
Future Emerging

Technologies

www.ascens-ist.eu

ASCENS: Towards

Systematically Engineering Ensembles

Martin Wirsing in cooperation with

Matthias Hölzl, Annabelle Klarl, Nora Koch, Mirco Tribastone,

Franco Zambonelli

Dynamische und Adaptive Systeme,

November 2013

2 Seite

Martin Wirsing

Autonomic Systems and Ensembles

 Autonomic systems are typically distributed computing systems

whose components act autonomously and can adapt to environment

changes.

 We call them ensembles if

they have some of the

following characteristics:

 Large numbers of nodes

 Heterogeneous

 Operating in open and non-

deterministic environments

 Complex interactions

between nodes and with

humans or other systems

 Dynamic adaptation to

changes in the environment

2

3 Seite

Martin Wirsing

ASCENS Project

 Goal of ASCENS:

 Develop methods, tools, and theories for

 modeling and analysing

 autonomic self-aware systems

 that

 combine traditional SE approaches based on formal

methods with the flexibility of resources promised by

autonomic, adaptive, and self-aware systems

 Partners:

 LMU (Coordinator), U Pisa, U Firenze with ISTI Pisa,

Fraunhofer, Verimag, U Modena e Reggio Emilia, U

Libre de Bruxelles, EPFL, Volkswagen AG, Zimory

GmbH, U Limerick, Charles U Prague, IMT Lucca,

Mobsya

 Case studies:

 Robotics, cloud computing, and energy saving e-

mobility

3

4 Seite

Martin Wirsing

Engineering Autonomic systems

 Self-aware ensemble components are aware of their structure and their

aims

 Goals and models of ensemble components have to be available at runtime

 Autonomous components typically have internal models and goals

 For ensuring reliability and predictability of the ensemble and its

components important properties of the ensemble should be defined and

established at design time and maintained during runtime

 Analysis-driven development and execution

 Autonomic systems have to be able to adapt to dynamic changes of the

environment

 Even if the ensemble components are defined at design time, adaptation of

the ensemble components will happen at runtime

4

5 Seite

Martin Wirsing

Ensemble Lifecycle:

Two-Wheels Approach

 Engineering an autonomic ensemble consists of an iterative agile

lifecycle

 Design time: Iteration of requirements engineering, modeling, validation

 Runtime: Awareness, adaptation, execution loop

 Design time and runtime loops connected by deployment and feedback

 Feedback leads to a better understanding and improvement of the system.

Deployment

Feedback

Design Runtime

5

6 Seite

Martin Wirsing

Outline

For the sake of simplicity we restrict ourselves to a simple example

of autonomic robots and illustrate only the following first

development steps which happen at design time.

 Requirements specification with SOTA/GEM

 Coarse modeling by adaptation pattern selection

 Fine-grained modeling in Helena

 Abstract programming in SCEL

 Quantitative analysis of autonomic system behaviour using

stochastic methods

6

7 Seite

Martin Wirsing

The Robot Case Study

 Swarm of garbage collecting robots

 Acting in a rectangular exhibition hall

 The hall is populated by visitors and exhibits

 Scenario

 Visitors drop garbage

 Robots move around the hall,

 pick up the garbage and

 move it to the service area

 Robots may rest in the service area in order

to not intervene too much with the visitors

and to save energy

7

service area

8 Seite

Martin Wirsing

Domain and Requirements Modeling:

SOTA/GEM Framework

 An adaptive system can (should?) be expressed in terms of “goals” =

“states of the affairs” that an entity aims to achieve

 Without making assumptions on the actual design of the system

 It is a requirements engineering activity

 SOTA (“State of the Affairs”)/GEM Conceptual framework

 Goal-oriented modeling of self-adaptive systems

 Functional requirements representing the states of affairs that the system has

to achieve or maintain

 Utilities are non-functional requirements which do not have hard boundaries

and may be more or less desirable.

 GEM is the mathematical basis of the SOTA framework

8

9 Seite

Martin Wirsing

SOTA/GEM:

Domain and Requirements Modeling

Domain modeling:

 State Of The Affairs Q = Q1 x … x Qn

 represents the state of all parameters that

 may affect the ensemble's behavior and

 are relevant to its capabilities

 Example: Robot Swarm State Of The Affairs

9

10 Seite

Martin Wirsing

Ensemble and its Environment

 Environment

 For mathematical analysis we distinguish often between the ensemble and its

environment such that the whole system is a combination of both

 Adaptation Space

 The ensemble should work in a number of different environments

 The characteristics of all environments are described by the adaptation space

 Example Robot Swarm

 The state space of the robot ensemble is given by the state spaces all robots

where QRobot is given by the position and state of the robots

 The state space environment is given by the exhibition area, the list of

garbage items, and the value indicating whether the exhibition is open

 The adaptation space of the ensemble may be given by varying the size of the

arena, the dropping rate of garbage items, etc.

