
Übung 9 – Unit testing & mock objects
Methoden des Software Engineering
WS 2012/13

Christian Kroiß

07.01.2013 Christian Kroiß 1

Outline

Today

• Introduction in JUnit

• Using EasyMock for Mock Object Testing

07.01.2013 Christian Kroiß 2

JUnit

• JUnit (www.junit.org): framework for unit testing in Java.

• 4 main Annotations realize test cycle: initialize fixture,
test, clean up
– @Test: declares method as a test case

– @Before / @After : declares that a method should be
called before/after each execution of a test method

– @BeforeClass / @AfterClass: declares that a method
should be called once before/after any of the test
methods in the class

• Set of assertion methods: assertEquals(…),
assertNotNull(…)

07.01.2013 Christian Kroiß 3

Writing Assertions

if (obtainedResult == null ||

 !expectedResult.equals(obtainedResult))

 throw new MyTestThrowable("Bad output for #

 attempt");

With JUnit, you can code

import static org.junit.Assert.*;

...

assertEquals("Bad output for # attempt",

 expectedResults, obtainedResults);

07.01.2013 Christian Kroiß 4

Scaffolding

Code developed to facilitate testing is called scaffolding, by
analogy to the temporary structures erected around a
building during construction or maintenance.

• Test drivers: substituting for a main or calling program

• Test stubs: substituting for functionality called or used by
the software under test

• Test harnesses: substituting for parts of the deployment
environment

07.01.2013 Christian Kroiß 5

Integration Testing Strategies

Big bang

• Avoid cost of scaffolding by waiting until all modules are
integrated

• effectively system testing

• Problem: losses in observability, diagnosability, and
feedback

• less a rational strategy than an attempt to recover from a
lack of planning

07.01.2013 Christian Kroiß 6

Integration Testing Strategies (2)

Structural integration: top
down/bottom up

• use/include relation: The topmost
modules are not used or included
in any other module, while the
bottom-most modules do not
include or use other modules.

• Top down: replace used modules
with stubs

• Bottom up: replace using
modules with drivers

07.01.2013 Christian Kroiß 7

Test Doubles

Test Doubles: any kind of pretend object used in place of a
real object for testing purposes

• Dummy objects are passed around but never actually
used. Usually they are just used to fill parameter lists.

• Fake objects actually have working implementations, but
usually take some shortcut which makes them not
suitable for production (an in memory database is a good
example).

07.01.2013 Christian Kroiß 8

http://www.martinfowler.com/bliki/InMemoryTestDatabase.html

Test Doubles (2)

• Stubs provide canned answers to calls made during the
test, usually not responding at all to anything outside
what's programmed in for the test. Stubs may also record
information about calls, such as an email gateway stub
that remembers the messages it 'sent', or maybe only
how many messages it 'sent'.

• Mocks are objects pre-programmed with expectations
which form a specification of the calls they are expected
to receive.

07.01.2013 Christian Kroiß 9

EasyMock

• The Java framework EasyMock (easymock.org) allows to
use a macro-recording-like mechanism to define the
expected behavior of a Mock Object.

expect(warehouse.hasInventory("iPad“,25).andReturn(

 true);

warehouse.remove("iPad", 25);

replay(warehouse);

verify(warehouse);

07.01.2013 Christian Kroiß 10

Defines what the mock
object should return

Expects method call with specified parameters

Checks if all expected method calls happened

Activates the
“recorded”
behavior

Executes the
tested
functionality

Behavior Verification

Mocks objects support behavior verification:

"Each test specifies not only how the client of the SUT
interacts with it during the exercise SUT phase of the test,
but also how the SUT interacts with the components on
which it should depend. This ensures that the SUT really is
behaving as specified rather than just ending up in the
correct post-exercise state." [6]

07.01.2013 Christian Kroiß 11

Links & Further Reading

1. JUnit: http://junit.org

2. EasyMock: http://easymock.org/

3. EasyMock Documentation:
http://easymock.org/EasyMock3_0_Documentation.html

4. Tim Mackinnon, Steve Freeman, Philip Craig. Endo Testing:
Unit Testing with Mock Objects. 2000.
http://connextra.com/aboutUs/mockobjects.pdf

5. Tutorial: JUnit 4 & Eclipse:
http://www.vogella.de/articles/JUnit/article.html

6. Gerard Meszaros. xUnit Test Patterns. Addison Wesley, 2007

07.01.2013 Christian Kroiß 12

http://easymock.org/
http://easymock.org/
http://easymock.org/
http://easymock.org/EasyMock3_0_Documentation.html
http://easymock.org/EasyMock3_0_Documentation.html
http://connextra.com/aboutUs/mockobjects.pdf
http://connextra.com/aboutUs/mockobjects.pdf
http://www.vogella.de/articles/JUnit/article.html
http://www.vogella.de/articles/JUnit/article.html

