Equational Specification in Maude

Christian Prehofer
Based on material from Martin Wirsing
SS 2011
Goals

- Introduce algebraic specifications
- Write first specifications with Maude
- Order-sorted signatures and specifications
- Membership equational logic
An Initial Algebra Specification: Natural Numbers

fmod NAT-PREFIX is
 sort Natural .
 op 0 : -> Natural .
 op s : Natural -> Natural .
 op plus : Natural Natural -> Natural .
 vars N M : Natural .
 eq plus(N,0) = N .
 eq plus(N,s(M)) = s(plus(N,M)) .
endfm
Algebraic Specifications

Definition:
Let $\Sigma = (S, F)$ be a signature and E a set of (closed) Σ-formulas.

- $SP=\langle \Sigma, E \rangle$ is called an algebraic specification.
- If E is a set of equations, SP is called an equational specification.

Moreover, depending on the semantics we distinguish loose specification and initial algebra specifications:

- The semantics of a loose specification SP is given by the class of all models of SP:
 $$\text{Mod}(SP) \overset{\text{def}}{=} \{ A \in \text{Alg}(SP) \mid A \models E \}$$

- The semantics of an initial algebra specification SP is given by all initial models of SP:
 $$\text{I}(SP) \overset{\text{def}}{=} \{ A \in \text{Mod}(SP) \mid A \text{ is initial in } \text{Mod}(SP) \}$$
Maude

- Maude is an executable specification language for equational specifications and term rewriting.
- Maude is being developed by Jose Meseguer and his group at Univ. of Illinois and by the group of Carolyn Talcott at SRI.
- You can download Maude 2.6 from the Maude web page http://maude.cs.uiuc.edu. Chapter 2 in the Maude 2.6 manual (also in that web page) explains how you start Maude and interact with it.

Josè Meseguer
Prof. UIUC
PhD Zaragoza

Carolyn Talcott
SRI
PhD Stanford
Maude Functional Modules and Theories

In Maude,

- A **loose specification** is called **theory**, declared with the syntax

 \[
 \text{th } <\text{name}> \text{ is } (\Sigma, E) \text{ endth}
 \]

 Maude theories are not executable!

- An **initial specification** is called **functional module**, declared with syntax

 \[
 \text{fmod } <\text{name}> \text{ is } (\Sigma, E) \text{ endfm}
 \]
Maude Theories (Loose Specifications)

- The **trivial theory** consisting of one sort
 fth TRIV is

 sort Elt .

 endfth

- The theory of **partial orderings**
 fth PARTIAL-ORDER is

 protecting BOOL .

 including TRIV .

 op _<=_ : Elt Elt -> Bool .

 vars X Y Z : Elt .

 ceq X <= Z = true if X <= Y and Y <= Z [nonexec label transitive] .

 ceq X = Y if X <= Y \ Y <= X [nonexec label antisymmetric] .

 eq X <= X = true [nonexec label reflexive] .

 endfth

C. Prehofer, Formale Techniken in der Software-Entwicklung
Maude Theories (Loose Specifications)

- The theory of **groups**

```plaintext
fth GROUP is
  sorts Group .
  op e : -> Group .
  op _o_ : Group Group -> Group .
  op _-1 : Group -> Group .

  vars X Y Z : group .

  eq e \ 0 X = X
  eq (X \ 0 Y) \ 0 Z = X \ 0 (Y \ 0 Z)
  eq X \ 0 X^{-1} = e

endfth
```

- [nonexec label identity] .
- [nonexec label associative] .
- [nonexec label idempotent] .
Maude Theories (Loose Specifications)

Or shorter:

Associativity, commutativity, and identity axioms can be abbreviated in Maude by annotating the signature:

- associativity axiom
- commutativity axiom
- identity axiom w.r.t a constant e

```plaintext
fth GROUP is
  sorts Group .
  op e : -> Group .
  op _-1 : Group -> Group .

  vars X Y Z : group .

  eq X ^ o X^-1 = e [nonexec label idempotent] .
endfth
```
Natural Numbers (prefix syntax)

fmod NAT-PREFIX is
 sort Natural .

 op 0 : -> Natural .
 op s : Natural -> Natural .
 op plus : Natural Natural -> Natural .

 vars N M : Natural .

 eq plus(N,0) = N .
 eq plus(N,s(M)) = s(plus(N,M)) .

