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I Validation: Building the right product.
I Does the software meet the expectations of the customer?

I Verification: Building the product right.
I Does the software conform to its specification?

When to check quality:

I In some software development processes, V&V is done as early
as possible (e.g., prototyping, agile).

I It is understood that problems discovered early are easier and
less expensive to fix.

I However, there are parts of the specification that can be
checked only when the system is ready to be deployed.
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I Functional properties are related to what a system (or a part
of it) is supposed to do.

I Use cases in the UML.

I Nonfunctional (or extrafunctional) properties are related to
how the system carries out an operation.

I Performance; e.g., response time or throughput.
I Security.
I Availability; e.g., uptime 99.999%.

I Some nonfunctional properties are more difficult to check
during early stages of the development process.
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I Software inspection analyses requirement documents, designs,
and source code (the latter, often automatically).

I It is a static method: It does not require an executable
artefact, hence it can be applied throughout all the stages of
software development.

I Software testing uses an executable representation of the
system (dynamic method).

I The product is exercised with test input data
I The resulting output is checked against the specification.
I If there is no agreement, an error is found which must be fixed.
I Different forms according to the knowledge assumed for the

system under study: black-box or white-box.
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from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html
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I Software inspections can only check the agreement between a
program and its specification.

I They cannot show that the software is operationally useful.

I Nor can they check nonfunctional properties (but may give
hints).

I Software testing can only detect errors, not prove their
absence.

I Testing all possible execution paths for nontrivial programs is
impossible.

I They are not competing techniques, rather they are
complementary.
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I Defect testing and debugging are distinct processes.

I Verification and validation is concerned with establishing the
existence of defects in a program.

I Debugging is concerned with locating and repairing these
errors.

I Debugging involves formulating a hypothesis about program
behaviour then testing these hypotheses to find the system
error.
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Key activity: regression testing

I Re-run the tests (or a subset of them) after a problem is fixed.

I It is not uncommon that a fix introduces errors elsewhere!
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I For instance, in an object-oriented design:

classes −→ components −→ overall system
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I Testing process

I Requirements traceability
Tests should cover at least all the requirements provided by
the users.

I Tested items
Complete coverage of all artefacts is in general very difficult
(too expensive). Items to be tested should be listed here.

I Testing schedule

I Test recording procedures
Results must be recorded to give the possibility of checking
later whether tests have been done correctly.

I Hardware and software requirements

I Constraints
For example, staff shortages, deadlines, . . .
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I Empirical studies have shown that they are effective in
detecting large amounts of errors in software.

I Many errors may be detected in a single inspection.
I Recall, it is a static methods which does not require a running

system.
I With software testing, usually only one defect at a time may be

discovered: the system usually crashes when an error occurs.

I They reuse domain and programming language knowledge:
reviewers are likely to have seen the types of error that
commonly arise.



Slide 12Program Inspection

I It is a formal methodology for reviewing documents.

I It looks for defects such as logical errors, anomalies in the
code, or non-compliance with standards.

I The process may have different variants according to the
organisation in which it is performed.

Typical pre-conditions

I Availability of a precise specification.

I Availability of syntactically correct code (or design).
I An error check-list.

I This is dependent on the programming language.
The weaker the typing, the longer the list.
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I Author
Responsible for fixing defects discovered during the review.

I Inspector

I Reader
Paraphrases the code during an inspection meeting.

I Scribe
Records the outcome of the inspection meeting.

I Moderator
Manages the process. Responsible for scheduling possible
follow-up meetings.
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I Planning is the responsibility of the moderator: choose a
team, fix dates, . . .

I At the overview the author presents the program under
inspection.

I At the inspection meeting errors are reported. Meetings
should be kept relatively short (e.g., under 2 h).

I Rework is the author’s responsibility.

I Follow-up may be needed to assess the code in case of major
changes required.
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I Data faults
Base indices for arrays? Possibility of buffer overflows?

I Control faults
For each conditional statement, is the condition correct? Are
loops guaranteed to terminate? Are compound statements
correctly bracketed?

I Input/output faults
Are all input variables used? Are output variables used? Can
unexpected inputs cause corruption (e.g., null pointers)?

I Exception management
Have all possible error conditions been taken into account?
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I Performed by software tools which process the source code in
search of potentially dangerous situations.

I Does not replace program inspection by humans, as it checks
for more mechanical errors:

I Variables used before initialisations, variables declared but
never used, variables never used between two successive
assignments.

I Unreachable code.
I Return values of functions/methods that are not used.

I Static analysers are typically available in Integrated
Development Environments.

