
Performance Modelling of Computer Systems

Mirco Tribastone

Institut für Informatik
Ludwig-Maximilians-Universität München

Stochastic Process Algebra

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 1 / 44

Overview

Overview of classic (untimed) process algebra

Associating exponential distributions to activities

Introduction to the stochastic process algebra PEPA

Bibliographic references:

J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

A. Clark, J. Hillston, and M. Tribastone. Stochastic Process
Algebras. In Formal Methods for Performance Evaluation: the 7th
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007, LNCS 4486,
Springer-Verlag.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 2 / 44

Features of Stochastic Process Algebra

A high-level description technique for continuous-time Markov
chains. . .

. . . but not only:

hybrid systems;
continuous-state systems;
. . .

A formal method: a textual language with a precise syntax and
semantics.

A compositional approach to performance evaluation: the modelling
and reasoning is modular.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 3 / 44

Performance Evaluation Process Algebra

Models are constructed from components which engage in activities.

(α, r).P

��
�* 6 HH

HY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

The language is used to generate a CTMC for performance modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 4 / 44

PEPA

BNF Syntax

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components
(race policy)

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L
P α /∈ L concurrent activity

(individual actions)
α ∈ L cooperative activity
(shared actions)

HIDING: P/L abstraction α ∈ L⇒ α→ τ

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 5 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

s?

r?

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 6 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s , s)1 2

Barrier Synchronisation

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 7 / 44

Timed Synchronisation

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 8 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s , s)1 2

s is no longer exponentially distributed

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 9 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

s?

r?

algebraic considerations limit choices

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 10 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

r = r x r1 2

TIPP: new rate is product of individual rates

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 11 / 44

Timed Synchronisation

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 12 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r =?1

P2
r2
s 2

r2
s 2

r = r 2

r =?1

EMPA: one participant is passive

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 13 / 44

Timed Synchronisation

UNF 738 S

UNLEADED
 PETROL

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 14 / 44

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a
vexed one. . .

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

1 2r = min(r , r)

bounded capacity: new rate is the minimum of the rates

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 15 / 44

Timed Synchronisation

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 16 / 44

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent rate for
that type.

Synchronisation, or cooperation cannot make a component exceed its
bounded capacity.

Thus the apparent rate of a cooperation is the minimum of the
apparent rates of the co-operands.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 17 / 44

Operational Semantics of PEPA

S0 :
(α,r).P

(α,r)−−−→P
A0 : P

(α,r)−−−→P′

A
(α,r)−−−→P′

, A
def
= P

S1 : P
(α,r)−−−→P′

P+Q
(α,r)−−−→P′

S2 : Q
(α,r)−−−→Q′

P+Q
(α,r)−−−→Q′

C0 : P
(α,r)−−−→P′

P BC
L

Q
(α,r)−−−→P′ BC

L
Q
, α 6∈ L C1 : Q

(α,r)−−−→Q′

P BC
L

Q
(α,r)−−−→P BC

L
Q′
, α 6∈ L

C2 : P
(α,r1)−−−→P′ Q

(α,r2)−−−→Q′

P BC
L

Q
(α,R)−−−→P′ BC

L
Q′
, α ∈ L R = r1

rα(P)
r2

rα(Q) min (rα(P), rα(Q))

H0 : P
(α,r)−−−→P′

P/L
(α,r)−−−→P′/L

, α 6∈ L H1 : P
(α,r)−−−→P′

P/L
(τ,r)−−−→P′/L

, α ∈ L

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 18 / 44

Multiway Synchronisation

F
def
= (fork , rf).(join, rj).F

′

W1
def
= (fork , rf1).(doWork1 , r1).W ′

1

W2
def
= (fork , rf2).(doWork2 , r2).W ′

2

F ′
def
= . . . , W ′

1
def
= . . . , W ′

2
def
= . . .