endfm

Maude> red plus(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : plus(s(s(0)), s(s(0))) rewrites: 3 in
-10ms cpu (0ms real) (~rewrites/second)
result Natural: s(s(s(s(0))))
Maude>
Natural Numbers (mixfix syntax)

fmod NAT-MIXFIX is
 sort Natural .
 op 0 : -> Natural .
 op s_ : Natural -> Natural .
 op _+_ : Natural Natural -> Natural .
 op _*_ : Natural Natural -> Natural .
 vars N M : Natural .
 eq N + 0 = N .
 eq N + s M = s(N + M) .
 eq N * 0 = 0 .
 eq N * s M = N + (N * M) .
endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Lists of Natural Numbers

fmod NAT-LIST is
 protecting NAT-MIXFIX .
 sort List .

 op nil : -> List .
 op _._ : Natural List -> List .
 op length : List -> Natural .

 var N : Natural .
 var L : List .

 eq length(nil) = 0 .
 eq length(N . L) = s length(L) .
endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil)
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Some Common Mistakes

• not ending declarations for sorts, operators, etc. with a space followed by a period, e.g.,

\[
\text{sort Natural}
\]
\[
\text{op s : Natural } \rightarrow \text{ Natural.}
\]

• not leaving spaces between a mixfix operator and its arguments, e.g., \(0+0\).

• not putting enough parentheses to disambiguate expressions,

\[
\text{p s s 0 } + 0 * s 0 .
\]
Constructors

• Often not all operations are needed to construct the elements of a data type. A **constructor** is an operation which contributes to the construction of the data elements of an (initial) algebra.

• **Examples:**
 ■ The operations 0 and s_ are constructors of sort Natural in NAT-MIXFIX
 ■ The operations nil and _._ are constructors of sort List in NAT-LIST

• **Formally:**
 A set C of operations is called **set of constructors of sort s** if for every element $a \in A_s$, there is an assignment $v : X \to A$ with $v(x) = a$ (and $x \in X_s$), variables y_1, \ldots, y_n of sorts different from s, and a term $t \in T((S,C), \{y_1, \ldots, y_n\})$ s.t. $A, v \models x = t$

• In Maude a constructor operation is annotated by `[ctor]`.
Maude Specifications with Constructors

fmod NAT is
 sort Natural .
 op 0 : -> Natural [ctor].
 op s_ : Natural -> Natural [ctor].
 op _+_ : Natural Natural -> Natural .
 op _*_ : Natural Natural -> Natural .
 ...
endfm

fmod NAT-LIST is
 protecting NAT-MIXFIX .
 sort List .
 op nil : -> List [ctor].
 op _._ : Natural List -> List [ctor].
 op length : List -> Natural .
 ...
endfm
Maude Specifications with Constructors

Spielkarten

fmod SPIELKARTE is

sorts Wert Farbe Spielkarte .

ops As 7 8 9 10 Bube Dame Koenig : -> Wert [ctor] .
ops Karo Herz Pique Kreuz : -> Farbe [ctor] .

op wert : Spielkarte -> Wert .
op farbe : Spielkarte -> Farbe .

var W : Wert . var F : Farbe .

eq wert(F - W) = W .
eq farbe(F - W) = F .

endfm
Specifying partial functions in total algebras?

Problem

• How to specify partial functions in a framework of algebras with total functions?

• Consider for example defining a function
 - `first` that takes the first element of a list of natural numbers, or
 - a predecessor function `p` that assigns to each natural number its predecessor.

What can we do? If we define,

```plaintext
op first : List -> Natural .
op p_ : Natural -> Natural .
```

we have then the awkward problem of having to define the values of `first(nil)` and of `p 0`, which in fact are undefined.
Order-sorted signatures

Solution:
Recognize that these functions are partial, but become total on appropriate subsorts

- \text{NeList} < \text{List} \quad \text{of nonempty lists}, and
- \text{NzNatural} < \text{Natural} \quad \text{of nonzero natural numbers}.

If we define,

\begin{align*}
\text{op } s__ & : \text{Natural} \rightarrow \text{NzNatural} . \\
\text{op } __. __ & : \text{Natural} \ \text{List} \rightarrow \text{NeList} . \\
\text{op } \text{first} & : \text{NeList} \rightarrow \text{Natural} . \\
\text{op } p__ & : \text{NzNatural} \rightarrow \text{Natural} .
\end{align*}

everything is fine.

