
Technology Background
Development environment, Skeleton and Libraries

Christian Kroiß
(based on slides by Dr. Andreas Schroeder)

18.04.2013 Christian Kroiß

Outline

Lecture 1
I. Eclipse

II. Redmine, Jenkins, Git

Lecture 2
IV. Skeleton Overview

V. Libraries Overview

VI. Game Rules and Coding Session Task

18.04.2013 Christian Kroiß 2

Part I. Eclipse

18.04.2013 Christian Kroiß

Part I: Goals

Learning Target

 Recognize the power of Eclipse

 Identify what you did not know yet

 Know where to find tutorials and help

 Being able to set up the Eclipse IDE for the lab

18.04.2013 Christian Kroiß 4

Eclipse

Eclipse is far more than a Java editor

 Code navigation and exploration

 Refactoring

 Background compilation

 Customizable build system

 Extensibile: Git, JUnit, Code Coverage, Web development tools, …

18.04.2013 Christian Kroiß 5

Eclipse

 Recommended reads

 Workbench user guide > Tips and tricks

 Java development user guide > Tips and tricks

 Recommended shortcuts

 Quick Fix (Ctrl+1), Quick Access (Ctrl+3)

 Open Type / resource (Ctrl+Shift+T / Ctrl+Shift+R)

 Open declaration / Javadoc (F3 / F2)

 Quick type hierarchy (Ctrl+T)

 Quick outline (Ctrl+O)

 Refactor / Rename (Alt+Shift+T / Alt+Shift+R)

 … Key bindings overview (Ctrl+Shift+L) 

18.04.2013 Christian Kroiß 6

Setting up Eclipse

To setup your Eclipse, you need to:

1. Download and install pre-packaged eclipse

2. Setup code styles (formatting, comments, field prefix)

3. Setup Save actions, file encoding, quick diffs

4. Do the initial Git clone

5. Setup EclEmma

Setup steps:

http://svn.pst.ifi.lmu.de/redmine/projects/swep13/wiki/Eclipse_Setup

18.04.2013 Christian Kroiß 7

ttp://svn.pst.ifi.lmu.de/redmine/projects/swep13/wiki/Eclipse_Setup
ttp://svn.pst.ifi.lmu.de/redmine/projects/swep13/wiki/Eclipse_Setup

Part II. Git, Redmine, Jenkins

18.04.2013 Christian Kroiß

Part II: Learning Targets

Learning Targets

 Get familiar with Git

 Understand the link between Redmine and the process

 User Stories, tasks, issues

 Ticket lifecycle

 Effort Estimation and time tracking

 Visualizing progress with charts

 Wiki as knowledge base

 Continuous integration with Jenkins

18.04.2013 Christian Kroiß 9

Git

 Git is a modern distributed version control system (VCS)

 Initial release 2005 by Linus Torwalds

 Widely adopted in open source communities:
Linux Kernel, Ruby on Rails, Android, Debian, …

 Can best be learned if you forget everything you know
about how version control works!

18.04.2013 Christian Kroiß

http://git-scm.com/

10

http://git-scm.com/
http://git-scm.com/
http://git-scm.com/

Fundamentals of version control

 Repository – a database containing files under version control and the

history of these files.

 Working Copy – a local copy of files from the repository. May be

modified, and may not represent the most recent repository revision.

 Revision – the state of a file (CVS), of a branch (Git), or of the whole

repository (SVN) as committed to the version control system.

 Change Set – a set of modifications to files under version control.

 Commit – the act of writing a change set from the working copy to the
repository.

 Update – the act of fetching changes that have been performed on the

repository since the last update and applying them to the working copy.

18.04.2013 Christian Kroiß 11

Fundamentals of version control

 Branch – a set of files under version control that evolve independently

of the others. Often defines an own line of development of a product.

 Tag – a human-readable link to a specific revision. Is often used to mark

the source code of released versions (e.g. tag v_2_0_3).

 Trunk/Master – the branch denoting the main line of development of a

product.

 Merge – the act of reconciling change sets from parallel branches.

 Switch – the act of changing the working copy from a branch to another.

 Conflict – occurs when a file was changed concurrently, and the VCS

cannot reconcile the changes automatically. Conflicts must be resolved
manually.

