Formal Techniques for Software Engineering: Regular Expressions

Rocco De Nicola

IMT Institute for Advanced Studies, Lucca
rocco.denicola@imtlucca.it

April 2013

Lesson 2
A motivating example:
Formal semantics of regular expressions
Formal semantics

Three main approaches to formal semantics of programming languages:

- **Operational Semantics** (*How a program computes*) [Plotkin, Kahn]:
 Sets of computations resulting from the execution of programs by an abstract machine

- **Denotational Semantics** (*What a program computes*) [Strachey, Scott]:
 An input/output function that denotes the effect of executing the program

- **Axiomatic Semantics** (*What a program modifies*) [Floyd, Hoare]:
 Pairs of observable properties that hold before and after program execution

Different purposes, complementary use.
A motivating example: regular expressions

Regular expressions
Commonly used for:
- searching and manipulating text based on patterns

Example

Regular expression: \[hc\]at $\Rightarrow (h + c); a; t$

Text: the cat eats the bat’s hat rather than the rat

Matches: cat, hat
A motivating example: regular expressions

Regular expressions

Commonly used for:
- searching and manipulating text based on patterns
- representing regular languages in a compact form
- describing sequences of actions that a system can execute

- Regular expressions as a simple programming language
 - Programming constructs: sequence, choice, iteration, stop

- We define the semantics of regular expressions by applying the three approaches

- We show that the three semantics are consistent
A motivating example: regular expressions

Regular expressions

Commonly used for:
- searching and manipulating text based on patterns
- representing regular languages in a compact form
- describing sequences of actions that a system can execute

Regular expressions as a simple programming language
- Programming constructs: sequence, choice, iteration, stop

We define the semantics of regular expressions by applying the three approaches

We show that the three semantics are consistent
Abstract syntax

\[
E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*\]

Operators precedence

- * binds more than + and ;
- ; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- \(a\) is an event (or atomic action) where \(a \in A\), with \(A\) finite alphabet
- \(E + F\) can be either \(E\) or \(F\) (choice operator)
- \(E; F\) is the expression \(E\) followed by \(F\) (sequencing)
- \(E^*\) is an \(n\)-length sequence of \(E\) with \(n \geq 0\) (Kleene star)
Regular expressions: syntax and informal semantics

Abstract syntax

\[E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^* \]

Operators precedence

- * binds more than + and ;
- ; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- \(a \) is an event (or atomic action) where \(a \in A \), with \(A \) finite alphabet
- \(E + F \) can be either \(E \) or \(F \) (choice operator)
- \(E; F \) is the expression \(E \) followed by \(F \) (sequencing)
- \(E^* \) is an \(n \)-length sequence of \(E \) with \(n \geq 0 \) (Kleene star)
Regular expressions: syntax and informal semantics

Abstract syntax

| E ::= | 0 | 1 | a | $E + E$ | $E; E$ | E^* |

Operators precedence

- * binds more than + and ;
- ; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E + F$ can be either E or F (choice operator)
- $E; F$ is the expression E followed by F (sequencing)
- E^* is an n-length sequence of E with $n \geq 0$ (Kleene star)
Regular expressions: syntax and informal semantics

Abstract syntax

\[E ::= 0 \mid 1 \mid a \mid E + E \mid E ; E \mid E^* \]

Operators precedence

- \(* \) binds more than + and
- \(; \) binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- \(a \) is an event (or atomic action) where \(a \in A \), with \(A \) finite alphabet
- \(E + F \) can be either \(E \) or \(F \) (choice operator)
- \(E ; F \) is the expression \(E \) followed by \(F \) (sequencing)
- \(E^* \) is an \(n \)-length sequence of \(E \) with \(n \geq 0 \) (Kleene star)
Regular expressions: syntax and informal semantics

Abstract syntax

| $E ::= 0$ | 1 | a | $E + E$ | $E; E$ | E^* |

Operators precedence

- * binds more than + and ;
- ; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- a is an event (or atomic action) where $a \in A$, with A finite alphabet
- $E + F$ can be either E or F (choice operator)
- $E; F$ is the expression E followed by F (sequencing)
- E^* is an n-length sequence of E with $n \geq 0$ (Kleene star)
Abstract syntax

\[
E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^*
\]

Operators precedence

- * binds more than + and ;
- ; binds more than +

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- \(a\) is an event (or atomic action) where \(a \in A\), with \(A\) finite alphabet
- \(E + F\) can be either \(E\) or \(F\) (choice operator)
- \(E; F\) is the expression \(E\) followed by \(F\) (sequencing)
- \(E^*\) is an \(n\)-length sequence of \(E\) with \(n \geq 0\) (Kleene star)
Regular expressions: syntax and informal semantics

Abstract syntax

\[E ::= 0 \mid 1 \mid a \mid E + E \mid E; E \mid E^* \]

Operators precedence

- \(\ast \) binds more than \(+ \) and \(; \)
- \(; \) binds more than \(+ \)

Informal semantics

- 0 is the empty event
- 1 is the terminal event
- \(a \) is an event (or atomic action) where \(a \in A \), with \(A \) finite alphabet
- \(E + F \) can be either \(E \) or \(F \) (choice operator)
- \(E; F \) is the expression \(E \) followed by \(F \) (sequencing)
- \(E^* \) is an \(n \)-length sequence of \(E \) with \(n \geq 0 \) (Kleene star)
Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear.

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions.
Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear.

Example

\[(a + b)^* (a^* + b^*)^*\]

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions.
Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear.

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions.
Regular expressions: informal semantics

With an informal semantics the meaning of composite expressions may be not clear.

Example

\[(a + b)^* (a^* + b^*)^*\]

- They are syntactically different
- What about their meaning?

We shall apply the three approaches used for defining formal semantics to regular expressions.
Regular expressions: operational semantics

We introduce an **abstract machine** for **executing** regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup \{\varepsilon\}$ (ε empty action)
- Is defined by an inference system
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

\[
\begin{align*}
E_{i_1} & \xrightarrow{\alpha_1} E'_{i_1} \quad \cdots \quad E_{i_m} & \xrightarrow{\alpha_m} E'_{i_m} \\
op(E_1, \cdots, E_n) & \xrightarrow{\alpha} \nop(E'_1, \cdots, E'_n)
\end{align*}
\]

where $\{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}$.
We introduce an **abstract machine** for **executing** regular expressions.

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup \{\varepsilon\}$ (ε empty action).
- Is defined by an inference system.
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it.

For a generic operator op we shall have one or more rules like:

$$
\begin{align*}
E_{i_1} \xrightarrow{\alpha_1} E'_{i_1} & \quad \cdots \quad E_{i_m} \xrightarrow{\alpha_m} E'_{i_m} \\
\text{where } \{i_1, \cdots, i_m\} & \subseteq \{1, \cdots, n\}.
\end{align*}
$$
Regular expressions: operational semantics

We introduce an **abstract machine** for **executing** regular expressions

Transition relation

- Is a ternary relation $E \xrightarrow{\mu} F$, where $\mu \in A \cup \{\varepsilon\}$ (ε empty action)
- Is defined by an **inference system**
- Describes, by induction on the structure of the expressions, the behaviour of a machine that takes as input a regular expression and executes it

For a generic operator op we shall have one or more rules like:

$$
E_{i_1} \xrightarrow{\alpha_1} E'_{i_1} \quad \cdots \quad E_{i_m} \xrightarrow{\alpha_m} E'_{i_m}
$$

$$
op(E_1, \cdots, E_n) \xrightarrow{\alpha} \op(E'_1, \cdots, E'_n)
$$

where $\{i_1, \cdots, i_m\} \subseteq \{1, \cdots, n\}$.
Structural Operational Semantics (SOS [Plotkin])

Transition relation is the least relation satisfying the above rules.

