Performance Modelling of Computer Systems

Tribastone, Tschaikowski
Institut für Informatik
Ludwig-Maximilians-Universität München

Lumpability

Lumpability

Let X be a homogeneous, finite and irreducible CTMC with states $S=\{1, \ldots, n\}$ and let the transition rate from i to j be denoted by $q(i, j)$. Let $\chi=\left\{X_{1}, \ldots, X_{N}\right\}$ be a partition of the state space, with $X_{i} \subseteq S, \quad X_{i} \neq \emptyset, \quad$ for all $i, \quad X_{i} \cap X_{j}=\emptyset, \quad$ for all $i \neq j, \quad$ and $\bigcup_{i=1}^{N} X_{i}=S$. We say that X is lumpable with respect to χ if, for any $X_{i}, X_{j} \in \chi$ and $i_{1}, i_{2} \in X_{i}$, it holds that

$$
\sum_{j \in X_{j}} q\left(i_{1}, j\right)=\sum_{j \in X_{j}} q\left(i_{2}, j\right) .
$$

Lumpability

Let X be a homogeneous, finite and irreducible CTMC with states
$S=\{1, \ldots, n\}$ and let the transition rate from i to j be denoted by $q(i, j)$.
Let $\chi=\left\{X_{1}, \ldots, X_{N}\right\}$ be a partition of the state space, with
$X_{i} \subseteq S, \quad X_{i} \neq \emptyset, \quad$ for all $i, \quad X_{i} \cap X_{j}=\emptyset, \quad$ for all $i \neq j, \quad$ and $\bigcup_{i=1}^{N} X_{i}=S$.
We say that X is lumpable with respect to χ if, for any $X_{i}, X_{j} \in \chi$ and $i_{1}, i_{2} \in X_{i}$, it holds that

$$
\sum_{j \in X_{j}} q\left(i_{1}, j\right)=\sum_{j \in X_{j}} q\left(i_{2}, j\right) .
$$

Theorem

χ yields an aggregated (lumped) CTMC X^{\prime} with states $\left\{X_{1}, \ldots, X_{N}\right\}$ and

$$
q\left(X_{i}, X_{j}\right):=\sum_{j \in X_{j}} q(i, j), \quad \text { for an arbitrary } \quad i \in X_{i}
$$

Lumpability

Theorem

Let $\left(\pi_{1}, \ldots, \pi_{n}\right)$ denote the stationary distribution of X and $\left(\pi_{1}^{\prime}, \ldots, \pi_{N}^{\prime}\right)$ the stationary distribution of X^{\prime}. Then, it holds that

$$
\pi_{j}^{\prime}=\sum_{i \in X_{j}} \pi_{i}, \quad 1 \leq j \leq N .
$$

Lumpability

Theorem

Let $\left(\pi_{1}, \ldots, \pi_{n}\right)$ denote the stationary distribution of X and $\left(\pi_{1}^{\prime}, \ldots, \pi_{N}^{\prime}\right)$ the stationary distribution of X^{\prime}. Then, it holds that

$$
\pi_{j}^{\prime}=\sum_{i \in X_{j}} \pi_{i}, \quad 1 \leq j \leq N .
$$

For instance, let us consider the model

$$
\begin{array}{ll}
C_{0} \stackrel{\text { def }}{=}(r, u) \cdot C_{1} & C_{1} \stackrel{\text { def }}{=}(t, v) \cdot C_{0} \\
S_{0} \stackrel{\text { def }}{=}(r, w) \cdot S_{1} & S_{1} \stackrel{\text { def }}{=}(i, x) \cdot S_{0}
\end{array} \quad S_{s}:=C_{0}[N] \underset{\{r\}}{\boxtimes} S_{0}[M] .
$$

