– The aim is to understand which functionality is generic

– (Again): Maintaining the code is easier as one only has to
look in one place

19.04.2010 Philip Mayer 79

Refactoring

• One of the best thing about modern IDEs is refactoring
support

• During design, things change
– Elements change their meaning

– Elements have to be moved

• Never refrain from restructuring and renaming your code to
fit the current view of the system
– Refactorings take care of all references automatically

– The aim is having no legacy („this field is called such-and-such
because, at the beginning, we thought...“)

• Fear Not: The tests ensures the code still works

19.04.2010 Philip Mayer 80

Summary

• Readable Code, Re-Use, DRY, SRP, and Refactoring
are tools waiting to be applied

• But: Do not go too far

– Even a „Perfect Design“ is obsolete tomorrow

– Aim for „good-enough design“

• This is about drawing a line in the
sand

– Unfortunately, only experience helps
finding the right balance

19.04.2010 Philip Mayer 81

Conclusion

19.04.2010 Philip Mayer 82

The Head First Process

• This talk has shown the
HFSD agile software
development process

• Please make yourself
familiar with the process in
the remainder of the week.

19.04.2010 Philip Mayer 83

