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Overview

m Overview of classic (untimed) process algebra
m Associating exponential distributions to activities

m Introduction to the stochastic process algebra PEPA
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Features of Stochastic Process Algebra

A high-level description technique for continuous-time Markov
chains. ..
m ... but not only:

m hybrid systems;

m continuous-state systems;

...
m A formal method: a textual language with a precise syntax and
semantics.

A compositional approach to performance evaluation: the modelling
and reasoning is modular.
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Performance Evaluation Process Algebra

m Models are constructed from components which engage in activities.

(o, r).P
component
derivative

action type
or name

activity rate
(parameter of an
exponential distribution)

m The language is used to generate a CTMC for performance modelling.

PEPA SOS rules LABELLED  state transition
TRANSITION :
MODEL SYSTEM diagram

CTMC Q
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Su=(,r)S|S+S|A

L

PREFIX: (o, r).S  designated first action

CHOICE: S+S competing components
(race policy)

CONSTANT: AZs assigning names

COOPERATION:  PDIP ¢ L concurrent activity
(individual actions)
a € L cooperative activity
(shared actions)

HIDING: P/L abstractionav € L= a — 71



m The issue of what it means for two timed activities to synchronise is a
vexed one. ..
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m The issue of what it means for two timed activities to synchronise is a
vexed one. ..

Barrier Synchronisation




Timed Synchronisation

N
O
L

—7
Of
i

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 8 /44



m The issue of what it means for two timed activities to synchronise is a
vexed one. ..

s is no longer exponentially distributed




m The issue of what it means for two timed activities to synchronise is a
vexed one. ..
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algebraic considerations limit choices




m The issue of what it means for two timed activities to synchronise is a
vexed one. ..

TIPP: new rate is product of individual rates







m The issue of what it means for two timed activities to synchronise is a
vexed one. ..
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EMPA: one participant is passive




Timed Synchronisation
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m The issue of what it means for two timed activities to synchronise is a

vexed one. ..
# r
R — —>
1 1
Bﬂ r=min(ry, rp) >
P P
B — > ¢ >
2 2

bounded capacity: new rate is the minimum of the rates




Timed Synchronisation
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Cooperation in PEPA

m In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent rate for

that type.

m Synchronisation, or cooperation cannot make a component exceed its
bounded capacity.

m Thus the apparent rate of a cooperation is the minimum of the
apparent rates of the co-operands.
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Operational Semantics of PEPA

So: ——
(o,r).P——P
(asr) ,
) pP—5p
St (a.r)
P+Q——=P
p2
Co: ,a gL

PDQQ——%P’DLQQ

(1) (cv,r)

C: F P(;R L ael
PDFQ—WfDﬁQ'

(a,r) (e,r)
: — el p——sp'
Ho - R ANTY H; P ael
P/L——5P'/L TR
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Multiway Synchronisation

def(fork re)-(join, r;).F’
Wy < (fork, rr)-(doWorky, r1). Wy
W, = (fork, rs,).(doWorkz, r2). W
FE . omE. we.
System d_ef(F % W1) = W,

{fork} { fork}

(fork, r¢).(join, r;).F' o), (join, rj).F’

1
F —wakﬁ) (join, r;).F’
fork,r;
(v,r) (fork, re,).(doWorky, r1). WY g) (doWork;, r1).W{
P —=% P def 2 (fork,re, )
e A=P = Wy —% (doWorky, r1). W/

(fork,r,)
3 (fork, rs,).(doWorkz, r2). Wy —, (doWorksz, r2). Wy

(fork,rr, )

W, (doWorks, r2). Wy
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Multiway Synchronisation

def(fork re).(join, rj).F’
Wi = (fork, rs, ).(doWorky, r1 ). W,
W, & (fork, rr,).(doWorks, r2).Wj
FE, e, W=,
System d_ef(F > W1) B W,

{fork} { fork}

(fork,r¢) .. f (fork,rf; ) ,
F —— (join, r;)F W; ———— (doWorky, r1). W/
(fork,r’) .. _
{%?} Wi Lok, (join, r;).F’ {%ﬂ} (doWorky, r1). W} = LHS
(fork,rr, ) ,
LHS W, ——= (doWorkz, r2). W,
(fork,r'") .. , ,
{%ﬂ} 1 {%ﬁ} W, ———= (join, r;).F’ {%?} (doWork;, ri )W {?ﬁ} (doWorks, r2). W;
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Other Communication Patterns

. def .
Premium = (dwn, r,,).Premium’
. def .
Basic = (dwn, rp).Basic’