18.04.2013 Christian Kroiß 12

Centralized VCS

18.04.2013 Christian Kroiß

dev machine server

working

Latest from VCS

update

commit

merge

branch

 Cannot work without connectivity

 Needs server to branch and merge

 Cannot save experimental features locally

13

Decentralized VCS

18.04.2013 Christian Kroiß

 Works without connectivity

 Can branch and merge against local VCS

 Needs synchronization among multiple VCS

server

working

synchronize

synchronize

dev machine

switch

commit

merge

branch

14

Git

18.04.2013 Christian Kroiß

server dev machine

fetch

Local branches
(on server)

Local
branches

Remote
branches

merge

clone

push

pull = fetch & merge

commit

switch

merge
working

15

Git Staging

 Git allows to select changes for commit

 “Staging area” lies between working area and local
branches

18.04.2013 Christian Kroiß

Working
area

Local
branches

Staging
area

commit stage

16

eGit Staging View

 Very helpful tool for creating commits

 Much more faster than Menu > Team > Add

18.04.2013 Christian Kroiß 17

Synchronize Workspace View

 Menu TeamSynchronize Workspace (or change to
Team Synchronizing perspective)

18.04.2013 Christian Kroiß 18

eGit from the start

18.04.2013 Christian Kroiß 19

eGit: cloning

18.04.2013 Christian Kroiß

Git Location: http://svn.pst.ifi.lmu.de/git/swep13/

20

http://svn.pst.ifi.lmu.de/git/swep13/
http://svn.pst.ifi.lmu.de/git/swep13/

eGit: clone results

18.04.2013 Christian Kroiß 21

eGit: Import Projects

18.04.2013 Christian Kroiß 22

Creating a new branch

18.04.2013 Christian Kroiß 23

The art of branching

 When working on a user story

 Create a branch for your story
(= feature branch)

 Work on the branch

 Merge the branch into master

 Don’t disconnect from the repository
(= team): Fetch/pull regularly!

 Read the Git tutorials

18.04.2013 Christian Kroiß 24

Tracking remote branches

 Instead of checking out a remote
branch directly, it's better to create
a local branch that tracks the
remote branch.

 After that, you can pull and push
directly to/from the original
remote branch.

 If you push a branch that you
created locally, the local branch
starts tracking the remote copy.

18.04.2013 Christian Kroiß 25

Deleting remote branches

 Deleting the remote reference
doesn't do anything on the
server.

 To remove a remote branch you
have to push "nothing" to the
branch:
git push origin :branch1

or with the push dialog in eGit
(see picture).

 Deleting remote branches is
most fun when others are
tracking it 

18.04.2013 Christian Kroiß 26

Switching between branches

 Git allows to switch between branches at any time

 eGit: MenuTeamSwitch To

 If you have uncommitted changes, you have to either
commit them first or stash your changes

 eGit: Menu in Git Repository View  Stash Changes

 Those changes get "cached" and you can switch branches

 You can restore stashed changes in the Git Repository View

18.04.2013 Christian Kroiß 27

Resolving conflicts

 Merging branches may lead to conflicts. When this
happens you end up in a "merging-state" where you have
to resolve the conflicts.

 Resolve conflicts:

 MenuTeam
Merge Tool

 Or/and edit
manually

 Then:

 Add to index

 Commit

18.04.2013 Christian Kroiß 28

Other (e)Git hints

 Undoing changes:
 Use MenuReplace(HEAD|Commit|…) to replace files/folders with

previous versions from the repository

 If you're used to SVN: don't forget to push
 Commit only writes to your local repository. Use "commit and push" in

Commit dialog or push explicitly.

 Resolving conflicts without editing (e.g. for binary files)
 git checkout --ours <path>
 git checkout --theirs <path>

 Use own repository (e.g. GitHub) to experiment!
 Install full Git distribution (www.git-scm.com) and (optionally) GUI

like TortoiseGit, etc.
 Have a look at the command line tools

18.04.2013 Christian Kroiß 29

http://www.git-scm.com/
http://www.git-scm.com/
http://www.git-scm.com/

Some words on collaboration…

Merging a user story into master means integration

 Conflicts must be carefully resolved

 The whole codebase must compile

 All tests must pass:
unit tests, integration tests, UI tests, system tests

Integrate early and opportunistically,
It will not get easier if you wait!