Transition relation rules

- **(Tic)**

 \[
 1 \xrightarrow{\varepsilon} 1
 \]

- **(Atom)**

 \[
 a \xrightarrow{a} 1, \quad a \in A
 \]

- **(Sum\(_1\))**

 \[
 \frac{E \xrightarrow{\mu} E'}{E + F \xrightarrow{\mu} E'}
 \]

- **(Sum\(_2\))**

 \[
 \frac{F \xrightarrow{\mu} F'}{E + F \xrightarrow{\mu} F'}
 \]

- **(Seq\(_1\))**

 \[
 \frac{E \xrightarrow{a} E'}{E; F \xrightarrow{a} E'; F}
 \]

- **(Seq\(_2\))**

 \[
 \frac{E \xrightarrow{\varepsilon} 1}{E; F \xrightarrow{\varepsilon} F}
 \]

- **(Star\(_1\))**

 \[
 \frac{E^* \xrightarrow{\varepsilon} 1}{E^* \xrightarrow{\mu} E'}
 \]

- **(Star\(_2\))**

 \[
 \frac{E^* \xrightarrow{\mu} E'}{E^* \xrightarrow{\mu} E'; E^*}
 \]
Regular expressions: operational semantics

Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
<td></td>
</tr>
<tr>
<td>(Sum$_1$)</td>
<td>$E \xrightarrow{\mu} E'$</td>
<td>$E + F \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td>(Seq$_1$)</td>
<td>$E \xrightarrow{a} E'$</td>
<td>$E; F \xrightarrow{a} E'; F$</td>
</tr>
<tr>
<td>(Star$_1$)</td>
<td>$E^* \xrightarrow{\varepsilon} 1$</td>
<td></td>
</tr>
<tr>
<td>(Atom)</td>
<td>$a \xrightarrow{a} 1$</td>
<td>$a \in A$</td>
</tr>
<tr>
<td>(Sum$_2$)</td>
<td>$F \xrightarrow{\mu} F'$</td>
<td>$E + F \xrightarrow{\mu} F'$</td>
</tr>
<tr>
<td>(Seq$_2$)</td>
<td>$E \xrightarrow{\varepsilon} 1$</td>
<td>$E; F \xrightarrow{\varepsilon} F$</td>
</tr>
<tr>
<td>(Star$_2$)</td>
<td>$E \xrightarrow{\mu} E'$</td>
<td>$E^* \xrightarrow{\mu} E'; E^*$</td>
</tr>
</tbody>
</table>

1 indicates the terminal state: the machine has completed the execution and loops by executing the empty action.
Regular expressions: operational semantics

Transition relation rules

(Tic) \[1 \xrightarrow{\varepsilon} 1 \]

(Atom) \[a \xrightarrow{a} 1 \quad a \in A \]

(Sum₁) \[E \xrightarrow{\mu} E' \]
\[E + F \xrightarrow{\mu} E' \]

(Sum₂) \[F \xrightarrow{\mu} F' \]
\[E + F \xrightarrow{\mu} F' \]

(Seq₁) \[E \xrightarrow{a} E' \]
\[E; F \xrightarrow{a} E'; F \]

(Seq₂) \[E \xrightarrow{\varepsilon} 1 \]
\[E; F \xrightarrow{\varepsilon} F \]

(Star₁) \[E^* \xrightarrow{\varepsilon} 1 \]

(Star₂) \[E \xrightarrow{\mu} E' \]
\[E^* \xrightarrow{\mu} E'; E^* \]

Expression a executes action a and stops
Regular expressions: operational semantics

Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Atom)</td>
<td>$a \xrightarrow{a} 1$, $a \in A$</td>
</tr>
<tr>
<td>(Sum₁)</td>
<td>$E \xrightarrow{\mu} E'$, $E + F \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td>(Sum₂)</td>
<td>$F \xrightarrow{\mu} F'$, $E + F \xrightarrow{\mu} F'$</td>
</tr>
<tr>
<td>(Seq₁)</td>
<td>$E \xrightarrow{a} E'$, $E; F \xrightarrow{a} E'; F$</td>
</tr>
<tr>
<td>(Seq₂)</td>
<td>$E \xrightarrow{\varepsilon} 1$, $E; F \xrightarrow{\varepsilon} F$</td>
</tr>
<tr>
<td>(Star₁)</td>
<td>$E^* \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Star₂)</td>
<td>$E \xrightarrow{\mu} E'$, $E^* \xrightarrow{\mu} E'; E^*$</td>
</tr>
</tbody>
</table>

$E + F$ can behave either as E or as F: if E evolves to E' by performing action μ then $E + F$ can evolve to E' by performing μ; similarly for F.

R. De Nicola (IMT-Lucca)
Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>ε</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Sum$_1$)</td>
<td>μ</td>
<td>$E \xrightarrow{\mu} E'$ [E + F \xrightarrow{\mu} E']</td>
</tr>
<tr>
<td>(Seq$_1$)</td>
<td>a</td>
<td>$E \xrightarrow{a} E'$ [E; F \xrightarrow{a} E'; F]</td>
</tr>
<tr>
<td>(Star$_1$)</td>
<td>ε</td>
<td>$E^* \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Atom)</td>
<td>a</td>
<td>$a \xrightarrow{a} 1$ [a \in A]</td>
</tr>
<tr>
<td>(Sum$_2$)</td>
<td>μ</td>
<td>$F \xrightarrow{\mu} F'$ [E + F \xrightarrow{\mu} F']</td>
</tr>
<tr>
<td>(Seq$_2$)</td>
<td>ε</td>
<td>$E \xrightarrow{\varepsilon} 1$ [E; F \xrightarrow{\varepsilon} F]</td>
</tr>
<tr>
<td>(Star$_2$)</td>
<td>μ</td>
<td>$E \xrightarrow{\mu} E'$ [E^* \xrightarrow{\mu} E'; E^*]</td>
</tr>
</tbody>
</table>

$E; F$ executes the actions of E and, afterwards, the actions of F.
Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Sum$_1$)</td>
<td>$E \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td></td>
<td>$E + F \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td>(Seq$_1$)</td>
<td>$E \xrightarrow{a} E'$</td>
</tr>
<tr>
<td></td>
<td>$E; F \xrightarrow{a} E'; F$</td>
</tr>
<tr>
<td>(Star$_1$)</td>
<td>$E^* \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Atom)</td>
<td>$a \xrightarrow{} 1$ for $a \in A$</td>
</tr>
<tr>
<td>(Sum$_2$)</td>
<td>$F \xrightarrow{\mu} F'$</td>
</tr>
<tr>
<td></td>
<td>$E + F \xrightarrow{\mu} F'$</td>
</tr>
<tr>
<td>(Seq$_2$)</td>
<td>$E \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td></td>
<td>$E; F \xrightarrow{\varepsilon} F$</td>
</tr>
<tr>
<td>(Star$_2$)</td>
<td>$E \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td></td>
<td>$E^* \xrightarrow{\mu} E'; E^*$</td>
</tr>
</tbody>
</table>