System
def
=
(
F BC

{fork}
W1

)
BC
{fork}

W2

P
(α,r)−−−→ P ′

A
(α,r)−−−→ P ′

, A
def
= P =⇒

1
(fork, rf).(join, rj).F

′ (fork,rf)−−−−→ (join, rj).F
′

F
(fork,rf)−−−−→ (join, rj).F ′

2
(fork, rf1).(doWork1 , r1).W

′
1

(fork,rf1)−−−−−→ (doWork1 , r1).W
′
1

W1

(fork,rf1)−−−−−→ (doWork1 , r1).W ′
1

3
(fork, rf2).(doWork2 , r2).W

′
2

(fork,rf2)−−−−−→ (doWork2 , r2).W
′
2

W2

(fork,rf2)−−−−−→ (doWork2 , r2).W ′
2

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 19 / 44

Multiway Synchronisation

F
def
= (fork , rf).(join, rj).F

′

W1
def
= (fork , rf1).(doWork1 , r1).W ′

1

W2
def
= (fork , rf2).(doWork2 , r2).W ′

2

F ′
def
= . . . , W ′

1
def
= . . . , W ′

2
def
= . . .

System
def
=
(
F BC

{fork}
W1

)
BC
{fork}

W2

F
(fork,rf)−−−−→ (join, rj)F

′ W1

(fork,rf1)−−−−−→ (doWork1 , r1).W
′
1

F BC
{fork}

W1
(fork,r′)−−−−→ (join, rj).F ′ BC

{fork}
(doWork1 , r1).W ′

1 ≡ LHS

LHS W2

(fork,rf2)−−−−−→ (doWork2 , r2).W
′
2

F BC
{fork}

W1 BC
{fork}

W2
(fork,r′′)−−−−−→ (join, rj).F ′ BC

{fork}
(doWork1 , r1)W ′

1
BC
{fork}

(doWork2 , r2).W ′
2

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 20 / 44

Other Communication Patterns

Premium
def
= (dwn, rp).Premium′

Basic
def
= (dwn, rb).Basic ′

S
def
= (dwn, rs).S ′

. . .

System
def
= (Premium ‖ Basic) BC

L
S ,

L = {dwn}

P
(α,r)−−−→ P ′

P BC
L

Q
(α,r)−−−→ P ′ BC

L
Q
, α 6∈ L

Q
(α,r)−−−→ Q ′

P BC
L

Q
(α,r)−−−→ P BC

L
Q ′
, α 6∈ L

P
(α,r1)−−−→ P ′ Q

(α,r2)−−−→ Q ′

P BC
L

Q
(α,R)−−−→ P ′ BC

L
Q ′

, α ∈ L

R =
r1

rα(P)

r2
rα(Q)

min (rα(P), rα(Q))

Premium
(dwn,rp)−−−−−→ Premium′

Premium ‖ Basic (dwn,rp)−−−−−→ Premium′ ‖ Basic S
(dwn,rs)−−−−−→ S ′

Premium ‖ Basic BC
L
S

(dwn,rps)−−−−−→ Premium′ ‖ Basic BC
L
S ′

System
(dwn,rps)−−−−−→ Premium′ ‖ Basic BC

L
S ′

Basic
(dwn,rb)−−−−−→ Basic ′

Premium ‖ Basic (dwn,rb)−−−−−→ Premium ‖ Basic ′ S
(dwn,rs)−−−−−→ S ′

Premium ‖ Basic BC
L
S

(dwn,rbs)−−−−−→ Premium ‖ Basic ′ BC
L
S ′

System
(dwn,rbs)−−−−−→ Premium ‖ Basic ′ BC

L
S ′

System

Premium′ ‖ Basic BC
L
S ′ Premium ‖ Basic ′ BC

L
S ′

(dwn, rps) (dwn, rbs)

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 21 / 44

Rates in PEPA

PEPA supports the notion of infinite capacity:

(α, r).P , with r ∈ R>0 ∪ {n>, n ∈ N}.

A positive real denotes the rate of the exponential distribution
associated with the activity.