Lumpability

Theorem

Let $\left(\pi_{1}, \ldots, \pi_{n}\right)$ denote the stationary distribution of X and $\left(\pi_{1}^{\prime}, \ldots, \pi_{N}^{\prime}\right)$ the stationary distribution of X^{\prime}. Then, it holds that

$$
\pi_{j}^{\prime}=\sum_{i \in X_{j}} \pi_{i}, \quad 1 \leq j \leq N
$$

For instance, let us consider the model

$$
\begin{array}{ll}
C_{0} \stackrel{\text { def }}{=}(r, u) \cdot C_{1} & C_{1} \stackrel{\text { def }}{=}(t, v) \cdot C_{0} \\
S_{0} \stackrel{\text { def }}{=}(r, w) \cdot S_{1} & S_{1} \stackrel{\text { def }}{=}(i, x) \cdot S_{0}
\end{array}
$$

$$
\text { Sys }:=C_{0}[N] \underset{\{r\}}{\bowtie} S_{0}[M] .
$$

- $|d s(S y s)|=2^{N+M}$ grows exponentially in N and M. Numerical analysis via explicit state enumeration is infeasible.
- Often, for many performance analyses, it is sufficient to know the distributions of the populations of the sequential components C_{0}, C_{1}, S_{0}, and S_{1}.

Lumpability - An Example

Let us denote a state in $d s(S y s)$ by $\left(i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{M}\right) \in\{0,1\}^{N+M}$. Observing that the populations are given by the function

$$
\left(i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{M}\right) \mapsto\left(N-\sum_{k=1}^{N} i_{k}, \sum_{k=1}^{N} i_{k}, M-\sum_{k=1}^{M} j_{k}, \sum_{k=1}^{M} j_{k}\right)
$$

suggests to construct the partition from the equivalence relation $\sim \subseteq d s(S y s) \times d s(S y s)$ defined by

$$
\begin{aligned}
& \left(i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{M}\right) \sim\left(i_{1}^{\prime}, \ldots, i_{N}^{\prime}, j_{1}^{\prime}, \ldots, j_{M}^{\prime}\right): \Leftrightarrow \\
& \sum_{k=1}^{N} i_{k}=\sum_{k=1}^{N} i_{k}^{\prime} \wedge \sum_{k=1}^{M} j_{k}=\sum_{k=1}^{M} j_{k}^{\prime}
\end{aligned}
$$

Lumpability - An Example

Let us denote a state in $d s(S y s)$ by $\left(i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{M}\right) \in\{0,1\}^{N+M}$. Observing that the populations are given by the function

$$
\left(i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{M}\right) \mapsto\left(N-\sum_{k=1}^{N} i_{k}, \sum_{k=1}^{N} i_{k}, M-\sum_{k=1}^{M} j_{k}, \sum_{k=1}^{M} j_{k}\right)
$$

suggests to construct the partition from the equivalence relation $\sim \subseteq d s(S y s) \times d s(S y s)$ defined by

$$
\begin{aligned}
& \left(i_{1}, \ldots, i_{N}, j_{1}, \ldots, j_{M}\right) \sim\left(i_{1}^{\prime}, \ldots, i_{N}^{\prime}, j_{1}^{\prime}, \ldots, j_{M}^{\prime}\right): \Leftrightarrow \\
& \qquad \sum_{k=1}^{N} i_{k}=\sum_{k=1}^{N} i_{k}^{\prime} \wedge \sum_{k=1}^{M} j_{k}=\sum_{k=1}^{M} j_{k}^{\prime}
\end{aligned}
$$

Indeed, one can prove that the CTMC of Sys is lumpable with respect to the partition $d s(S y s) / \sim$.