S = (dwn, r,).S'

System £ (Premium || Basic) >1S,

(c,r) /
P P ,aég L
pQ 27 prxQ
(c,r) /
Q—>Q adl
pxdQ D, pi @
(cv,r1) / (cv,r2) /
P I?a RQ Q ,a€el
P[}QQ p’ [}QQ/
n r
ra(P) ra(Q) min (ra(P), ra(Q))

L = {dwn}
 (dwnry) .
Premium ——2% Premium’
. 3 dwn,r,
Premium || Basic (wmip),

Premium’ || Basic

S (dwn,rs) 5

Premium || Basic B S (

dwn,rps . .
1), premiumy || Basic IS’

(dwn,rps)

System ~——"**y Premium’ I

(dwn.
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Rates in PEPA

PEPA supports the notion of infinite capacity:

(v, r).P, with r € RooU{nT,n € N}.

m A positive real denotes the rate of the exponential distribution
associated with the activity.

m The top symbol T denotes an unspecified (or passive) rate. The rate
will be assigned by other cooperating components in the system.

m Passive rates are given weights (naturals) which are useful to
determine the relative probabilities of distinct passive activities to
occur. (1T is usually written T for short.)
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Arithmetic for Passive Rates

mT +nT =(m+n)T, foranymneN

T
m. :ﬂ7 for any m,n € N
nT n

min(r,nT) =r, forany r € Rygand n € N

min(mT,nT) = min(m,n)T, forany mneN

m Summation and division between active and passive rates are not
allowed.
m For expression of the following kind:
£><m——|—, r,s € Ryg,m,neN
s nT
we assume that the two divisions have precedence over the
multiplication.
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Apparent Rate Calculation

(n). o GNP
P —_— P Q —_— Q , o c L7 R e n f2 min (ra(P)a ra(Q))
poaQ 2%, prixg () (Q)

L

rif B=a«
ra((ﬁ’r)'P):{ 0if B#a
ra(P+ Q) = ra(P) + ra(Q)

[ min(ra(P),r(Q)) ifaelL
ro(PEIQ) = {ra(P() + Q) ) if o & L

= {50 0L

Components which are both active and passive with respect to some
action type are not allowed, e.g. (o, 1.0).P + (o, T).P.
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For r1, r» positive reals,

(1) (a,r2)

(a, r1).P1 — P1 (a, rg).Pz — P2
(Oz, I’1).P1 Eﬂ}(a,rz).Pg M) P1 Ef}] P2
where
n rn .
R = min ( ro((a, r1).P1), ra((a, r).P>
ra((a, rl).Pl) ra((a, r2).P2) ( a(( ) ) Ot(( ) ))
-nr min(ri, r2) = min(ry, r2).
n r

We recover the intuitive definition of the minimum between the two rates.



For r a positive real,

(a, r).P1 ﬂ) P1 (a, T).Pg ﬂ) P2

a,R
(a.7)-P1 B (o, T).P, % Py 1 Py

i

where
r T

R = (@0 P (@ T)P) min (ra((a, r).P1), ra((a,T),Pz))

T
I min(r, T) = r.
rT

We recover the intuitive definition of infinite capacity — the rate of
synchronisation is determined by the active component.



For r a positive real and any natural n,

(,n).Pr 2 Py (a,nT).Py L20T,

(a.7)-P1 B (e, nT).P, % py b Py

P>

I

where

r nT
R= ra((a, r).P1) ra((a, nT).Ps

T
= min(r,nT) =r.
rnT

] min (ra ((a,r)-P1), ra((a, nT).Pg))

Passive weights may not affect the overall rate if only one passive
component is present.



(Slightly More Complicated) Examples

def

Act = (a, r).Act’

def

Pas = (a,1T).Pas’ + (a,2T).Pas”

def

Sys = Act |{>§} Pas

(a,1T)

(a,1T).Pas’ ——= Pas’
(v, r).Act’ RGNV (o, 1T).Pas’ + («,2T).Pas” 1D, past
Act 0 Actr Pas ‘11, pag
Act ?ﬂ Pas F) Ay {Dﬁ Pas’
Sys LR per {D;Q} Pas’ ’
R' = ra(/:\ct) ra(ll;:s) min (ro(Act), ro(Pas)) = ;% min(r,1T+2T) = %r.
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(Slightly More Complicated) Examples

Act € (a, r).Act’

def

Pas = (a,1T).Pas’ + («,2T).Pas”

def

Sys = Act Eﬁ Pas

It is also possible to prove the following derivation tree:

(a,27T)

(o, 2T).Pas"” ——= Pas"
(a, r).Act’ D pct! (a,1T).Pas’ + («,27T).Pas” 02D, pagr
Act 70, Act Pas 2T, pagr

Act {D;ﬂ} Pas M Act’ {Dj Pas’

Sys LR pct {Dﬁ} Pas’!