The top symbol > denotes an unspecified (or passive) rate. The rate
will be assigned by other cooperating components in the system.

Passive rates are given weights (naturals) which are useful to
determine the relative probabilities of distinct passive activities to
occur. (1> is usually written > for short.)

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 22 / 44

Arithmetic for Passive Rates

m>+ n> = (m + n)>, for any m, n ∈ N

m>
n>

=
m

n
, for any m, n ∈ N

min(r , n>) = r , for any r ∈ R>0 and n ∈ N

min(m>, n>) = min(m, n)>, for any m, n ∈ N

Summation and division between active and passive rates are not
allowed.
For expression of the following kind:

r

s
× m>

n>
, r , s ∈ R>0,m, n ∈ N

we assume that the two divisions have precedence over the
multiplication.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 23 / 44

Apparent Rate Calculation

P
(α,r1)−−−→ P ′ Q

(α,r2)−−−→ Q ′

P BC
L
Q

(α,R)−−−→ P ′ BC
L
Q ′

, α ∈ L, R =
r1

rα(P)

r2
rα(Q)

min (rα(P), rα(Q))

rα
(

(β, r) .P
)

=

{
r if β = α
0 if β 6= α

rα(P + Q) = rα(P) + rα(Q)

rα(P BC
L
Q) =

{
min

(
rα(P), rα(Q)

)
if α ∈ L

rα(P) + rα(Q) if α 6∈ L

rα(P/L) =

{
rα(P) if α 6∈ L
0 if α ∈ L

Components which are both active and passive with respect to some
action type are not allowed, e.g. (α, 1.0).P + (α,>).P.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 24 / 44

Examples

For r1, r2 positive reals,

(α, r1).P1
(α,r1)−−−→ P1 (α, r2).P2

(α,r2)−−−→ P2

(α, r1).P1 BC
{α}

(α, r2).P2
(α,R)−−−→ P1 BC

{α}
P2

,

where

R =
r1

rα
(
(α, r1).P1

) r2

rα
(
(α, r2).P2

) min
(
rα
(
(α, r1).P1

)
, rα
(
(α, r2).P2

))
=

r1
r1

r2
r2

min(r1, r2) = min(r1, r2).

We recover the intuitive definition of the minimum between the two rates.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 25 / 44

Examples

For r a positive real,

(α, r).P1
(α,r)−−−→ P1 (α,>).P2

(α,>)−−−→ P2

(α, r).P1 BC
{α}

(α,>).P2
(α,R)−−−→ P1 BC

{α}
P2

,

where

R =
r

rα
(
(α, r).P1

) >
rα
(
(α,>).P2

) min
(
rα
(
(α, r).P1

)
, rα
(
(α,>).P2

))
=

r

r

>
>

min(r ,>) = r .

We recover the intuitive definition of infinite capacity — the rate of
synchronisation is determined by the active component.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 26 / 44

Examples

For r a positive real and any natural n,

(α, r).P1
(α,r)−−−→ P1 (α, n>).P2

(α,n>)−−−−→ P2

(α, r).P1 BC
{α}

(α, n>).P2
(α,R)−−−→ P1 BC

{α}
P2

,

where

R =
r

rα
(
(α, r).P1

) n>
rα
(
(α, n>).P2

) min
(
rα
(
(α, r).P1

)
, rα
(
(α, n>).P2

))
=

r

r

n>
n>

min(r , n>) = r .

Passive weights may not affect the overall rate if only one passive
component is present.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 27 / 44

(Slightly More Complicated) Examples

Act
def
= (α, r).Act ′

Pas
def
= (α, 1>).Pas ′ + (α, 2>).Pas ′′

Sys
def
= Act BC

{α}
Pas

(α, r).Act ′
(α,r)−−−→ Act ′

Act
(α,r)−−−→ Act ′

(α, 1>).Pas ′
(α,1>)−−−−→ Pas ′

(α, 1>).Pas ′ + (α, 2>).Pas ′′
(α,1>)−−−−→ Pas ′

Pas
(α,1>)−−−−→ Pas ′

Act BC
{α}

Pas
(α,R′)−−−−→ Act ′ BC

{α}
Pas ′

Sys
(α,R′)−−−−→ Act ′ BC

{α}
Pas ′

,

R ′ =
r

rα(Act)

1>
rα(Pas)

min
(
rα(Act), rα(Pas)

)
=

r

r

1>
1>+ 2>

min(r , 1>+2>) =
1

3
r .