Lumpability - An Example

Let us fix $X_{i}, X_{j} \in d s(S y s) / \sim$ and $i_{1}, i_{2} \in X_{i}$. We have to show that

$$
q\left(i_{1}, X_{j}\right):=\sum_{j \in X_{j}} q\left(i_{1}, j\right) \xlongequal{(!)} \sum_{j \in X_{j}} q\left(i_{2}, j\right)=: q\left(i_{2}, X_{j}\right)
$$

Lumpability - An Example

Let us fix $X_{i}, X_{j} \in d s(S y s) / \sim$ and $i_{1}, i_{2} \in X_{i}$. We have to show that

$$
q\left(i_{1}, X_{j}\right):=\sum_{j \in X_{j}} q\left(i_{1}, j\right) \xlongequal{(!)} \sum_{j \in X_{j}} q\left(i_{2}, j\right)=: q\left(i_{2}, X_{j}\right)
$$

Together with $k \in\{1,2\}, X_{i}=\left[\left(C_{0}^{i}, C_{1}^{i}, S_{0}^{i}, S_{1}^{i}\right)\right], X_{j}=\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]$ we can infer

■ case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}-1, C_{1}^{i}+1, S_{0}^{i}-1, S_{1}^{i}+1\right)\right]$:

$$
q\left(i_{k}, X_{j}\right)=\left(\frac{u}{u C_{0}^{i}} \cdot \frac{w}{w S_{0}^{i}} \min \left(u C_{0}^{i}, w S_{0}^{i}\right)\right) \cdot\left(C_{0}^{i} \cdot S_{0}^{i}\right)=\min \left(u C_{0}^{i}, w S_{0}^{i}\right)
$$

Lumpability - An Example

Let us fix $X_{i}, X_{j} \in d s(S y s) / \sim$ and $i_{1}, i_{2} \in X_{i}$. We have to show that

$$
q\left(i_{1}, X_{j}\right):=\sum_{j \in X_{j}} q\left(i_{1}, j\right) \xlongequal{(!)} \sum_{j \in X_{j}} q\left(i_{2}, j\right)=: q\left(i_{2}, X_{j}\right)
$$

Together with $k \in\{1,2\}, X_{i}=\left[\left(C_{0}^{i}, C_{1}^{i}, S_{0}^{i}, S_{1}^{i}\right)\right], X_{j}=\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]$ we can infer

■ case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}-1, C_{1}^{i}+1, S_{0}^{i}-1, S_{1}^{i}+1\right)\right]$:

$$
q\left(i_{k}, X_{j}\right)=\left(\frac{u}{u C_{0}^{i}} \cdot \frac{w}{w S_{0}^{i}} \min \left(u C_{0}^{i}, w S_{0}^{i}\right)\right) \cdot\left(C_{0}^{i} \cdot S_{0}^{i}\right)=\min \left(u C_{0}^{i}, w S_{0}^{i}\right)
$$

■ case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}+1, C_{1}^{i}-1, S_{0}^{i}, S_{1}^{i}\right)\right]: q\left(i_{k}, X_{j}\right)=v C_{1}^{i}$

Lumpability - An Example

Let us fix $X_{i}, X_{j} \in d s(S y s) / \sim$ and $i_{1}, i_{2} \in X_{i}$. We have to show that

$$
q\left(i_{1}, X_{j}\right):=\sum_{j \in X_{j}} q\left(i_{1}, j\right) \xlongequal{(!)} \sum_{j \in X_{j}} q\left(i_{2}, j\right)=: q\left(i_{2}, X_{j}\right) .
$$

Together with $k \in\{1,2\}, X_{i}=\left[\left(C_{0}^{i}, C_{1}^{i}, S_{0}^{i}, S_{1}^{i}\right)\right], X_{j}=\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]$ we can infer

■ case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}-1, C_{1}^{i}+1, S_{0}^{i}-1, S_{1}^{i}+1\right)\right]$:

$$
q\left(i_{k}, X_{j}\right)=\left(\frac{u}{u C_{0}^{i}} \cdot \frac{w}{w S_{0}^{i}} \min \left(u C_{0}^{i}, w S_{0}^{i}\right)\right) \cdot\left(C_{0}^{i} \cdot S_{0}^{i}\right)=\min \left(u C_{0}^{i}, w S_{0}^{i}\right)
$$