2T
R'= — in (ra(Act), ra(Pas)) =
- (At) 7 (Pas) min (ra(Act), ro(Pas))
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min(r,1T4+2T) = 3"



Act &

(a, r).Act’
(a,1T).Pas’ + (v, 27T).Pas”
Sys & Act liﬂ} Pas

def
Pas =

Sys
(a,1/3r) (a,2/3r)

Act’ Ef}l Pas’ Act’ Eﬂ Pas”




Apparent Rates in Active Cooperation

Cli Z (o, rq).CII"
Ser = (a, r,).Ser'

Sys £ (Cli || Cli) B Ser

(@, rg).Clit 4

Cli M Cli’ (o, ry).Ser’ M Ser’
cii || cli X2 ciir || i Gop (@), 6oy
(@.R) )

Cli || Cli b Ser === Cli" || Clii < Ser’

R’ fd

ru . 1 .
fd+ rdr—z min(rg + rg, ru) = 5 min(rg + rg, ry)
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Apparent Rates in Active Cooperation

Cli Z (o, rq).CII"
Ser = (a, r,).Ser'

Sys £ (Cli || Cli) B Ser

The following derivation tree can also be proven:

(@, rg).Clit L50, cjir
cri Lo, e (c, ry).Ser’ (o), geps
cii || cli L2 cii || cii Ser {270, Gepr

Cli || i B Ser 2 cii || i B e

R// — rd

fu . 1 .
Py rdr—: min(rg + rg, ru) = 5 min(rg + rq,ru) = R
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Cli & (a, rg).CIi"
Ser = (a, r,).Ser'

Sys Z(Cli || Cli) B Ser

Cli || Cli Ef}ISer

(o, 1/2min(2rg, ry)) (o, 1/2min(2rg, ry))

Cli" || Cli EﬁSer' Cli || ci’ [{>§Ser'




Labelled Transition System: Details

Derivative Set
Given a PEPA component P, the derivative set of P, denoted by ds(P) is defined
as the smallest set of components such that

m P € ds(P);

m it P9 P’ then P! € ds(P).

Derivation Graph

Let A be a set of action labels and Act = {| (a,r) : v € A, r € Rop|}. The
derivation graph of a component P has ds(P) as the set of nodes.
The multiset of arcs A € ds(P) x ds(P) x Act is such that

P p s (PP (a,r)) €A

with multiplicity equal to the number of distinct derivations P %2 p’.
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Why Multisets

P (,r)P | PE ()P 4 (a,0).P | .| PEY (a,r).P

m If distinct inference trees were not taken into account, then the
derivation graph would have only one transition P ——= (c0r) P’

m With a multiset, we have one, two, ..., n such transitions,
respectively.

m Intuitively, this capture the fact that process P has different apparent
rates in these cases.
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An Algorithm for State-Space Derivation

dS(Po) <~ {Po}
push Py onto Stack
while Stack is not empty do
pop P off Stack
infer multiset (P, P, (a,r)) from P
for all (P,P',(a,r)) do
if P' ¢ ds(Pp) then
push P’ onto Stack
add P’ to ds(Pp)
end if
end for
end while
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The Underlying Markov Process

m Let Py be the initial state of the system.

m Assign a state to each process in ds(Pp).

m For each triple (P, P’, (c, r)) with multiplicity m,
assign rate mr to the transition between P and P’.

Well-Formedness

m Note that all leaves of the derivation trees must have rates in the
(strictly) positive reals.

m This means that passive actions must eventually synchronise with an
active ones.

m Models that do not satisfy this condition are rejected.

m For example,
(a, T).P {?ﬁ (a, T).Q

will be rejected for any P and Q.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 37 / 44



Consumer/Producer in PEPA

Possible variants:

m A buffer with n places:

def

Cons; = (get, rg).Consp Buf, & (get, T).Buf,_;
def
Consy = (cons, r.).Cons; Buf & (get, T).Bufi_;

Prod; % (make, rn).Prod, + (put, T).Bufiy g,
Prod, f(put7 rp).Prod; forl1<i<n-1
Buf, = (get, T).Bufy Bufy £ (put, T).Buf;
Buf; & (get, T).Buf,
+ (put, T).Buf, m and k consumers:
Bufy & (put, T).Buf; X
Sys = Consy 71 Bufy Pl Prod; Cons; || Consg || ... || Cons;