Subsorts also allow us to overload operator symbols. For example,

\begin{align*}
\text{Natural} & < \text{Integer} , \quad \text{and} \\
\text{op } _+ & : \text{Natural} \ \text{Natural} \rightarrow \text{Natural} \\
\text{op } _+ & : \text{Integer} \ \text{Integer} \rightarrow \text{Integer}
\end{align*}
Order-sorted Natural Numbers

fmod NATURAL-NAT3 is
 sorts Natural NzNatural .
 subsorts NzNatural < Natural .
 op 0 : -> Natural .
 op s_ : Natural -> NzNatural .
 op p_ : NzNatural -> Natural .
 op _+_ : Natural Natural -> Natural .
 op _+_ : NzNatural Natural -> NzNatural . --- subsort overloading
 vars N M : Natural .
 eq p s N = N .
 eq N + 0 = N .
 eq N + s M = s(N + M) .

 sort Nat3 .
 ops 0 1 2 : -> Nat3 .
 op _+_ : Nat3 Nat3 -> Nat3 [assoc comm id: 0] . --- ad-hoc
 eq 1 + 1 = 2 .
 eq 1 + 2 = 0 .
endfm
Order-sorted Lists

fmod NAT-LIST-II is
 protecting NATURAL .
 sorts NeList List .
 subsorts NeList < List .

 op nil : -> List .
 op _._ : Natural List -> NeList .
 op length : List -> Natural .
 op first : NeList -> Natural .

 var N : Natural .
 var L : List .

 eq length(nil) = 0 .
 eq length(N . L) = s length(L) .
 eq first(N . L) = N .
endfm
Order-sorted Signature (mathematically)

• An order-sorted signature ("sortengeordnet") Σ is a triple $\Sigma = ((S, F_{w,s}(w,s))_{(w,s) \in S^* \times S}, <)$, where $((S, F_{w,s}(w,s))_{(w,s) \in S^* \times S}, <$) is an S-sorted signature, and where $<$ is a partial order relation on S called subsort inclusion.

Note: Unless specified otherwise, by a signature in Maude we will always mean an order-sorted signature.

• Two sorts s and s' are called connected ($s \equiv \leq s'$), if
 $s \equiv s'$ or
 $s < s'$ or $s' < s$ or
 if there is s'' with $s \equiv \leq s''$ and $s'' \equiv \leq s'$

• When we have two operator declarations, $f : w \rightarrow s$, and $f : w' \rightarrow s'$, with w and w' strings of equal length, then:
 (1) if $w \equiv \leq w'$ and $s \equiv \leq s'$, we call them subsort overloaded;
 (2) otherwise, we call them ad-hoc overloaded.
Connected Components

• Given a signature Σ, we can define an equivalence relation

\[\equiv \leq \]

between sorts $s, s' \in S$ as the smallest relation such that:

- if $s \leq s'$ or $s' \leq s$ then $s \equiv \leq s'$
- if $s \equiv \leq s'$ and $s' \equiv \leq s''$ then $s \equiv \leq s''$

• We call the equivalence classes modulo $\equiv \leq$ the connected components ("zusammenhängend") of the poset order (S, \leq).

• Intuitively, when we view the poset as a directed acyclic graph, they are the connected components of the graph.
Connected Components Example

\[S / \Xi \preceq = \{ \text{Integer, NzInteger, Natural, NzNatural}, \{\text{NeList, List}\}, \{\text{Bool, Prop}\} \} \]
Order-Sorted Algebras

Given an order-sorted signature $\Sigma = (S, \{ F_{w,s} \}_{(w,s) \in S^* \times S}, <)$ an order-sorted Σ-algebra is defined as a many-sorted $(S, \{ F_{w,s} \}_{(w,s) \in S^* \times S})$-algebra A such that:

- In $A = \{ A_s \}_{s \in S}$, if $s < s'$ then $A_s \subseteq A_{s'}$

- if f is subsort overloaded, so that we have, $f : w \rightarrow s$, and $f : w' \rightarrow s'$, with w and w' strings of equal length, and with $w \equiv \leq w'$ and $s \equiv \leq s'$, then:
 - if $w = w' = \text{nil}$, then f is a constant and we have $f_{A}^{\text{nil},s} = f_{A}^{\text{nil},s'}$ (subsort overloaded constants coincide)
 - otherwise, if $(a_1, \ldots, a_n) \in A^w \cap A^{w'}$, then $f_{A}^{w,s}(a_1, \ldots, a_n) = f_{A}^{w',s'}(a_1, \ldots, a_n)$ (subsort overloade(operations agree)
Maude: Kind

- Order-sorted signatures are still restrictive:
 - **Example**
 \[\text{NzNat} \prec \text{Nat}, _\text{div}_ : \text{Nat} \text{ NzNat} \rightarrow \text{Nat}\]
 Then
 - \((p \ s \ s \ 0)\) is **not** in \(\text{NzNatural}\) and thus
 - \((s \ 0) \ \text{div} \ (p \ s \ s \ 0)\) is not well-formed!