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 28 / 44

(Slightly More Complicated) Examples

Act
def
= (α, r).Act ′

Pas
def
= (α, 1>).Pas ′ + (α, 2>).Pas ′′

Sys
def
= Act BC

{α}
Pas

It is also possible to prove the following derivation tree:

(α, r).Act ′
(α,r)−−−→ Act ′

Act
(α,r)−−−→ Act ′

(α, 2>).Pas ′′
(α,2>)−−−−→ Pas ′′

(α, 1>).Pas ′ + (α, 2>).Pas ′′
(α,2>)−−−−→ Pas ′′

Pas
(α,2>)−−−−→ Pas ′′

Act BC
{α}

Pas
(α,R′′)−−−−→ Act ′ BC

{α}
Pas ′′

Sys
(α,R′′)−−−−→ Act ′ BC

{α}
Pas ′′

,

R ′′ =
r

rα(Act)

2>
rα(Pas)

min
(
rα(Act), rα(Pas)

)
=

r

r

2>
1>+ 2>

min(r , 1>+2>) =
2

3
r .

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 29 / 44

(Slightly More Complicated) Examples

Act
def
= (α, r).Act ′

Pas
def
= (α, 1>).Pas ′ + (α, 2>).Pas ′′

Sys
def
= Act BC

{α}
Pas

Sys

Act ′ BC
{α}

Pas ′ Act ′ BC
{α}

Pas ′′

(α, 1/3r) (α, 2/3r)

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 30 / 44

Apparent Rates in Active Cooperation

Cli
def
= (α, rd).Cli ′

Ser
def
= (α, ru).Ser ′

Sys
def
= (Cli ‖ Cli) BC

{α}
Ser

(α, rd).Cli ′
(α,rd)−−−→ Cli ′

Cli
(α,rd)−−−→ Cli ′

Cli ‖ Cli (α,rd)−−−→ Cli ′ ‖ Cli

(α, ru).Ser ′
(α,ru)−−−→ Ser ′

Ser
(α,ru)−−−→ Ser ′

Cli ‖ Cli BC
{α}

Ser
(α,R′)−−−−→ Cli ′ ‖ Cli BC

{α}
Ser ′

,

R ′ =
rd

rd + rd

ru
ru

min(rd + rd , ru) =
1

2
min(rd + rd , ru)

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 31 / 44

Apparent Rates in Active Cooperation

Cli
def
= (α, rd).Cli ′

Ser
def
= (α, ru).Ser ′

Sys
def
= (Cli ‖ Cli) BC

{α}
Ser

The following derivation tree can also be proven:

(α, rd).Cli ′
(α,rd)−−−→ Cli ′

Cli
(α,rd)−−−→ Cli ′

Cli ‖ Cli (α,rd)−−−→ Cli ‖ Cli ′
(α, ru).Ser ′

(α,ru)−−−→ Ser ′

Ser
(α,ru)−−−→ Ser ′

Cli ‖ Cli BC
{α}

Ser
(α,R′′)−−−−→ Cli ‖ Cli ′ BC

{α}
Ser ′

,

R ′′ =
rd

rd + rd

ru
ru

min(rd + rd , ru) =
1

2
min(rd + rd , ru) = R ′

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 32 / 44

Apparent Rates in Active Cooperation

Cli
def
= (α, rd).Cli ′

Ser
def
= (α, ru).Ser ′

Sys
def
= (Cli ‖ Cli) BC

{α}
Ser

Cli ‖ Cli BC
{α}

Ser

Cli ′ ‖ Cli BC
{α}

Ser ′ Cli ‖ Cli ′ BC
{α}

Ser ′

(
α, 1/2 min(2 rd , ru)

) (
α, 1/2 min(2 rd , ru)

)

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 33 / 44

Labelled Transition System: Details

Derivative Set

Given a PEPA component P, the derivative set of P, denoted by ds(P) is defined
as the smallest set of components such that

P ∈ ds(P);

if P
(α,r)−−−→ P ′ then P ′ ∈ ds(P).