18.04.2013 Christian Kroiß 30

Redmine

 Redmine (www.redmine.org)

 official "The Bug Is A Lie" project management app

 Project location:
http://svn.pst.ifi.lmu.de/redmine/projects/swep13

18.04.2013 Christian Kroiß 31

http://www.redmine.org/
http://svn.pst.ifi.lmu.de/redmine/projects/swep13

Redmine overview

 Main features of Redmine

 Wiki – knowledge base

 Connection to version control system (Git)

 Configurable ticket system

 Timeline – what happened

 Keeping track of progress with charts

 Roadmap – was should happen next

 Discussion forums (or fora if you have a Latinum…)

18.04.2013 Christian Kroiß 32

Project Wiki in Redmine

 Team members organize the content of the Wiki together.
 Used for know-how sharing, meeting minutes, design and

architecture descriptions, team barbecue planning…
 Allows to link tickets, files in the Git, change sets, specific versions,

etc.
 See http://www.redmine.org/projects/redmine/wiki/RedmineWikis

18.04.2013 Christian Kroiß 33

http://www.redmine.org/projects/redmine/wiki/RedmineWikis

Ticket overview

 Three ticket types: User Story, Task, Issue.
 Tickets can be arranged in trees (e.g. tasks of user story).
 Sprints and product backlog are modeled as target versions for

tickets.
 Redmine supports priorities, estimated effort, and time tracking.

18.04.2013 Christian Kroiß 34

Editing tickets

 Workflow: Successive updates of status and estimated
remaining effort.

 (Re-)Assignment of tasks to team members.
 Allows tracking time for different activities.

18.04.2013 Christian Kroiß 35

Ticket Status

Status Description

New A ticket was created but work on it hasn't started yet.

In Progress The ticket is worked on.

Resolved The member of the team who was assigned for the ticket thinks
the ticket is finished.

Feedback Feedback of other members is requested. Details would be given
in ticket comments.

Closed The test lead, issue reporter, customer, or product owner* has
accepted the resolution of the ticket.

Rejected The ticket was found to be invalid. Further details have to be given
in comments.

18.04.2013 Christian Kroiß 36

* This topic will be discussed in one of the next sessions

 Ticket Lifecycle

18.04.2013 Christian Kroiß

New & assigned

In Progress

Resolved

Closed

Task Fix NPE Prio: 20

Estimated = unchanged

Remaining = 0

Worked = total hours worked
37

Charts in Redmine

 Burndown charts for
sprint and product

 Logged hours (by
activity, user, etc.)

 Deviation of logged
and estimated time

18.04.2013 Christian Kroiß 38

Continuous Integration with
Jenkins

 Continuous integration workflow:
1. Check out code from Git

2. Build (e.g. using Ant)

3. Run tests + generate reports

4. If build is ok, deploy in integration environment

 Benefits of continuous integration
 Frequent full builds and tests in integration environment

 Test & Test coverage reports for each build available

 Test report history correlated with versions in Git
 can help with spotting problem causes

 Current status and evolution of the project is visible to
whole team (CI web-app + notification via e-mail)

18.04.2013 Christian Kroiß 39

Jenkins project overview page

18.04.2013 Christian Kroiß 40

Jenkins installation for SWEP: http://svn.pst.ifi.lmu.de/jenkins/

http://svn.pst.ifi.lmu.de/jenkins/

Test Coverage Report

18.04.2013 Christian Kroiß 41

Project

Class

Summary

18.04.2013 Christian Kroiß

Summary: Development
Environment

 Eclipse

 The IDE for our project

 Git

 Distributed version control system

 Built-in branching facilities

 Redmine and Jenkins

 Knowledge base

 Ticket repository for user stories, tasks and issues

 Effort estimation and time tracking

 Continuous integration system

18.04.2013 Christian Kroiß 43

Outlook: Mylyn

 Mylyn (http://www.eclipse.org/mylyn/)

 …is a task and application lifecycle management (ALM)
framework for Eclipse

 …introduces a task-focused interface for programming

 …integrates seamlessly with Git, Redmine, Jenkins

 …will be introduced and demonstrated in one of the
Monday sessions

18.04.2013 Christian Kroiß 44

http://www.eclipse.org/mylyn/
http://www.eclipse.org/mylyn/

