
Slide 1

Chapter 5

Software Testing

Prof. Mirco Tribastone, Ph.D.

24 January 2013



Slide 2Validation and Verification

I Validation: Building the right product.
I Does the software meet the expectations of the customer?

I Verification: Building the product right.
I Does the software conform to its specification?

When to check quality:

I In some software development processes, V&V is done as early
as possible (e.g., prototyping, agile).

I It is understood that problems discovered early are easier and
less expensive to fix.

I However, there are parts of the specification that can be
checked only when the system is ready to be deployed.



Slide 3Functional and Nonfunctional Properties

I Functional properties are related to what a system (or a part
of it) is supposed to do.

I Use cases in the UML.

I Nonfunctional (or extrafunctional) properties are related to
how the system carries out an operation.

I Performance; e.g., response time or throughput.
I Security.
I Availability; e.g., uptime 99.999%.

I Some nonfunctional properties are more difficult to check
during early stages of the development process.



Slide 4Tools for Validation and Verification

I Software inspection analyses requirement documents, designs,
and source code (the latter, often automatically).

I It is a static method: It does not require an executable
artefact, hence it can be applied throughout all the stages of
software development.

I Software testing uses an executable representation of the
system (dynamic method).

I The product is exercised with test input data
I The resulting output is checked against the specification.
I If there is no agreement, an error is found which must be fixed.
I Different forms according to the knowledge assumed for the

system under study: black-box or white-box.



Slide 5V&V and the Development Processes

Formal
specification

High-level
design

Requirements
specification

Detailed
design Program

Prototype Program
testing

Software
inspections

from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html



Slide 6Important Points

I Software inspections can only check the agreement between a
program and its specification.

I They cannot show that the software is operationally useful.

I Nor can they check nonfunctional properties (but may give
hints).

I Software testing can only detect errors, not prove their
absence.

I Testing all possible execution paths for nontrivial programs is
impossible.

I They are not competing techniques, rather they are
complementary.



Slide 7Related Activity: Debugging

I Defect testing and debugging are distinct processes.

I Verification and validation is concerned with establishing the
existence of defects in a program.

I Debugging is concerned with locating and repairing these
errors.

I Debugging involves formulating a hypothesis about program
behaviour then testing these hypotheses to find the system
error.



Slide 8The Debugging Process

Locate
error

Design
error repair

Repair
error

Retest
program

Test
results Specification Test

cases

Key activity: regression testing

I Re-run the tests (or a subset of them) after a problem is fixed.

I It is not uncommon that a fix introduces errors elsewhere!



Slide 9The V-Model of Development

System
specification

System
design

Detailed
design

Module and
unit code
and test

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service Acceptance
test

System
integration test

Sub-system
integration test

Requirements
specification

I For instance, in an object-oriented design:

classes −→ components −→ overall system



Slide 10Structure of a Software Test Plan

I Testing process

I Requirements traceability
Tests should cover at least all the requirements provided by
the users.

I Tested items
Complete coverage of all artefacts is in general very difficult
(too expensive). Items to be tested should be listed here.

I Testing schedule

I Test recording procedures
Results must be recorded to give the possibility of checking
later whether tests have been done correctly.

I Hardware and software requirements

I Constraints
For example, staff shortages, deadlines, . . .



Slide 11Software Inspections

I Empirical studies have shown that they are effective in
detecting large amounts of errors in software.

I Many errors may be detected in a single inspection.
I Recall, it is a static methods which does not require a running

system.
I With software testing, usually only one defect at a time may be

discovered: the system usually crashes when an error occurs.

I They reuse domain and programming language knowledge:
reviewers are likely to have seen the types of error that
commonly arise.



Slide 12Program Inspection

I It is a formal methodology for reviewing documents.

I It looks for defects such as logical errors, anomalies in the
code, or non-compliance with standards.

I The process may have different variants according to the
organisation in which it is performed.

Typical pre-conditions

I Availability of a precise specification.

I Availability of syntactically correct code (or design).
I An error check-list.

I This is dependent on the programming language.
The weaker the typing, the longer the list.



Slide 13Composition of the Reviewing Team

I Author
Responsible for fixing defects discovered during the review.

I Inspector

I Reader
Paraphrases the code during an inspection meeting.

I Scribe
Records the outcome of the inspection meeting.

I Moderator
Manages the process. Responsible for scheduling possible
follow-up meetings.



Slide 14The Program Inspection Process

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

I Planning is the responsibility of the moderator: choose a
team, fix dates, . . .

I At the overview the author presents the program under
inspection.

I At the inspection meeting errors are reported. Meetings
should be kept relatively short (e.g., under 2 h).

I Rework is the author’s responsibility.

I Follow-up may be needed to assess the code in case of major
changes required.



Slide 15Typical Checks

I Data faults
Base indices for arrays? Possibility of buffer overflows?

I Control faults
For each conditional statement, is the condition correct? Are
loops guaranteed to terminate? Are compound statements
correctly bracketed?

I Input/output faults
Are all input variables used? Are output variables used? Can
unexpected inputs cause corruption (e.g., null pointers)?

I Exception management
Have all possible error conditions been taken into account?



Slide 16Automated Static Analysis

I Performed by software tools which process the source code in
search of potentially dangerous situations.

I Does not replace program inspection by humans, as it checks
for more mechanical errors:

I Variables used before initialisations, variables declared but
never used, variables never used between two successive
assignments.

I Unreachable code.
I Return values of functions/methods that are not used.