Derivation Graph

Let A be a set of action labels and Act = {| (α, r) : α ∈ A, r ∈ R>0|}. The
derivation graph of a component P has ds(P) as the set of nodes.
The multiset of arcs A ∈ ds(P)× ds(P)×Act is such that

P
(α,r)−−−→ P ′ =⇒

(
P,P ′, (α, r)

)
∈ A,

with multiplicity equal to the number of distinct derivations P
(α,r)−−−→ P ′.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 34 / 44

Why Multisets

P
def
= (α, r).P ′ P

def
= (α, r).P ′ + (α, r).P ′ . . . P

def
=
∑

n(α, r).P ′

If distinct inference trees were not taken into account, then the

derivation graph would have only one transition P
(α,r)−−−→ P ′.

With a multiset, we have one, two, . . . , n such transitions,
respectively.

Intuitively, this capture the fact that process P has different apparent
rates in these cases.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 35 / 44

An Algorithm for State-Space Derivation

ds(P0)⇐ {P0}
push P0 onto Stack
while Stack is not empty do

pop P off Stack
infer multiset

(
P,P ′, (α, r)

)
from P

for all
(
P,P ′, (α, r)

)
do

if P ′ 6∈ ds(P0) then
push P ′ onto Stack
add P ′ to ds(P0)

end if
end for

end while

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 36 / 44

The Underlying Markov Process

Let P0 be the initial state of the system.

Assign a state to each process in ds(P0).

For each triple
(
P,P ′, (α, r)

)
with multiplicity m,

assign rate m r to the transition between P and P ′.

Well-Formedness

Note that all leaves of the derivation trees must have rates in the
(strictly) positive reals.

This means that passive actions must eventually synchronise with an
active ones.

Models that do not satisfy this condition are rejected.

For example,
(α,>).P BC

{α}
(α,>).Q

will be rejected for any P and Q.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 37 / 44

Consumer/Producer in PEPA

Cons1
def
= (get, rg).Cons2

Cons2
def
= (cons, rc).Cons1

Prod1
def
= (make, rm).Prod2

Prod2
def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1

Buf1
def
= (get,>).Buf0

+ (put,>).Buf2

Buf0
def
= (put,>).Buf1

Sys
def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Possible variants:

A buffer with n places:

Bufn
def
= (get,>).Bufn−1

Bufi
def
= (get,>).Bufi−1

+ (put,>).Bufi+1 ,

for 1 ≤ i ≤ n − 1

Buf0
def
= (put,>).Buf1

and k consumers:

k︷ ︸︸ ︷
Cons1 ‖ Cons1 ‖ . . . ‖ Cons1

BC
{get}

Bufn BC
{put}

Prod1

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 38 / 44

Consumer/Producer in PEPA

Cons1
def
= (get, rg).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Cons1
(get,rg)−−−−→ Cons2 Buf2

(get,>)−−−−→ Buf1

Cons1 BC
{get}

Buf2
(get,rg)−−−−→ Cons2 BC

{get}
Buf1

Cons1 BC
{get}

Buf2 BC
{put}

Prod1
(get,rg)−−−−→ Cons2 BC

{get}
Buf1 BC

{put}
Prod1

Sys
(get,rg)−−−−→ Cons2 BC

{get}
Buf1 BC

{put}
Prod1

Can we prove anything else for Sys?