$E; F$ executes the actions of E and, afterwards, the actions of F
Regular expressions: operational semantics

Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Atom)</td>
<td>$a \xrightarrow{a} 1$, $a \in A$</td>
</tr>
<tr>
<td>(Sum$_1$)</td>
<td>$E \xrightarrow{\mu} E'$, $E + F \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td>(Sum$_2$)</td>
<td>$F \xrightarrow{\mu} F'$, $E + F \xrightarrow{\mu} F'$</td>
</tr>
<tr>
<td>(Seq$_1$)</td>
<td>$E \xrightarrow{a} E'$, $E; F \xrightarrow{a} E'; F$</td>
</tr>
<tr>
<td>(Seq$_2$)</td>
<td>$E \xrightarrow{\varepsilon} 1$, $E; F \xrightarrow{\varepsilon} F$</td>
</tr>
<tr>
<td>(Star$_1$)</td>
<td>$E^* \xrightarrow{\varepsilon} 1$, $E^* \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td>(Star$_2$)</td>
<td>$E \xrightarrow{\mu} E'$, $E^* \xrightarrow{\mu} E'; E^*$</td>
</tr>
</tbody>
</table>

$E; F$ executes the actions of E and, afterwards, the actions of F.
Transition relation rules

- **Tic**
 \[
 1 \xrightarrow{\varepsilon} 1
 \]

- **Atom**
 \[
 a \xrightarrow{a} 1 \quad a \in A
 \]

- **Sum**
 \[
 E \xrightarrow{\mu} E' \\
 E + F \xrightarrow{\mu} E'
 \]

- **Sum**
 \[
 F \xrightarrow{\mu} F' \\
 E + F \xrightarrow{\mu} F'
 \]

- **Seq**
 \[
 E \xrightarrow{a} E' \\
 E; F \xrightarrow{a} E'; F
 \]

- **Seq**
 \[
 E \xrightarrow{\varepsilon} 1 \\
 E; F \xrightarrow{\varepsilon} F
 \]

- **Star**
 \[
 E^* \xrightarrow{\varepsilon} 1 \\
 E \xrightarrow{\mu} E' \\
 E^* \xrightarrow{\mu} E'; E^*
 \]

E^* can either directly evolve to 1 or evolve to E'; E^* if E evolves to E'
Regular expressions: operational semantics

Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tic</td>
<td>(1 \xrightarrow{\varepsilon} 1)</td>
</tr>
<tr>
<td>Atom</td>
<td>(a \xrightarrow{a} 1) (a \in A)</td>
</tr>
<tr>
<td>Sum1</td>
<td>(E \xrightarrow{\mu} E') (E + F \xrightarrow{\mu} E')</td>
</tr>
<tr>
<td>Seq1</td>
<td>(E \xrightarrow{a} E') (E; F \xrightarrow{a} E'; F)</td>
</tr>
<tr>
<td>Sum2</td>
<td>(F \xrightarrow{\mu} F') (E + F \xrightarrow{\mu} F')</td>
</tr>
<tr>
<td>Seq2</td>
<td>(E \xrightarrow{\varepsilon} 1) (E; F \xrightarrow{\varepsilon} F)</td>
</tr>
<tr>
<td>Star1</td>
<td>(E^* \xrightarrow{\varepsilon} 1)</td>
</tr>
<tr>
<td>Star2</td>
<td>(E \xrightarrow{\mu} E') (E^* \xrightarrow{\mu} E'; E^*)</td>
</tr>
</tbody>
</table>

E^* can either directly evolve to 1 or evolve to \(E' \); \(E^* \) if \(E \) evolves to \(E' \)
Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Atom)</td>
<td>$a \xrightarrow{a} 1$ for $a \in A$</td>
</tr>
<tr>
<td>(Sum$_1$)</td>
<td>$E \xrightarrow{\mu} E'$ and $E + F \xrightarrow{\mu} E'$</td>
</tr>
<tr>
<td>(Sum$_2$)</td>
<td>$F \xrightarrow{\mu} F'$ and $E + F \xrightarrow{\mu} F'$</td>
</tr>
<tr>
<td>(Seq$_1$)</td>
<td>$E \xrightarrow{a} E'$ and $E; F \xrightarrow{a} E'; F$</td>
</tr>
<tr>
<td>(Seq$_2$)</td>
<td>$E \xrightarrow{\varepsilon} 1$ and $E; F \xrightarrow{\varepsilon} F$</td>
</tr>
<tr>
<td>(Star$_1$)</td>
<td>$E^* \xrightarrow{\varepsilon} 1$</td>
</tr>
<tr>
<td>(Star$_2$)</td>
<td>$E \xrightarrow{\mu} E'$ and $E^* \xrightarrow{\mu} E'; E^*$ if E evolves to E'</td>
</tr>
</tbody>
</table>

E^* can either directly evolve to 1 or evolve to $E'; E^*$ if E evolves to E'.
Regular expressions: operational semantics

Transition relation rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tic)</td>
<td>$1 \xrightarrow{\varepsilon} 1$</td>
<td>Operational semantics for regular expressions.</td>
</tr>
<tr>
<td>(Atom)</td>
<td>$a \xrightarrow{a} 1$</td>
<td>Transition for atom $a \in A$.</td>
</tr>
<tr>
<td>(Sum$_1$)</td>
<td>$E \xrightarrow{\mu} E'$</td>
<td>Transition for sum $E + F \xrightarrow{\mu} E'$.</td>
</tr>
<tr>
<td>(Sum$_2$)</td>
<td>$F \xrightarrow{\mu} F'$</td>
<td>Transition for sum $E + F \xrightarrow{\mu} F'$.</td>
</tr>
<tr>
<td>(Seq$_1$)</td>
<td>$E \xrightarrow{a} E'$</td>
<td>Transition for sequence $E; F \xrightarrow{a} E'; F$.</td>
</tr>
<tr>
<td>(Seq$_2$)</td>
<td>$E \xrightarrow{\varepsilon} 1$</td>
<td>Transition for sequence $E; F \xrightarrow{\varepsilon} F$.</td>
</tr>
<tr>
<td>(Star$_1$)</td>
<td>$E^* \xrightarrow{\varepsilon} 1$</td>
<td>Transition for star $E^* \xrightarrow{\mu} E'$.</td>
</tr>
<tr>
<td>(Star$_2$)</td>
<td>$E^* \xrightarrow{\mu} E'; E^*$</td>
<td>Transition for star $E^* \xrightarrow{\mu} E'; E^*$.</td>
</tr>
</tbody>
</table>

No rule for 0: expression 0 does nothing.