I Much more useful for weakly typed languages.
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I Component (or unit) testing
I Testing of individual program components.

The notion of component depends on the programming
language under consideration.

I Usually under the responsibility of the authors.
I Tests are based on the developers’ experience.

I System testing
I Testing of integrated components that form a (sub-)system.
I Usually under the responsibility of an independent team.
I Tests are based on a system specification.
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I Validation testing
I Demonstrates that the software meets the requirements.
I It is successful when the system operates as intended.
I The system is exercised using typical input data.
I Does not reveal the absence of faults though!

I Defect testing
I Discover faults that may lead to unintended behaviour or

failure.
I It is successful when the test makes the system perform

incorrectly.
I Revels the presence, not the absence of faults!
I Guidelines on what to test

I Functionality accessed from menus.
I Combinations of functions accessed through the same menu

(e.g., text formatting).
I User input forms with correct and incorrect input.
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I The system (or component) is treated as a black box.

I Behaviour understood by relating inputs to outputs.

I It is only concerned with the functionality, not its actual
implementation.
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I Choose inputs that force the system to general all error
messages.
(It is important to have a specification at hand)

I Design inputs that cause buffers to overflow.

I Repeat the same input or input series several times.

I Force invalid outputs to be generated.

I Force computation results to bee too large or too small.
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I Selecting relevant input data for testing.
I Based on the assumption that some inputs are somewhat

similar: if one is troublesome, so will be all the others
belonging to the same class

Example

class Account {

public float getBalance() { ... }

public void withdraw(float amount) { ... }

}

I Partition the floats into:
I Negative values
I Zero
I Positive values:

I < getBalance()
I = getBalance()
I > getBalance()

I Another dimension: more than two decimal digits!
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I Also called white-box testing.

I Test cases are inferred from the program structure, which is
required to be known.

I Can be done incrementally, knowledge of the program can be
used to add further test cases.

I The objective is to test all program statements
(not all path combinations).
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I Ensures that each test input covers a different path in the
control flow of the system

I May use a high-level representation with a graph where nodes
represent statements, and arcs denote the flow of control.

I Exhaustive path coverage may be expensive to guarantee in
realistic scenarios.
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I Nonfunctional requirements of software systems are typically
expressed as Service Level Agreements (SLAs) between clients
and software developers.

I In most cases SLAs concern performance, i.e., how well the
functionality is performed with respect to time.

I For instance:
I In 95% of the cases, the response time must be less than

250 ms.
I The system must support 100,000 transactions per seconds.
I . . .

I These concerns are increasingly important for distributed
systems.
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I It is a typical technique to gradually increase the system load.

I For each load level, the tester measures the achieved quality
of service (e.g., response time) and compares it against the
relevant SLA.

I The test may also highlight functional problems:
I Increasing loads may cause system malfunctions.

I Well-written applications exhibit a graceful degradation of
performance at excessive loads.

I Perfectly functional systems may have serious performance
problems.

I Fixing a performance problem may introduce serious
functional errors.

I Regression testing should take place.
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public class Server extends Thread {

public void run() {

try {

ServerSocket s = new ServerSocket(8081);

while (true) {

Socket client = s.accept();

Thread.sleep(1000);

client.getOutputStream().write("OK\n".getBytes());

client.close();

}

} catch (Exception e) {

e.printStackTrace();

}

}

}
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public class Client extends Thread {

public void run() {

Socket s;

try {

s = new Socket("localhost", 8081);

BufferedReader r = new BufferedReader(

new InputStreamReader(

s.getInputStream()));

System.out.println(r.readLine());

} catch (Exception e) {

e.printStackTrace();

}

}

}
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public static void main(String[] args)

throws InterruptedException {

new Server().start();

int N = ...;

Client[] clients = new Client[N];

for (int i = 0; i < N; i++) {

clients[i] = new Client();

clients[i].start();

}

for (int i = 0; i < N; i++) {

clients[i].join();

}

System.out.println("DONE.");

}

I For N = 1 it executes in about 1 sec.

I What is the expected total response time as a function of N?
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class FixedServer extends Thread {

class Worker extends Thread {

private Socket s;

Worker(Socket s) { this.s = s; }

public void run() {

try {

Thread.sleep(1000);

s.getOutputStream().write("OK\n".getBytes());

s.close();

} catch (Exception e) { e.printStackTrace(); }

}

}

public void run() {

try {

ServerSocket s = new ServerSocket(8081);

while (true) {

Socket client = s.accept();

new Worker(client).start();

}

} catch (Exception e) { e.printStackTrace(); }

}

}