- case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}+1, C_{1}^{i}-1, S_{0}^{i}, S_{1}^{i}\right)\right]: q\left(i_{k}, X_{j}\right)=v C_{1}^{i}$

■ case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}, C_{1}^{i}, S_{0}^{i}+1, S_{1}^{i}-1\right)\right]: q\left(i_{k}, X_{j}\right)=x S_{1}^{i}$

Lumpability - An Example

Let us fix $X_{i}, X_{j} \in d s(S y s) / \sim$ and $i_{1}, i_{2} \in X_{i}$. We have to show that

$$
q\left(i_{1}, X_{j}\right):=\sum_{j \in X_{j}} q\left(i_{1}, j\right) \xlongequal{(!)} \sum_{j \in X_{j}} q\left(i_{2}, j\right)=: q\left(i_{2}, X_{j}\right) .
$$

Together with $k \in\{1,2\}, X_{i}=\left[\left(C_{0}^{i}, C_{1}^{i}, S_{0}^{i}, S_{1}^{i}\right)\right], X_{j}=\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]$ we can infer

- case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}-1, C_{1}^{i}+1, S_{0}^{i}-1, S_{1}^{i}+1\right)\right]$:

$$
q\left(i_{k}, X_{j}\right)=\left(\frac{u}{u C_{0}^{i}} \cdot \frac{w}{w S_{0}^{i}} \min \left(u C_{0}^{i}, w S_{0}^{i}\right)\right) \cdot\left(C_{0}^{i} \cdot S_{0}^{i}\right)=\min \left(u C_{0}^{i}, w S_{0}^{i}\right)
$$

- case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}+1, C_{1}^{i}-1, S_{0}^{i}, S_{1}^{i}\right)\right]: q\left(i_{k}, X_{j}\right)=v C_{1}^{i}$

■ case $\left[\left(C_{0}^{j}, C_{1}^{j}, S_{0}^{j}, S_{1}^{j}\right)\right]=\left[\left(C_{0}^{i}, C_{1}^{i}, S_{0}^{i}+1, S_{1}^{i}-1\right)\right]: q\left(i_{k}, X_{j}\right)=x S_{1}^{i}$

- otherwise: $q\left(i_{k}, X_{j}\right)=0$

Lumpability - An Example

- The transitions out of a state in the lumped CTMC.
- The lumped CTMC has $(N+1)(M+1)$ states.

Strong Equivalence

Let us denote the actions of a PEPA process Sys by $\mathcal{A}($ Sys $)$. A relation $R \subseteq d s(S y s) \times d s(S y s)$ is a strong equivalence relation on $d s(S y s)$, if

$$
\forall \alpha \in \mathcal{A}(S y s) \forall(P, Q) \in R \forall C \in d s(S y s) / R \quad \text { it holds }
$$

$$
\sum_{T \in C} q(P, T, \alpha)=\sum_{T \in C} q(Q, T, \alpha)
$$

where $q\left(P_{i}, P_{j}, \alpha\right)$ denotes the α-transition rate from P_{i} to P_{j} in the CTMC of $d s(S y s)$.

Strong Equivalence - Facts

- The relation discussed in the lumpability example is a strong equivalence relation on $d s\left(C_{0}[N] \underset{\{r\}}{\bowtie} S_{0}[M]\right)$.

Strong Equivalence - Facts

- The relation discussed in the lumpability example is a strong equivalence relation on $d s\left(C_{0}[N] \underset{\{r\}}{\bowtie} S_{0}[M]\right)$.
- One can prove that the CTMC X of Sys is lumpable with respect to the partition $d s(S y s) / R$. Let us denote the corresponding lumped CTMC by X / R.