0 indicates the **deadlock state**: the machine is stuck.
The automaton associated to a regular expression

The SOS inference rules implicitly defines a particular automaton for each regular expression E (essentially a fragment of the whole LTS):

- the initial state is e (we shall often omit to mark it)
- the set of labels is A
- the set of states consists of all regular expressions that can be reached starting from E via a sequence of transitions
- the transition relation is the one induced from the SOS rules
- the only final state is 1 (we shall often omit to mark it)

Semantic correspondence

Given any regular expression E, the automaton generated by the SOS rules has the property of recognizing exactly the language $\mathcal{L}[E]$, but it is not the unique automaton satisfying such property. Other "similar" automata might have less (or more) ε transitions.
A few examples for Regular Expressions

\[(a + b)^* \xrightarrow{a} 1 \cdot (a + b)^*\]

\[
\begin{align*}
(a + b)^* & \xrightarrow{a} 1 \cdot (a + b)^* \\
\hline
\frac{a}{\rightarrow} 1 & (\text{Atom}) \\
\frac{a + b}{\rightarrow} 1 & (\text{Sum}_1) \\
\frac{(a + b)^*}{\rightarrow} 1 \cdot (a + b)^* & (\text{Star}_2)
\end{align*}
\]

\[1 \cdot (a + b)^* \xrightarrow{\varepsilon} (a + b)^*\]

\[
\begin{align*}
1 \cdot (a + b)^* & \xrightarrow{\varepsilon} (a + b)^* \\
\hline
\frac{1}{\xrightarrow{\varepsilon} 1} & (\text{Tic}) \\
\frac{1 \cdot (a + b)^*}{\xrightarrow{\varepsilon} (a + b)^*} & (\text{Seq}_2)
\end{align*}
\]
A few examples for Regular Expressions

\[(a + b)^* \xrightarrow{a} 1 \cdot (a + b)^*\]

\[
\begin{align*}
(a & \xrightarrow{a} 1) \quad (Atom) \\
(a + b & \xrightarrow{a} 1) \quad (Sum_1) \\
(a + b)^* & \xrightarrow{a} 1 \cdot (a + b)^* \quad (Star_2)
\end{align*}
\]

\[1 \cdot (a + b)^* \xrightarrow{\varepsilon} (a + b)^*\]

\[
\begin{align*}
1 & \xrightarrow{\varepsilon} 1 \quad (Tic) \\
1 \cdot (a + b)^* & \xrightarrow{\varepsilon} (a + b)^* \quad (Seq_2)
\end{align*}
\]
Regular expressions: operational semantics

Definition (Traces of Regular expressions)

- Let E be a regular expression and $s \in A^*$ be a string, we write $E \xrightarrow{s} E'$ if there exists $\mu_1, \ldots, \mu_n \in A \cup \{\varepsilon\}$ ($n \geq 0$) s.t.:
 1. the string $\mu_1 \ldots \mu_n$ coincides with s (up to some occurrence of ε)
 2. $E \xrightarrow{\mu_1} E_1 \xrightarrow{\mu_2} E_2 \xrightarrow{\mu_3} \ldots \xrightarrow{\mu_n} E_n \equiv E'$

- The set of traces of E is the set of strings

$$\text{Traces}(E) = \{ s \in A^* : E \xrightarrow{s} 1 \}$$

Definition (Trace equivalence)

Two regular expressions E and F are trace equivalent if

$$\text{Traces}(E) = \text{Traces}(F)$$
Regular expressions: operational semantics

Definition (Traces of Regular expressions)

1. Let E be a regular expression and $s \in A^*$ be a string, we write $E \xrightarrow{s} E'$ if there exists $\mu_1, \ldots, \mu_n \in A \cup \{\varepsilon\}$ ($n \geq 0$) s.t.:
 1. the string $\mu_1 \ldots \mu_n$ coincides with s (up to some occurrence of ε)
 2. $E \xrightarrow{\mu_1} E_1 \xrightarrow{\mu_2} E_2 \xrightarrow{\mu_3} \ldots \xrightarrow{\mu_n} E_n \equiv E'$ (≡ syntactical equiv.)

2. The set of *traces* of E is the set of strings

$$\text{Traces}(E) = \{s \in A^*: E \xrightarrow{s} 1\}$$

Definition (Trace equivalence)

Two regular expressions E and F are *trace equivalent* if

$$\text{Traces}(E) = \text{Traces}(F)$$
Regular expressions: operational semantics

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different
- Are they semantically equivalent?

We have to show that:
- \(s\) is a trace of \((a + b)^*\) if and only if \(s\) is a trace of \((a^* + b^*)^*\)
Regular expressions: operational semantics

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different
- \(\text{Traces}((a + b)^*) \equiv \text{Traces}((a^* + b^*)^*)\)

We have to show that:

- \(s\) is a trace of \((a + b)^*\) if and only if \(s\) is a trace of \((a^* + b^*)^*\)
Regular expressions: operational semantics

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different
- \[\text{Traces}((a + b)^*) \quad ? \quad \text{Traces}((a^* + b^*)^*)\]

We have to show that:

- \(s\) is a trace of \((a + b)^*\) if and only if \(s\) is a trace of \((a^* + b^*)^*\)
Regular expressions: operational semantics

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different

- Traces((a + b)^*) \(\equiv\) Traces((a^* + b^*)^*)

We have to show that:

- s is a trace of \((a + b)^*\) if and only if s is a trace of \((a^* + b^*)^*\)
Regular expressions: operational semantics

if \(s \) is a trace of \((a + b)^*\) then \(s \) is a trace of \((a^* + b^*)^*\)

Induction on the length of \(s \).

- **Base step**: \(|s| = 0\) (i.e., \(s = \varepsilon \)). Trivial: \((\text{Star}_1), (a^* + b^*)^* \xrightarrow{\varepsilon} 1\)

- **Inductive step**: \(|s| > 0\), then \(s = as' \) or \(s = bs' \); w.l.o.g. assume \(s = as' \).

The only possible \(a \)-transition for \((a + b)^*\) is \((a + b)^* \xrightarrow{a} (a + b)^*\): This is proved via the following derivations:

\[
\begin{align*}
 a & \xrightarrow{a} 1 \quad \text{(Atom)} \\
 a + b & \xrightarrow{a} 1 \quad \text{(Sum}_1) \\
 (a + b)^* & \xrightarrow{a} 1; (a + b)^* \quad \text{(Star}_2) \\
 1 & \xrightarrow{\varepsilon} 1 \quad \text{(Tic)} \\
 1; (a + b)^* & \xrightarrow{\varepsilon} (a + b)^* \quad \text{(Seq}_2)
\end{align*}
\]
if \(s \) is a trace of \((a+b)^*\) then \(s \) is a trace of \((a^* + b^*)^*\)

Induction on the length of \(s \).

- **Base step:** \(|s| = 0\) (i.e., \(s = \varepsilon \)). Trivial: \((\text{Star}_1), (a^* + b^*)^* \xrightarrow{\varepsilon} 1\)

- **Inductive step:** \(|s| > 0\), then \(s = as' \) or \(s = bs' \); w.l.o.g. assume \(s = as' \). The only possible \(a \)-transition for \((a+b)^*\) is \((a+b)^* \xrightarrow{a} (a+b)^*\):

 This is proved via the following derivations:

\[
\begin{align*}
 &a \xrightarrow{a} 1 \quad \text{(Atom)} \\
 &a + b \xrightarrow{a} 1 \quad \text{(Sum}_1) \\
 & (a + b)^* \xrightarrow{a} 1; (a + b)^* \quad \text{(Star}_2) \\
 &1 \xrightarrow{\varepsilon} 1 \quad \text{(Tic)} \\
 &1; (a + b)^* \xrightarrow{\varepsilon} (a + b)^* \quad \text{(Seq}_2) \\
\end{align*}
\]
If s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

Induction on the length of s.