- **Kind („Art“)**
 - A kind describes a connected component and is denoted by
 \[\text{„the topmost sort(s) of the component“}\]
 - **Examples:**
 - \([\text{List}]\) Kind of the List connected component
 - \([\text{Integer}]\) Kind of the Integer connected component
 - \((s \ 0) \ \text{div} \ (p \ s \ s \ 0)\) is of kind \([\text{Nat}]\)

- **Remark:**
 Terms that have a kind, but do not have a sort in e.g. \([\text{Integer}]\) are thought of as error (or undefined) terms.
 So-called membership equational logic will give us a general way of dealing with partiality within the total context provided by the kinds.
Maude: Membership

- **Membership („Elementbeziehung“)**
 - $t : s$ asserts for any term t of kind $[s]$ that the (interpretation of) t is an element of (the carrier set of) sort s.

- Membership allows one to **define subsorting and many-sorted signatures**:
 - $\text{NzNat} < \text{Nat}$ corresponds to
 \begin{align*}
 \text{cmb} \quad N : \text{Nat} \quad \text{if} \quad N : \text{NzNat}
 \end{align*}
 - $_\text{div}__ : \text{Nat \ NzNat} \to \text{Nat}$ corresponds to
 \begin{align*}
 _\text{div}__ : \text{[Nat]} \quad \text{[Nat]} \to \text{[Nat]}
 \quad \text{cmb} \quad M \ \text{div} \ N : \text{Nat} \quad \text{if} \quad M : \text{Nat} \ \setminus \ N : \text{NzNat}
 \end{align*}
 - For $t := ((s \ 0) \ \text{div} \ (p \ s \ s \ 0))$
 - $t : \text{[Nat]}$ holds, but $t : \text{Nat}$ does not hold.
Membership Equational Specification

- **Element Signature** \(\Sigma = (K, S, F) \)
 - Many-sorted signature \((K, F)\) with kinds \(K\)
 - \(K\)-kinded family of sorts \(S = (S_k)_{k \in K}\)

- **Element Algebra** \(A \in \text{Alg()}\)
 - Many-sorted \((K, F)\)-algebra \(A\)
 - Interpretation \(A_s\) of a sort \(s\):

 \[
 \text{if } s \in S_k, \text{ then } A_s \subseteq A_k
 \]

- **Element Equational Specification**
 - Conditional equational formulas (Horn formulas)

 \[
 (\forall X) t = t' \iff (u_1 = u'_1 \land \ldots \land u_k = u'_k) \land (v_1 : s_1 \land \ldots \land v_m : s_m)
 \]

 \[
 (\forall X) t : s \iff (u_1 = u'_1 \land \ldots \land u_k = u'_k) \land (v_1 : s_1 \land \ldots \land v_m : s_m)
 \]
Example Palindrome Lists

fmod PALINDROME is protecting QID .
 sorts Pal List .
 subsorts Qid < Pal < List .
 op nil : -> Pal [ctor] .
 ops rev : List -> List .
 vars I : Qid .
 var P : Pal .
 var L : List .
 mb I P I : Pal .
 eq rev(nil) = nil .
 eq rev(I L) = rev(L) I .
endfm

- QID is the predefined module of „quoted identifiers“ where every identifier is represented by an apostrophe followed by a string.
 - Example: `abc` with underlying string “abc“
Example Pokerpaar

• Kartenpaar beim Poker

fmod KARTENPAAR is

 protecting SPIELKARTE .

 sorts Paar PokerPaar .
 subsort PokerPaar < Paar .

 op <_;_> : Spielkarte Spielkarte -> Paar [comm] .

 var W : Wert . var F F1 : Farbe .

 mb < F - W ; F1 - W > : PokerPaar .

endfm
Summary

• Maude is an executable language for equational specifications.

• Loose specifications are called theories, initial algebra specifications are called functional modules.

• In Maude partial functions are modelled by total functions on subsorts.

• Subsort overloading vs. ad-hoc overloading of functions.

• Equational membership specifications allow one to model any (equationally specifiable) predicate.