Strong Equivalence - Facts

- The relation discussed in the lumpability example is a strong equivalence relation on $d s\left(C_{0}[N] \underset{\{r\}}{\bowtie} S_{0}[M]\right)$.
- One can prove that the CTMC X of Sys is lumpable with respect to the partition $d s(S y s) / R$. Let us denote the corresponding lumped CTMC by X / R.
- The above result leads to the following observation for two arbitrary PEPA processes $S y s_{1}$ and $S y s_{2}$: if we can find two strong equivalence relations R_{1}, R_{2} on $d s\left(S y s_{1}\right), d s\left(S y s_{2}\right)$, respectively, and there is a one-to-one correspondence between X_{1} / R_{1} and X_{2} / R_{2}, then the stochastic behaviour of $S y s_{1}$ is given by that of $S y s_{2}$, and vice versa.

Strong Equivalence - An Example

For instance, let us consider the following model.
$C_{0} \stackrel{\text { def }}{=}(\alpha, 2 r) \cdot C_{1} \quad C_{1} \stackrel{\text { def }}{=}(\beta, s) \cdot C_{0}$
$D_{0} \stackrel{\text { def }}{=}(\alpha, 2 r) \cdot D_{1} \quad D_{1} \stackrel{\text { def }}{=}(\beta, s) \cdot D_{2} \quad D_{2} \stackrel{\text { def }}{=}(\alpha, r) \cdot D_{3}+(\alpha, r) \cdot D_{1} \quad D_{3} \stackrel{\text { def }}{=}(\beta, s) \cdot D_{0}$

Strong Equivalence - An Example

For instance, let us consider the following model.
$C_{0} \stackrel{\text { def }}{=}(\alpha, 2 r) \cdot C_{1} \quad C_{1} \stackrel{\text { def }}{=}(\beta, s) \cdot C_{0}$
$D_{0} \stackrel{\text { def }}{=}(\alpha, 2 r) \cdot D_{1} \quad D_{1} \stackrel{\text { def }}{=}(\beta, s) \cdot D_{2} \quad D_{2} \stackrel{\text { def }}{=}(\alpha, r) \cdot D_{3}+(\alpha, r) \cdot D_{1} \quad D_{3} \stackrel{\text { def }}{=}(\beta, s) \cdot D_{0}$
It is clear that $R_{C}=\left\{\left\{C_{0}\right\},\left\{C_{1}\right\}\right\}$ is a strong equivalence relation on $d s\left(C_{0}\right)$ and $R_{D}=\left\{\left\{D_{0}, D_{2}\right\},\left\{D_{1}, D_{3}\right\}\right\}$ a strong equivalence relation of $d s\left(D_{0}\right)$.

Strong Equivalence - An Example

For instance, let us consider the following model.
$C_{0} \stackrel{\text { def }}{=}(\alpha, 2 r) \cdot C_{1} \quad C_{1} \stackrel{\text { def }}{=}(\beta, s) \cdot C_{0}$
$D_{0} \stackrel{\text { def }}{=}(\alpha, 2 r) \cdot D_{1} \quad D_{1} \stackrel{\text { def }}{=}(\beta, s) \cdot D_{2} \quad D_{2} \stackrel{\text { def }}{=}(\alpha, r) \cdot D_{3}+(\alpha, r) \cdot D_{1} \quad D_{3} \stackrel{\text { def }}{=}(\beta, s) \cdot D_{0}$
It is clear that $R_{C}=\left\{\left\{C_{0}\right\},\left\{C_{1}\right\}\right\}$ is a strong equivalence relation on $d s\left(C_{0}\right)$ and $R_{D}=\left\{\left\{D_{0}, D_{2}\right\},\left\{D_{1}, D_{3}\right\}\right\}$ a strong equivalence relation of $d s\left(D_{0}\right)$. Since the two lumped CTMCs

are in a one-to-one correspondence (i.e., they are equal up to a relabelling of the nodes), we conclude that the stochastic behaviour of C_{0} is given by that of D_{0}, and vice versa.