- **Base step**: $|s| = 0$ (i.e., $s = \varepsilon$). Trivial: (Star_1), $(a^* + b^*)^* \xrightarrow{\varepsilon} 1$

- **Inductive step**: $|s| > 0$, then $s = as'$ or $s = bs'$; w.l.o.g. assume $s = as'$. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \xrightarrow{a} (a + b)^*$: This is proved via the following derivations:

\[
\begin{align*}
 a & \xrightarrow{a} 1 \quad \text{(Atom)} \\
 a + b & \xrightarrow{a} 1 \quad \text{(Sum}_1) \\
 (a + b)^* & \xrightarrow{a} 1; (a + b)^* \quad \text{(Star}_2) \\
 1 & \xrightarrow{\varepsilon} 1 \quad \text{(Tic)} \\
 1; (a + b)^* & \xrightarrow{\varepsilon} (a + b)^* \quad \text{(Seq}_2)
\end{align*}
\]

R. De Nicola (IMT-Lucca) FoTSE@LMU 14 / 32
Regular expressions: operational semantics

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

Induction on the length of s.

- **Base step:** $|s| = 0$ (i.e., $s = \varepsilon$). Trivial: (Star_1), $(a^* + b^*)^* \xrightarrow{\varepsilon} 1$

- **Inductive step:** $|s| > 0$, then $s = as'$ or $s = bs'$; w.l.o.g. assume $s = as'$. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \xrightarrow{a} (a + b)^*$:
 - This is proved via the following derivations:

\[
\begin{align*}
& \frac{a}{a} \xrightarrow{a} 1 \quad \text{(Atom)} \\
& \frac{a + b}{a} \xrightarrow{a} 1 \quad \text{(Sum}_1) \quad \text{and} \\
& \frac{(a + b)^*}{(a + b)^*} \xrightarrow{a} 1; (a + b)^* \quad \text{(Star}_2) \\
& \frac{1}{\varepsilon} \xrightarrow{1} \quad \text{(Tic)} \\
& \frac{1; (a + b)^*}{\varepsilon} \xrightarrow{(a + b)^*} \quad \text{(Seq}_2)
\end{align*}
\]
Regular expressions: operational semantics

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

Induction on the length of s.

- **Base step**: $|s| = 0$ (i.e., $s = \varepsilon$). Trivial: (Star$_1$), $(a^* + b^*)^* \xrightarrow{\varepsilon} 1$

- **Inductive step**: $|s| > 0$, then $s = as'$ or $s = bs'$; w.l.o.g. assume $s = as'$. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \xrightarrow{a} (a + b)^*$

By hypothesis, $(a + b)^* \xrightarrow{as'} 1$, thus $(a + b)^* \xrightarrow{s'} 1$.

By induction, we have $(a^* + b^*)^* \xrightarrow{s'} 1$, thus it is sufficient to prove

$(a^* + b^*)^* \xrightarrow{a} (a^* + b^*)^*$ to conclude that $(a^* + b^*)^* \xrightarrow{s} 1$.
Regular expressions: operational semantics

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$

Induction on the length of s.

- **Base step:** $|s| = 0$ (i.e., $s = \varepsilon$). Trivial: (Star_1), $(a^* + b^*)^* \xrightarrow{\varepsilon} 1$

- **Inductive step:** $|s| > 0$, then $s = as'$ or $s = bs'$; w.l.o.g. assume $s = as'$. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \xrightarrow{a} (a + b)^*$

 By hypothesis, $(a + b)^* \xrightarrow{as'} 1$, thus $(a + b)^* \xrightarrow{s'} 1$.

 By induction, we have $(a^* + b^*)^* \xrightarrow{s'} 1$, thus it is sufficient to prove $(a^* + b^*)^* \xrightarrow{a} (a^* + b^*)^*$ to conclude that $(a^* + b^*)^* \xrightarrow{s} 1$.
Induction on the length of s.

Base step: $|s| = 0$ (i.e., $s = \varepsilon$). Trivial: $(\text{Star}_1), (a^* + b^*)^* \xrightarrow{\varepsilon} 1$

Inductive step: $|s| > 0$, then $s = as'$ or $s = bs'$; w.l.o.g. assume $s = as'$. The only possible a-transition for $(a + b)^*$ is $(a + b)^* \xrightarrow{a} (a + b)^*$.

By hypothesis, $(a + b)^* \xrightarrow{as'} 1$, thus $(a + b)^* \xrightarrow{s'} 1$.

By induction, we have $(a^* + b^*)^* \xrightarrow{s'} 1$, thus it is sufficient to prove $(a^* + b^*)^* \xrightarrow{a} (a^* + b^*)^* \xrightarrow{s} 1$ to conclude that $(a^* + b^*)^* \xrightarrow{s} 1$.

if s is a trace of $(a + b)^*$ then s is a trace of $(a^* + b^*)^*$
Regular expressions: operational semantics

if \(s \) is a trace of \((a + b)^*\) then \(s \) is a trace of \((a^* + b^*)^*\)

Induction on the length of \(s \).

- **Base step**: \(|s| = 0\) (i.e., \(s = \varepsilon \)). Trivial: \((\text{Star}_1), (a^* + b^*)^* \xrightarrow{\varepsilon} 1\)

- **Inductive step**: \(|s| > 0\), then \(s = as' \) or \(s = bs' \); w.l.o.g. assume \(s = as' \).

\[
\begin{align*}
(a^* + b^*)^* & \xrightarrow{a} (a^* + b^*)^* : \\
\underbrace{\begin{array}{c}
\begin{array}{c}
\text{(Atom)} \\
\hline
a \xrightarrow{a} 1 \\
\end{array} \\
\end{array}}_{\text{(Star}_2\text{)}} & \quad \underbrace{\begin{array}{c}
\begin{array}{c}
\text{(Tic)} \\
1 \xrightarrow{\varepsilon} 1 \\
\end{array} \\
\end{array}}_{\text{(Seq}_2\text{)}} \\
\begin{array}{c}
\begin{array}{c}
1; a^*; (a^* + b^*)^* \xrightarrow{\varepsilon} a^*; (a^* + b^*)^* \\
\end{array} \\
\end{array} & \\
\begin{array}{c}
\begin{array}{c}
\text{(Star}_2\text{)} \\
a^* + b^* \xrightarrow{a} 1; a^* \\
\end{array} \\
\end{array} & \\
\begin{array}{c}
\begin{array}{c}
\text{(Sum}_1\text{)} \\
a^* \xrightarrow{a} 1; a^* \\
\end{array} \\
\end{array} & \\
\begin{array}{c}
\begin{array}{c}
\text{(Atom)} \\
a \xrightarrow{a} 1 \\
\end{array} \\
\end{array} & \\
\end{align*}
\]
Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression is a *finite state automaton*

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

$$M_E = (Q_E, A, \rightarrow_E, E, \{1\})$$

- **States:** $Q_E = \{F \mid \exists s \in A^*. E \xRightarrow{s} F\}$ (expressions from E)
- **Actions:** A (alphabet of E)
- **Transition relation:** \rightarrow_E s.t. $F \xrightarrow{\mu}_E F'$ if $F \xrightarrow{\mu} F'$ with $\mu \in A \cup \{\varepsilon\}$
- **Initial state:** expression E
- **Accepting states:** expression 1
Regular expressions: operational semantics

The abstract machine that describes the execution of a regular expression is a \textit{finite state automaton}.