B> Buf, X1 Prod;
{get} {put}
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Consumer/Producer in PEPA

Cons; g get,rg).Cons,  Prod; g (make, ry).Prods

(

Cons, & (cons, rc).Cons;  Prods def (put, rp).Prod;
(
(

Buf, % get, T).Buf; Buf, & (get, T).Bufy + (put, T).Buf,
Bufy & put, T).Buf; Sys & Cons; 55} Buf, Eﬂ Prod;
(get,rg) (get,T)
Cons; ———= Cons» Bufs ———% Bufy

t7
Cons; B Bufs M Cons, B Bufy
{get} {get}

Cons; B Buf, B4 Prod; M Cons, B Buf; B4 Prod;
{get} {put} {get} {put}

t,
Sys —>(ge 's) Cons, B Buf; B4 Prod;
{get} {put}

Can we prove anything else for Sys?
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Consumer/Producer in PEPA

Cons; = (get,rg).Cons,  Prod; = (make,ry).Prod>
Conss g (cons, r.).Cons;  Prod, & (put, rp).Prod;
Buf, % (get,T).Buf; Buf;, % (get,T).Bufy + (put, T).Buf
Buf, & (put, T).Buf Sys &' Cons; ES} Bufs Eﬂ Prod;
(make,rm)

Prod; ————= Prod>

(make,rm)

Cons; X Buf, X1 Prod; Cons; Dﬁ Bufg Prodg
{get} {get} {get

(make,rm)

> >
Sys Consy = Bufs = Prod»
Summarising, the following transitions were found:

Sys (get.rs) ~=""¢% Conss Dﬂ Bufy lfﬂ Prod;

Sys M>Con51 D{] Buf2 Prod2
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Consumer/Producer in PEPA

Cons; g (get, rg).Cons,  Prod; g (make, ry).Prod>

Cons, & (cons, rc).Cons;  Prods g (put, rp).Prod;
Buf, £ (get, T).Buf, Buf;, % (get, T).Bufy + (put, T).Buf,
Buf, & (put, T).Buf Sys &' Cons; ES} Buf, Eﬂ Prod;

Popping Cons; 53} Buf; {Eﬁ} Prod; off the stack,

(cons,rc)
Consy, ———=% Cons;

(cons,rc)

Cons, B Buf; X4 Prod; ————% Cons; P Buf; B4 Prod;
{get} {put} {get} {put}

Prod; —>(make’rm) Prod>

(make,rm)

Cons, X1 Buf; X1 Prod; —————= Cons, B Buf; B Prods
{get} {put} {get} {put}
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Consumer/Producer in PEPA

Cons; & (get, rg).Cons,  Prod; g (make, ry).Prods

Cons, & (cons, rc).Cons;  Prods g (put, rp).Prod;
Buf, % (get, T).Buf, Buf, % (get, T).Bufy + (put, T).Buf,
Bufy, £ (put, T).Buf; Sys £ Cons; <1 Buf; B Prod,

Therefore, we still need to infer transitions for the following processes. . .

Cons; {|><]} Bufs {D{]} Prod>
get put

Cons; B Buf; ™4 Prod;
{get} {put}

Cons, =1 Buf; ™4 Prod,
{get} {put}

...and all those that are found along the way.
Notice that the cooperation structure is fixed across all processes. Thus,

we may denote a state by (i, /, k) to indicate Cons; {Eﬁ} Buf; {Eﬁ} Prod,.
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Consumer/Producer in PEPA: Complete Derivation Graph

(2,2,2)
(2,0,2)
put, r,) (get, rg) (cons, rc)
\ make rm)
(1,2,

(cons, rc)

2)
( ‘) (make, rm)
cons, rc get, rg
(make, rm)| (1,0,2) / \ /
(put rp\ make, rm)
1,1,1) 2, (2,2,1)

1,2) — >
(put, rp)
(get, 1) (make, rm)
(cons, rc)

(make, rm) | (2,0,1)

put rp
(cons, rc) (get, rg)

(1,2,1)

(cons, rc)

(1,0,1)
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Consumer/Producer in PEPA: State-Transition Diagram
(1,2,1) (2,2,2)
(2,0,2) / \ /
(2,1,1) (1,2,2)
o| 60—, / N /
(1,1,1) (2,1,2) —> (2,2,1)

/\ / rp
rm| (2,0,1) (1,1,2)
rc / \
(2,0,2) (1,2,1)

(1,0,1)

re
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