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 39 / 44

Consumer/Producer in PEPA

Cons1
def
= (get, rg).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Prod1
(make,rm)−−−−−−→ Prod2

Cons1 BC
{get}

Buf2 BC
{get}

Prod1
(make,rm)−−−−−−→ Cons1 BC

{get}
Buf2 BC

{put}
Prod2

Sys
(make,rm)−−−−−−→ Cons1 BC

{get}
Buf2 BC

{put}
Prod2

Summarising, the following transitions were found:

Sys
(get,rg)−−−−→Cons2 BC

{get}
Buf1 BC

{put}
Prod1

Sys
(make,rm)−−−−−−→Cons1 BC

{get}
Buf2 BC

{put}
Prod2

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 40 / 44

Consumer/Producer in PEPA

Cons1
def
= (get, rg).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Popping Cons2 BC
{get}

Buf1 BC
{put}

Prod1 off the stack,

Cons2
(cons,rc)−−−−−→ Cons1

Cons2 BC
{get}

Buf1 BC
{put}

Prod1
(cons,rc)−−−−−→ Cons1 BC

{get}
Buf1 BC

{put}
Prod1

,

Prod1
(make,rm)−−−−−−→ Prod2

Cons2 BC
{get}

Buf1 BC
{put}

Prod1
(make,rm)−−−−−−→ Cons2 BC

{get}
Buf1 BC

{put}
Prod2

.

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 41 / 44

Consumer/Producer in PEPA

Cons1
def
= (get, rg).Cons2 Prod1

def
= (make, rm).Prod2

Cons2
def
= (cons, rc).Cons1 Prod2

def
= (put, rp).Prod1

Buf2
def
= (get,>).Buf1 Buf1

def
= (get,>).Buf0 + (put,>).Buf2

Buf0
def
= (put,>).Buf1 Sys

def
= Cons1 BC

{get}
Buf2 BC

{put}
Prod1

Therefore, we still need to infer transitions for the following processes. . .

Cons1 BC
{get}

Buf2 BC
{put}

Prod2

Cons1 BC
{get}

Buf1 BC
{put}

Prod1

Cons2 BC
{get}

Buf1 BC
{put}

Prod2

. . . and all those that are found along the way.
Notice that the cooperation structure is fixed across all processes. Thus,
we may denote a state by 〈i , j , k〉 to indicate Consi BC{get}Bufj

BC
{put}

Prodk .

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 42 / 44

Consumer/Producer in PEPA: Complete Derivation Graph

〈1, 2, 1〉

〈2, 1, 1〉 〈1, 2, 2〉

〈1, 1, 1〉 〈2, 1, 2〉

〈2, 0, 1〉 〈1, 1, 2〉

〈2, 2, 1〉

〈2, 2, 2〉

〈1, 0, 1〉

〈1, 0, 2〉

〈2, 0, 2〉

〈2, 0, 2〉 〈1, 2, 1〉

(get, rg)

(make, rm)

(cons, rc)

(make, rm)

(get, rg)

(get, rg)
(make, rm)

(cons, rc)

(put, rp)

(cons, rc)

(make, rm)

(cons, rc)

(cons, rc)

(make, rm)

(make, rm)

(put, rp)

(cons, rc)

(put, rp)

(get, rg)

(put, rp)

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 43 / 44

Consumer/Producer in PEPA: State-Transition Diagram

〈1, 2, 1〉

〈2, 1, 1〉 〈1, 2, 2〉

〈1, 1, 1〉 〈2, 1, 2〉

〈2, 0, 1〉 〈1, 1, 2〉

〈2, 2, 1〉

〈2, 2, 2〉

〈1, 0, 1〉

〈1, 0, 2〉

〈2, 0, 2〉

〈2, 0, 2〉 〈1, 2, 1〉

rg

rm

rc
rm

rg

rg
rm

rc

rp

rc

rm

rc

rc

rm

rm

rp

rc

rp

rg

rp

Tribastone (IFI LMU) Performance Modelling of Computer Systems SPA 44 / 44

