
Slide 1

Design Patterns

Prof. Mirco Tribastone, Ph.D.

22.11.2011



Slide 2
Introduction

Basic Idea

The same (well-established) schema can be reused as a solution to similar
problems.

Muster

Problemlösung 1 Problemlösung 2 Problemlösung 3

Abstraktion Anwendung

Advantages

I Reusing tried and tested solution principles
(quality, cost savings)

I abstract documentation of designs

I common vocabulary for communication among developers



Slide 3
Morale

Do not reinvent the wheel!



Slide 4
History

I 1977 Alexander: Architecture patterns for buildings and urban development

I 1980 Smalltalk’s MVC principle (Model View Controller)

I Since 1990 Object-oriented patterns in software engineering

I 1995 Design Pattern catalogue of Gamma, Helm, Johnson, Vlissides
(GoF “Gang of Four”)

I Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad
(1996). Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. John Wiley & Sons. ISBN 0-471-95869-7

I Martin Fowler (2002). Patterns of Enterprise Application Architecture.
Addison-Wesley. ISBN 978-0321127426.

I Gregor Hohpe, Bobby Woolf (2003). Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-Wesley.
ISBN 0-321-20068-3.

I Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra (2004). Head
First Design Patterns. O’Reilly Media. ISBN 0-596-00712-4.



Slide 5
Essential Elements of a Software Design Pattern

I Name of the pattern

I Description of the class of problems the pattern is applicable to

I Description of an example of use

I Description of the solution (structure, responsibilities, ...)

I Description of the consequences (cost-benefit analysis)



Slide 6
Design Pattern Catalogue (GoF)

Description Schema for a Design Pattern

I Pattern Name and Classification
The pattern’s name conveys the essence of the pattern succinctly. A good
name is vital, because it will become part of your design vocabulary.

I Intent
A short statement that answers the following question: What does the
design pattern do? What is its rational and intent? What particular design
issue or problem does it address?

I Also Known As
Other well-known names for the pattern, if any.

I Motivation
A scenario that illustrates a design problem and how the class and oject
structures in the pattern solve the problem. The scenario will help you
understand the more abstract descriptions of the pattern that follows.



Slide 7
I Applicability

What are the situations in which the design pattern can be applied? What
are examples of poor designs that the pattern can address? How can you
recognize these situations?

I Structure
A graphical representation of the classes in the pattern using a notation
based on the Object Modelling Technique (OMT). We also use interaction
diagrams to illustrate sequences of requests and collaborations between
objects.

I Participants
The classes and/or objects participating in the design pattern and their
responsibilities.

I Collaborations
How the participants collaborate to carry out their responsibilities.

I Consequences
How does the pattern support its objectives? What are the trade-offs and
results of using the pattern? What aspects of system structure does it let
you vary independently?



Slide 8
I Implementation

What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are there language-specific issues?

I Sample Code
Code fragments that illustrate how you might implement the pattern in
C++ or Smalltalk.

I Known Uses
Examples of the pattern found in real systems. We include at least two
examples from different domains.

I Related Patterns
What design patterns are closely related to this one? What are the
important differences? With which other patterns should this one be used?



Slide 9

Classification of Design Patterns

I Creational Patterns (concern the creation of objects)
I Abstract Factory Provide an interface for creating families of related or

dependent objects without specifying their concrete classes.
I Builder Separate the construction of a complex object from its

representation so that the same construction process can create different
representations.

I Factory Method Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses.

I Prototype Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.

I Singleton Ensure a class only has one instance, and provide a global point
of access to it.

I Structural Patterns (concern the structural composition of classes or
objects)

I Adapter Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn‘t otherwise because
of incompatible interfaces.

I Bridge Decouple an abstraction from its implementation so that the two
can vary independently.

I Composite Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.



Slide 10I Structural Patterns (continued)
I Decorator Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for extending
functionality.

I Facade Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem easier to
use.

I Flyweight Use sharing to support large numbers of fine-grained objects
efficiently.

I Proxy Provide a surrogate or placeholder for another object to control
access to it.

I Behavorial Patterns (concern the interaction of objects and the
distribution of responsibilities)

I Chain of Responsibility Avoid coupling the sender of a request to its
receiver by giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the chain until an
object handles it.

I Command Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log requests, and
support undoable operations.

I Interpreter Given a language, define a representation for its grammar along
with an interpreter that uses the representation to interpret sentences in the
language.

I Iterator Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.



Slide 11
I Mediator Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from referring to
each other explicitly, and it lets you vary their interaction independently.

I Memento Without violating encapsulation, capture and externalize an
object’s internal state so that the object can be restored to this state later.

I Observer Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and updated
automatically.

I State Allow an object to alter its behaviour when its internal state
changes. The object will appear to change its class.

I Strategy Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

I Template Method Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the algorithm’s
structure.

I Visitor Represent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without changing
the classes of the element on which it operates.



Slide 12
Overview

1. Singleton (creational)

2. Abstract Factory (creational)

3. Composite (structural)

4. Proxy (structural)

5. Iterator (behavioural)

6. Observer (behavioural pattern)

7. State (behavioural pattern)



Slide 13
Example 1: Singleton (Creational Pattern)

Intent

Ensures that a class has only one instance; provides a global access point to it.

Structure

Known uses: java.lang.Runtime; org.eclipse.core.runtime.Plugin.

Example: . . .



Slide 14
Example 2: Abstract Factory (Creational Pattern)

Intent

Provides an interface for creating families of related or dependent objects
without specifying their concrete classes.

Structure

createProductA()

createProductB()

ConcreteFactory1 ProductA2 ProductA1

AbstractProductA

Client

ProductB2 ProductB1

AbstractProductB

createProductA()

createProductB()

ConcreteFactory2

AbstractFactory

createProductB()

createProductA()

Known uses: Toolkit in AWT.



Slide 15
Example 3: Composite (Structural Pattern)

Intent

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

Structure

Leaf

operation()

Composite

add(c: Component)

operation()

remove(c: Component)

getChild(n: Integer)

for all g in children do
g.operation();

Component

operation()

add(c: Component)

remove(c: Component)

getChild(n: Integer)

Client
1 *

children

Known uses: Composite and Control in SWT; geometric figures (tutorial).



Slide 16
Example 4: Proxy (Structural Pattern)

Intent

Provide a surrogate or placeholder for another object to control access to it.

Structure

Known uses: Plug-in mechanisms.



Slide 17
Example 5: Iterator (Behavioural Pattern)

Intent

Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

Structure

Known uses: Java API.



Slide 18
Example 6: Observer (Behavioural Pattern)

Intent

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Structure

for all o in observers do
o.update();

ConcreteObserver

observerState
observerState = 
subject.getState();

Observer

update()

update()

subjectState

return subjectState;getState()

attach(o: Observer)

detach(o: Observer)

notify()

Subject
*

observers

subject

1
ConcreteSubject

setState()

Known uses: Event listeners in user interfaces (SWT).



Slide 19
Interactions

notify()

:AConcreteSubject:AConcreteObserver :AnotherConcreteObserver

setState()

update()

update()

getState()

getState()



Slide 20
Example 7: State (Behavioural Pattern)

Intent

Allow an object to alter its behaviour when its internal state changes. The
object will appear to change its class.

Structure

ConcreteStateA

handle() handle()

ConcreteStateB

Context

request()state.handle();

State

handle()

state

1

...

Example of use:

Realization of state diagrams by state objects.



Slide 21
MVC Architecture

5: update()
1: attach()

6: getData()
4: service()

3: manipulate()

2: handleEvent() 7: showData()

:Controller

:Model

:View