Definition (Regular expressions as finite state automata)

Let E be a reg. expr., the finite state automaton associated to E is

$$M_E = (Q_E, A, \rightarrow_E, E, \{1\})$$

- **States:** $Q_E = \{ F \mid \exists s \in A^*. E \Rightarrow s F \}$ (expressions from E)
- **Actions:** A (alphabet of E)
- **Transition relation:** \rightarrow_E s.t. $F \xrightarrow{\mu}_E F'$ if $F \xrightarrow{\mu} F'$ with $\mu \in A \cup \{\varepsilon\}$
- **Initial state:** expression E
- **Accepting states:** expression 1
Regular expressions: operational semantics

Automata associated to \((a + b)^*\) and \((a^* + b^*)^*\)
Theorem
Let E be a regular expression and M_E the associated automaton, then

$$\text{Traces}(E) = L(M_E)$$

where $L(M_E) = \{s \in A^* : E \xrightarrow{s} E 1\}$ (language accepted by M_E)

Proof (sketch). Two cases:

- If $w \in \text{Traces}(E)$, then $E \xrightarrow{w} 1$. The proof that $w \in L(M_E)$ proceeds by induction on the length of w.

- Given $w \in L(M_E)$, we prove by induction on the length of w that $w \in \text{Traces}(E)$.
Theorem

Let E be a regular expression and M_E the associated automaton, then

$$\text{Traces}(E) = L(M_E)$$

where $L(M_E) = \{s \in A^* : E \xrightarrow{s}_E 1\}$ (language accepted by M_E)

Proof (sketch). Two cases:

- If $w \in \text{Traces}(E)$, then $E \xrightarrow{w} 1$. The proof that $w \in L(M_E)$ proceeds by induction on the length of w.

- Given $w \in L(M_E)$, we prove by induction on the length of w that $w \in \text{Traces}(E)$.
Denotational Semantics (*What a program computes*)

- an input/output **relation** that denotes the **effect** of executing the program
 - **semantic function**
- associate to each program a mathematical object, called **denotation**, that represents its meaning

Operators on Languages

To define semantics interpretation function for regular expressions, we need some operators on languages. If L, L_1 and L_2 are sets of strings:

- $L_1 \cdot L_2 = \{xy : x \in L_1 \text{ and } y \in L_2\}$
- $L^* = \bigcup_{n \geq 0} L^n$ where
 - $L^0 = \{\varepsilon\}$
 - $L^{n+1} = L \cdot L^n$

We have: $\emptyset \cdot L = L \cdot \emptyset = \emptyset$ (*Why?*)
Regular expressions: denotational semantics

Semantic function \mathcal{L} for regular expressions

The denotational semantics is inductively defined by the rules and associates an element of the Powerset of L^* to each regular expression:

$$\mathcal{L}[] : R.E. \rightarrow 2^{L^*}$$

- $\mathcal{L}[0] = \emptyset$
- $\mathcal{L}[1] = \{\varepsilon\}$
- $\mathcal{L}[a] = \{a\}$ (for $a \in A$)
- $\mathcal{L}[E + F] = \mathcal{L}[E] \cup \mathcal{L}[F]$
- $\mathcal{L}[E ; F] = \mathcal{L}[E] \cdot \mathcal{L}[F]$
- $\mathcal{L}[E^*] = (\mathcal{L}[E])^*$
Regular expressions: denotational semantics

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different
- Are they semantically equivalent?

We have to show that:

- \(L[(a + b)^*] \subseteq L[(a^* + b^*)^*]\)
- vice versa
Regular expressions: denotational semantics

Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different

- \[L[(a + b)^*] \subseteq L[(a^* + b^*)^*]\]

We have to show that:

- \[L[(a + b)^*] \subseteq L[(a^* + b^*)^*]\]

- vice versa
Example

\[(a + b)^* \quad (a^* + b^*)^*\]

- They are syntactically different

\[\mathcal{L}[(a + b)^*] \neq \mathcal{L}[(a^* + b^*)^*]\]

We have to show that:

- \[\mathcal{L}[(a + b)^*] \subseteq \mathcal{L}[(a^* + b^*)^*]\]
- vice versa
$\mathcal{L}[(a + b)^*] \subseteq \mathcal{L}[(a^* + b^*)^*]$

We have:

$$\begin{align*}
\mathcal{L}[(a + b)^*] &= (\mathcal{L}[(a + b)])^* \\
&= (\mathcal{L}[[a]] \cup \mathcal{L}[[b]])^* \\
&\subseteq (\mathcal{L}[[a]^* \cup \mathcal{L}[[b]^*])^* \\
&= (\mathcal{L}[[a^*]] \cup \mathcal{L}[[b^*]])^* \\
&= (\mathcal{L}[[a^* + b^*]])^* \\
&= \mathcal{L}[(a^* + b^*)^*]
\end{align*}$$
Regular expressions: denotational semantics

\[L[(a + b)^*] \subseteq L[(a^* + b^*)^*] \]

We have:

\[L[(a + b)^*] = (L[(a + b)])^* \]
\[= (L[a] \cup L[b])^* \]
\[\subseteq (L[a]^* \cup L[b]^*)^* \]
\[= (L[a]^* \cup L[b]^*)^* \]
\[= (L[a^*] \cup L[b^*])^* \]
\[= (L[a^* + b^*])^* \]
\[= L[(a^* + b^*)^*] \]
We have to prove:

\[\mathcal{L}[(a^* + b^*)^*] \subseteq \mathcal{L}[(a + b)^*] \]

We exploit:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* = ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \]

Thus, we have just to prove that:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \]

Let \(s \in (\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \). Therefore, for some \(n \geq 0 \), we have \(s = s_1s_2 \cdots s_n \) and either \(s_i \in \mathcal{L}[a]^* \) or \(s_i \in \mathcal{L}[b]^* \), for all \(0 \leq i \leq n \).

Thus, \(s_i \in (\mathcal{L}[a] \cup \mathcal{L}[b])^* \), for all \(0 \leq i \leq n \), hence \(s \in ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \).
Regular expressions: denotational semantics

\[\mathcal{L}[(a^* + b^*)^*] \subseteq \mathcal{L}[(a + b)^*] \]

We have to prove:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq (\mathcal{L}[a] \cup \mathcal{L}[b])^* \]

We exploit:

\[(\mathcal{L}[a] \cup \mathcal{L}[b])^* = ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \]

Thus, we have just to prove that:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \]

Let \(s \in (\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \). Therefore, for some \(n \geq 0 \), we have \(s = s_1 s_2 \cdots s_n \) and either \(s_i \in \mathcal{L}[a]^* \) or \(s_i \in \mathcal{L}[b]^* \), for all \(0 \leq i \leq n \).