I Static analysers are typically available in Integrated
Development Environments.

I Much more useful for weakly typed languages.



Slide 17Software Testing

I Component (or unit) testing
I Testing of individual program components.

The notion of component depends on the programming
language under consideration.

I Usually under the responsibility of the authors.
I Tests are based on the developers’ experience.

I System testing
I Testing of integrated components that form a (sub-)system.
I Usually under the responsibility of an independent team.
I Tests are based on a system specification.



Slide 18Goals of Software Testing

I Validation testing
I Demonstrates that the software meets the requirements.
I It is successful when the system operates as intended.
I The system is exercised using typical input data.
I Does not reveal the absence of faults though!

I Defect testing
I Discover faults that may lead to unintended behaviour or

failure.
I It is successful when the test makes the system perform

incorrectly.
I Revels the presence, not the absence of faults!
I Guidelines on what to test

I Functionality accessed from menus.
I Combinations of functions accessed through the same menu

(e.g., text formatting).
I User input forms with correct and incorrect input.



Slide 19Functional (Black-Box) Defect Testing

IeInput test data

OeOutput test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

I The system (or component) is treated as a black box.

I Behaviour understood by relating inputs to outputs.

I It is only concerned with the functionality, not its actual
implementation.



Slide 20Other General Testing Guidelines

I Choose inputs that force the system to general all error
messages.
(It is important to have a specification at hand)

I Design inputs that cause buffers to overflow.

I Repeat the same input or input series several times.

I Force invalid outputs to be generated.

I Force computation results to bee too large or too small.



Slide 21Partitioning
I Selecting relevant input data for testing.
I Based on the assumption that some inputs are somewhat

similar: if one is troublesome, so will be all the others
belonging to the same class

Example

class Account {

public float getBalance() { ... }

public void withdraw(float amount) { ... }

}

I Partition the floats into:
I Negative values
I Zero
I Positive values:

I < getBalance()
I = getBalance()
I > getBalance()

I Another dimension: more than two decimal digits!



Slide 22Structural Testing

Component
code

Test
outputs

Test data

DerivesTests

I Also called white-box testing.

I Test cases are inferred from the program structure, which is
required to be known.

I Can be done incrementally, knowledge of the program can be
used to add further test cases.

I The objective is to test all program statements
(not all path combinations).



Slide 23Path Testing

I Ensures that each test input covers a different path in the
control flow of the system

I May use a high-level representation with a graph where nodes
represent statements, and arcs denote the flow of control.

I Exhaustive path coverage may be expensive to guarantee in
realistic scenarios.



Slide 24Path Testing

elemArray [mid] != key

elemArray [mid] > key elemArray [mid] < key

1

2

3

4

5

6

7

8

9

14 10

11

12 13

bottom > top while bottom <= topbottom > top

elemArray
[mid] = key



Testing Nonfunctional
Properties



Slide 26Performance Testing

I Nonfunctional requirements of software systems are typically
expressed as Service Level Agreements (SLAs) between clients
and software developers.

I In most cases SLAs concern performance, i.e., how well the
functionality is performed with respect to time.

I For instance:
I In 95% of the cases, the response time must be less than

250 ms.
I The system must support 100,000 transactions per seconds.
I . . .

I These concerns are increasingly important for distributed
systems.



Slide 27Stress Testing

I It is a typical technique to gradually increase the system load.

I For each load level, the tester measures the achieved quality
of service (e.g., response time) and compares it against the
relevant SLA.

I The test may also highlight functional problems:
I Increasing loads may cause system malfunctions.

I Well-written applications exhibit a graceful degradation of
performance at excessive loads.

I Perfectly functional systems may have serious performance
problems.

I Fixing a performance problem may introduce serious
functional errors.

I Regression testing should take place.



Slide 28Example: A Simple Distributed Java App

public class Server extends Thread {

public void run() {

try {

ServerSocket s = new ServerSocket(8081);

while (true) {

Socket client = s.accept();

Thread.sleep(1000);

client.getOutputStream().write("OK\n".getBytes());

client.close();

}

} catch (Exception e) {

e.printStackTrace();

}

}

}



Slide 29Example: A Simple Distributed Java App

public class Client extends Thread {

public void run() {

Socket s;

try {

s = new Socket("localhost", 8081);

BufferedReader r = new BufferedReader(

new InputStreamReader(

s.getInputStream()));

System.out.println(r.readLine());

} catch (Exception e) {

e.printStackTrace();

}

}

}



Slide 30Example: A Simple Distributed Java App

public static void main(String[] args)

throws InterruptedException {

new Server().start();

int N = ...;

Client[] clients = new Client[N];

for (int i = 0; i < N; i++) {

clients[i] = new Client();

clients[i].start();

}

for (int i = 0; i < N; i++) {

clients[i].join();

}

System.out.println("DONE.");

}

I For N = 1 it executes in about 1 sec.

I What is the expected total response time as a function of N?



Slide 31Performance Fix

class FixedServer extends Thread {

class Worker extends Thread {

private Socket s;

Worker(Socket s) { this.s = s; }

public void run() {

try {

Thread.sleep(1000);

s.getOutputStream().write("OK\n".getBytes());

s.close();

} catch (Exception e) { e.printStackTrace(); }

}

}

public void run() {

try {

ServerSocket s = new ServerSocket(8081);

while (true) {

Socket client = s.accept();

new Worker(client).start();

}

} catch (Exception e) { e.printStackTrace(); }

}

}


