
Agile Architectures – DRY and SOLID

15.6.2011

Andreas Schroeder, Annabelle Klarl

Bad Design

• Facing Bad Design is an unpleasant experience

• Even more, since most of the time, we are the
authors of that design

• No one sets out to create bad design

• Bad design creeps into your code over time

• … but what is bad design?

 Rigid: hard to change because changes affect large parts

 Fragile: changes break unexpected parts of the system

 Immobile: hard to reuse since it cannot be disentangled

2 | 18

Technical Debt

• Bad Design and bad code is like a financial debt

 „We‘ll look at it later, place a TODO here“

• If you don‘t repay it swiftly, interest will build up

 „I thought we had a document on this“

 „I thought we had a tests on this“

 „It‘s ok that these tests are failing, they were failing all the
time“

• … and finally, interest will kill you

 „we don‘t have time to fix this“

 „we can‘t change this, it‘ll take too much time“

3 | 18

Overview

• Stay DRY

 Don‘t

 Repeat

 Yourself

• Create SOLID systems

 Single Responsibility Principle (SRP)

 Open/Closed Principle

 Liskov Substitution Principle

 Interface Segregation

 Dependency Inversion

4 | 18

A word or warning

• All of the following principles are general guidelines
to follow

• Overdoing them will lead to unmaintainable code as
it will become extremely hard to understand and
tiresome extend.

5 | 18

Why DRY (1/2)

• Non-DRY code is a maintenance nightmare

 Bad code and bugs gets copied and need to be fixed
everywhere

 Imagine that:

 A method fragment gets copy/pasted two times

 The method that contains it gets copy/pasted two
times

 The class that contains the method gets copy/pasted
two times

 Grand total: seven copies (at least)

 Avoid this ripple effect by all means

6 | 18

Why DRY (2/2)

• DRY is an architecture generating principle.

• O/R-Mapping Example:

 SQL is a language with a lot of redundancy: the schema is
implicitly repeated in every query

 To stay DRY, query parts need to be extracted into separate
methods

 Congratulations! You‘ve just started to create your data
access layer

7 | 18

Intermezzo!
Antipattern: String Typing

• Stringly Typed code (riff on “strongly typed”)

 String method parameters where other types would fit

 Repeated String serialization/parsing

 Message passing with Strings

• … is very bad since:

 it circumvents static type checking

 it is hard to understand and check as
type information is missing

[source: stackoverflow.com/questions/2349378]

8 | 18

Single Responsibility Principle

• Imagine that four classes are involved in the game
filter functionality.

• Of these four classes, three are also involved in the
players list functionality

• … now, if you change the filters functionality, how
many classes do you have to look at?

• … what will happen with the players list functionality
if you change the filters? Will it still work?

9 | 18

Single Responsibility Principle

• The complexity of code that do not follow SRP tend
to explode as they evolve

• Making a design decision that doubles complexity of
code n times makes the code quite complex:

2n times as complex

• You will have to constantly firefight this complexity

10 | 18

Single Responsibility Principle

• Every object in your system should have a single
responsibility, and all the object‘s services should be
focused on carrying out that single responsibility

• Classes that follow SRP have only one reason
to change

• They are therefore much easier to maintain and
extend.

• … and they don‘t explode.

11 | 18

Open/Closed Principle

• Classes should be open for extension, but closed for
modification

• Subclassing should allow to add behavior, but not to
change the behavior of superclasses

• Also: Favor composition over inheritance – designs
using composition are more flexible (think observer
pattern)

12 | 18

Liskov Substitution Principle

• If B extends A, then objects of type A may be
replaced by objects of type B.

• Of course, the Java type system lets you do that – but
will the system still behave the same? If it doesn‘t,
your code violates LSP.

• LSP gives your system behavioral stability in the face
of change and extensions.

• LSP is less constraining than Open/Closed principle

13 | 18

Interface Segregation Principle

• The dependency of one class to another one should
depend on the smallest possible interface.

• Makes code easier to read

• Prevents introduction of invalid dependencies

• Prevents extensive re-compilation on changes that
affect only parts of the clients

14 | 18

Interface Segregation Principle

• The dependency of one class to another one should
depend on the smallest possible interface.

Depending on one big interface Depending on small interfaces

15 | 18

Dependency Inversion Principle

• Depend upon abstractions. Do not depend upon
concrete classes.

• Depending on concrete classes makes it hard to
exchange them

• Depending on concrete classes may break
abstraction layers and prohibit re-use (e.g. a
framework depending on a plug-in)

16 | 18

Dependency Inversion Principle

• Depend upon abstractions. Do not depend upon
concrete classes.

Depending on concrete classes Depending on abstraction

17 | 18

Wrap Up:

• We have talked about

 Bad design

 Technical debt

• We have discussed OO principles

 DRY

 SOLID

• We have seen one antipattern

 Stringly typed code

 There are many others!

18 | 18