Thus, \(s_i \in (\mathcal{L}[a] \cup \mathcal{L}[b])^* \), for all \(0 \leq i \leq n \), hence \(s \in ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \).
We have to prove:

\[(L[[a]]^* \cup L[[b]]^*)^* \subseteq (L[[a]] \cup L[[b]])^* \]

We exploit:

\[(L[[a]] \cup L[[b]])^* = ((L[[a]] \cup L[[b]])^*)^* \]

Thus, we have just to prove that:

\[(L[[a]]^* \cup L[[b]]^*)^* \subseteq ((L[[a]] \cup L[[b]])^*)^* \]

Let \(s \in (L[[a]]^* \cup L[[b]]^*)^* \). Therefore, for some \(n \geq 0 \), we have \(s = s_1 s_2 \cdots s_n \) and either \(s_i \in L[[a]]^* \) or \(s_i \in L[[b]]^* \), for all \(0 \leq i \leq n \).

Thus, \(s_i \in (L[[a]] \cup L[[b]])^* \), for all \(0 \leq i \leq n \), hence \(s \in ((L[[a]] \cup L[[b]])^*)^* \).
Regular expressions: denotational semantics

\[\mathcal{L}[[a^* + b^*]^*] \subseteq \mathcal{L}[(a + b)^*] \]

We have to prove:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq (\mathcal{L}[a] \cup \mathcal{L}[b])^* \]

We exploit:

\[(\mathcal{L}[a] \cup \mathcal{L}[b])^* = ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \]

Thus, we have just to prove that:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \]

Let \(s \in (\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \). Therefore, for some \(n \geq 0 \), we have \(s = s_1 s_2 \cdots s_n \) and either \(s_i \in \mathcal{L}[a]^* \) or \(s_i \in \mathcal{L}[b]^* \), for all \(0 \leq i \leq n \).

Thus, \(s_i \in (\mathcal{L}[a] \cup \mathcal{L}[b])^* \), for all \(0 \leq i \leq n \), hence \(s \in ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^* \).
We have to prove:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq (\mathcal{L}[a] \cup \mathcal{L}[b])^*\]

We exploit:

\[(\mathcal{L}[a] \cup \mathcal{L}[b])^* = ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^*\]

Thus, we have just to prove that:

\[(\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^* \subseteq ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^*\]

Let \(s \in (\mathcal{L}[a]^* \cup \mathcal{L}[b]^*)^*\). Therefore, for some \(n \geq 0\), we have \(s = s_1s_2 \cdots s_n\) and either \(s_i \in \mathcal{L}[a]^*\) or \(s_i \in \mathcal{L}[b]^*\), for all \(0 \leq i \leq n\).

Thus, \(s_i \in (\mathcal{L}[a] \cup \mathcal{L}[b])^*\), for all \(0 \leq i \leq n\), hence \(s \in ((\mathcal{L}[a] \cup \mathcal{L}[b])^*)^*\).
Equivalence result

Theorem (operational and denotational semantics are equivalent)
Let \(E \) be a regular expression, it holds that:
\[
w \in \text{Traces}(E) \iff w \in \mathcal{L}[E]
\]

Proof. Two cases:
\[
\Rightarrow \quad \text{By induction on the structure of } E.
\]
\[
\Leftarrow \quad \text{By induction on the structure of } E.
\]

Property
Let \(E \) and \(F \) regular expressions and \(s \) a string.
\[
E; F \xrightarrow{s} 1 \text{ implies } \exists x, y \text{ s.t. } s = xy \text{ and } E \xrightarrow{x} 1, F \xrightarrow{y} 1
\]
Theorem (operational and denotational semantics are equivalent)
Let E be a regular expression, it holds that:
\[w \in \text{Traces}(E) \iff w \in \mathcal{L}[E] \]

Proof. Two cases:

\Rightarrow By induction on the structure of E.

\Leftarrow By induction on the structure of E.

Property
Let E and F regular expressions and s a string.
\[E; F \xrightarrow{s} 1 \text{ implies } \exists x, y \text{ s.t. } s = xy \text{ and } E \xrightarrow{x} 1, F \xrightarrow{y} 1 \]
Theorem (operational and denotational semantics are equivalent)

Let \(E \) be a regular expression, it holds that:

\[
 w \in \text{Traces}(E) \iff w \in \mathcal{L}[E]
\]

Proof. Two cases:

\(\Rightarrow \) By induction on the structure of \(E \).

\(\Leftarrow \) By induction on the structure of \(E \).

Property

Let \(E \) and \(F \) regular expressions and \(s \) a string.

\[
 E; F \xrightarrow{s} 1 \quad \text{implies} \quad \exists x, y \text{ s.t. } s = xy \text{ and } E \xrightarrow{x} 1, F \xrightarrow{y} 1
\]
Regular expressions’ semantics: equivalence result

Proof (\Rightarrow). By induction on the structure of E.

$E \equiv 0$ Trivial, because $\text{Traces}(0) = \emptyset = \mathcal{L}[0]$.

$E \equiv 1$ Trivial, because $\text{Traces}(1) = \{\varepsilon\} = \mathcal{L}[1]$.

$E \equiv a$ Trivial, because $\text{Traces}(a) = \{a\} = \mathcal{L}[a]$.

$E \equiv E_1 + E_2$ If $w \in \text{Traces}(E_1 + E_2)$, then $\exists \mu \in A \cup \{\varepsilon\}$ and $w' \in A^*$ with $w = \mu w'$ e

$$E_1 + E_2 \xrightarrow{\mu} F \xrightarrow{w'} 1$$

where

$$E_1 \xrightarrow{\mu} F \xrightarrow{w'} 1 \quad \text{or} \quad E_2 \xrightarrow{\mu} F \xrightarrow{w'} 1$$

By inductive hypothesis

$w \in \mathcal{L}[E_1]$ or $w \in \mathcal{L}[E_2]$

Thus, $w \in \mathcal{L}[E_1] \cup \mathcal{L}[E_2] = \mathcal{L}[E_1 + E_2]$.
Equivalence result

$E \equiv E_1; E_2$ If $w \in \text{Traces}(E_1; E_2)$, by the previous property, $\exists x, y$ s.t.

$$E_1 \xrightarrow{x} 1 \quad \text{and} \quad E_2 \xrightarrow{y} 1$$

with $w = xy$. By inductive hypothesis, we have

$$x \in \mathcal{L}[E_1] \quad \text{and} \quad y \in \mathcal{L}[E_2],$$

and, hence, $w \in \mathcal{L}[E_1] \cdot \mathcal{L}[E_2] = \mathcal{L}[E_1; E_2]$.

$E \equiv E_1^*$ Let $S(E_1^*, w)$ be the number of application of $(Star_2)$ in $E_1^* \xrightarrow{w} 1$.

We demonstrate by induction on $n = S(E_1^*, w)$ that

$$w \in \mathcal{L}^n[E_1].$$

($\mathcal{L}^n[E_1]$ stands for $\mathcal{L}[E_1]^n$)
Equivalence result

\[E \equiv E_1^* \ldots \]

If \(S(E_1^*, w) = 0 \), no (Star\(_2\)) but (Star\(_1\)) used, thus \(w = \varepsilon \).

By definition, \(\varepsilon \in \mathcal{L}^0[E_1] = \{\varepsilon\} \).

If \(S(E_1^*, w) = n + 1 \), then \(\exists x, y \) s.t. \(w = xy \) and

\[E_1^* \xrightarrow{x} E_1^* \xrightarrow{y} E_1^* \xrightarrow{\varepsilon} 1 \]

with \(S(E_1^*, x) = n \).

By (local) induction hypothesis \(x \in \mathcal{L}^n[E_1] \). Since \(S(E_1^*, y) = 1 \), (Star\(_2\)) is applied only once in \(E_1^* \xrightarrow{y} E_1^* \), thus \(\exists \mu \in A \cup \{\varepsilon\} \) and \(y' \in A^* \) s.t. \(y = \mu y' \), \(E_1 \xrightarrow{\mu} E' \) and

\[E_1^* \xrightarrow{\mu} E'; E_1^* \xrightarrow{y'} E_1^* \]

Since \(E'; E_1^* \xrightarrow{y'} E_1^* \) does not use (Star\(_2\)), we have \(E' \xrightarrow{y'} 1 \) and, hence, \(E_1 \xrightarrow{\mu y'} 1 \). By (structural) inductive hypothesis, \(y \in \mathcal{L}[E_1] \). Using \(x \in \mathcal{L}^n[E_1] \), we conclude.
Equivalence result

Proof \((\iff)\). By induction on the structure of \(E\).

For the sake of simplicity, we only consider the case:

\[E \equiv E_1^* \]

If \(w \in \mathcal{L}[E_1^*]\), then \(\exists n \text{ s.t. } w \in \mathcal{L}^n[E_1]\).

Then, \(\exists x_1, \ldots, x_n \in \mathcal{L}[E_1] \text{ s.t. } w = x_1 \cdots x_n\).

By inductive hypothesis, \(x_i \in \text{Traces}(E_1)\), that is \(E_1 \xrightarrow{x_i} 1\).

By repeatedly applying \((\text{Star}_2)\), we obtain \(E_1^* \xrightarrow{x_1} 1; E_1^*\).

Since \(1; E_1^* \xrightarrow{\varepsilon} E_1^*\), by \((\text{Seq}_2)\), and \(E_1^* \xrightarrow{\varepsilon} 1\), by \((\text{Star}_1)\), we have

\[E_1^* \xrightarrow{x_1} 1; E_1^* \xrightarrow{x_2} 1; E_1^* \cdots \xrightarrow{x_n} 1; E_1^* \xrightarrow{\varepsilon} 1 \]

and, therefore, \(E_1^* \xrightarrow{w} 1\).
Regular expressions: axiomatic semantics

Axiomatic Semantics (What a program modifies)

- it relates **observable properties** before and after program execution
 - in stateful languages, e.g., if the initial state of a program fulfils the precondition and the program terminates, then the final state is guaranteed to fulfil the postcondition

- it consists of a set of axioms and inference rules that define a **relation**

Axiomatic semantics of regular expressions

- no state in regular expressions
- the observed property is the capability of equivalent expressions to represent the same regular language
- axioms and rules define an equivalence relation $E = F$ that partition the set of all expressions
Axiomatic Semantics (What a program modifies)

- it relates **observable properties** before and after program execution
 - in stateful languages, e.g., if the initial state of a program fulfils the precondition and the program terminates, then the final state is guaranteed to fulfil the postcondition
- it consists of a set of axioms and inference rules that define a **relation**

Axiomatic semantics of regular expressions

- no state in regular expressions
- the observed property is the capability of equivalent expressions to represent the same regular language
- axioms and rules define an **equivalence relation** \(E = F \) that partition the set of all expressions
Regular expressions: axiomatic semantics

Axioms for $E = F$

\[
\begin{align*}
E + (F + G) &= (E + F) + G & \text{(assoc +)} \\
E + F &= F + E & \text{(comm +)} \\
E + 0 &= E & \text{(unit +)} \\
E ; (F ; G) &= (E ; F) ; G & \text{(assoc ;)} \\
1 ; E &= E & \text{(unit ;)} \\
E ; (F + G) &= E ; F + E ; G & \text{(distribL)} \\
(E + F) ; G &= E ; G + F ; G & \text{(distribR)} \\
0 ; E &= 0 & \text{(absorb 0)} \\
E + E &= E & \text{(idemp +)} \\
E^* &= 1 + E^* ; E & \text{(unfolding)} \\
E^* &= (1 + E)^* & \text{(absorb *)} \\
0^* &= 1 & \text{(0^0)} \\
\end{align*}
\]
Regular expressions: axiomatic semantics

Rules for $E = F$

Rule 1 (Substitution):

\[E = F \quad G = H \]

\[G' = H \quad G' = G \]

where G' is obtained from G by replacing an occurrence of E by F

Rule 2 (Equation solution):

\[E = E ; F + G \]

\[E = G ; F^* \]

if F does not produce ε
The axioms are **sound** w.r.t. the observed property, i.e. \(= \) equates expressions representing the same language.

E.g., given \(0 ; E = 0 \), we have:

\[
\mathcal{L}[0 ; E] = \mathcal{L}[0] \cdot \mathcal{L}[E] = \emptyset \cdot \mathcal{L}[E] = \emptyset = \mathcal{L}[0]
\]

Applying the axiomatic approach could be more laborious.

E.g., proving \(E \cdot 0 = 0 \) requires the following inference:

\[
\begin{align*}
0 = 0 ; 0 & \quad (\text{absorb } 0) \\
E ; 0 = E ; 0 & \quad (\text{rule } 1) \\
E ; 0 ; 0 = E ; 0 & \quad (\text{unit } +) \\
E ; 0 + 0 = E ; 0 & \quad (\text{rule } 1) \\
0 ; 0^* = 0 & \quad (\text{absorb } 0) \\
E ; 0 = 0 & \quad (\text{rule } 1) \\
E ; 0 + 0 = E ; 0 & \quad (\text{rule } 2)
\end{align*}
\]
Regular expressions: axiomatic semantics

- The axioms are sound w.r.t. the observed property, i.e. $= \equiv$ equates expressions representing the same language
 - E.g., given $0 ; E = 0$, we have:

$$\mathcal{L}[0 ; E] = \mathcal{L}[0] \cdot \mathcal{L}[E] = \emptyset \cdot \mathcal{L}[E] = \emptyset = \mathcal{L}[0]$$

- Applying the axiomatic approach could be more laborious
 - E.g., proving $E \cdot 0 = 0$ requires the following inference:

$$\begin{align*}
0 &= 0 \quad \text{(absorb 0)} \\
0 \cdot 0 &= 0 \quad \text{(rule 1)} \\
E ; 0 \cdot 0 &= E \quad \text{(rule 1)} \\
E ; 0 + 0 &= E \quad \text{(unit +)} \\
0 &= 0 \quad \text{(absorb 0)} \\
0^* &= 0 \quad \text{(rule 2)} \\
E ; 0 &= 0 \quad \text{(rule 1)}
\end{align*}$$
Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

$$E = F \iff \mathcal{L}[E] = \mathcal{L}[F]$$

Proof (sketch). Two cases:

\Rightarrow (Soundness) Easy to prove

\Leftarrow (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent
Theorem (axiomatic and denotational semantics are equivalent)

Let E and F be regular expressions, it holds that:

$$E = F \iff \mathcal{L}[E] = \mathcal{L}[F]$$

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent
Theorem (axiomatic and denotational semantics are equivalent)

Let \(E \) and \(F \) be regular expressions, it holds that:
\[
E = F \iff \mathcal{L}[E] = \mathcal{L}[F]
\]

Proof (sketch). Two cases:

⇒ (Soundness) Easy to prove

⇐ (Completeness) Require a bit of work (e.g., expression normalization)

Corollary

The three semantics for regular expressions are equivalent