 10

11 Seite

Martin Wirsing

SOTA:

Requirements Modeling

 Goal-oriented requirements

modelling

 Goal = achievement of a given state

of the affairs

 Where the system should eventually

arrive in the phase space Qe,

 represented as a confined area in that

space (post-condition Gpost), and

 the goal can be activated in another

area of the space (pre-condition Gpre)

 Utility = how to reach a given state of

the affairs

 “maintain goal”: constraints on the

trajectory to follow in the phase

space Qe

 expressed as a subspace Gmaintain in

Qe

11

12 Seite

Martin Wirsing

Robot Ensemble Goals and Utilities

 Example requirements:

 Goal G1

 Maintains < 300 garbage items

 as long as the exhibition is open

 i.e. (ob => g# < 300 until not ob)

 Further (adaptation) goals

 Keep energy consumption lower

than predefined threshold

 In resting area allow sleeping time

for each robot

 Adaptation Space

 Size of arena x garbage dropping

rate

12

13 Seite

Martin Wirsing

Towards Design

 Further requirements modelling steps

 Check consistency of requirements

 Model the autonomic system in Helena/Poem

 Select suitable adaptation patterns for ensemble design

 Model each component and the ensemble in Agamemnon

 (Implement each component in Poem

 Provide abstractions for controlling adaptation

 e.g., by learning behaviours or reasoning)

 Refine the model to a SCEL design

 Based on the Helena model

 Use analysis tools for predicting the behaviour and improving the design

13

14 Seite

Martin Wirsing

Adaptation Patterns

 Component Patterns Ensemble Patterns

 Reactive Environment mediated (swarm)

Reactive

Component

Environment Environment

Event, pheromone, …

Internal Feedback
Goal

Action

Environment

 Internal feedback loop Negotiation/competition

 Further patterns: External feedback loop, norm-based ensembles, …

Interaction

between

components

14

15 Seite

Martin Wirsing

Robot Ensemble Adaptation

 Reactive component pattern for implementing a single robot

 Environment mediated (swarm) pattern for the ensemble of

ineracting components

Reactive

Component

Environment Environment

15

16 Seite

Martin Wirsing

Helena

Helena is a UML-based approach for modeling ensembles of components.

 Dynamic behaviour of (service) components is described by a UML

profile based on the situation calculus.

 Domain models are UML class diagrams

 with properties (=fluents) and actions

 Behaviour specification by UML activity diagrams

 stereotypes for the specification of partial programs and their computation

via learning or planning

16

17 Seite

Martin Wirsing

Helena Model: Domain Model

Model of components together with their properties (=fluents) and actions

Deterministic axiomatization of effects of actions e.g.

action Robot::stepNorth {

 pre: true;

 effects {

 self.position.y := self.position.y@pre + 1;

 }

}

 precondition

 effect:

 move one cell to north

17

18 Seite

Martin Wirsing

Helena Model:

Robot Ensemble Behavior

18

19 Seite

Martin Wirsing

Helena Model:

Robot Behaviour

19

20 Seite

Martin Wirsing

 The Service Component Ensemble

Language (SCEL) provides an abstract

ensemble programming framework by

offering primitives and constructs for the

following programming abstractions

 Knowledge: describe how data,

information and knowledge is manipulated

and shared (“tuple space”; put, get)

 Processes: describe how systems of

components progress

 Policies: deal with the way properties of

computations are represented and

enforced

 Systems: describe how different entities

are brought together to form components,

systems and, possibly, ensembles

 SC SC

 SC

 SC

 SC

Service component

Service component ensemble

20

SCEL

21 Seite

Martin Wirsing

The SCEL Syntax (in one slide)

 SCEL

 Parametrized by the (distributed) knowledge tuple space and policies

 Predicate-based communication

 Processes interact with the tuple space by query and put actions

21

22 Seite

Martin Wirsing

Robot Ensemble SCEL Design

 n robots Ri interacting with environment Env and other robots

 R1 || … || Rn || Env

 Env is abstractly represented by a component

 Ienv[.,., m]

 keeping track of the total number of collected items

 Environment mediated robot ensemble

Environment

R1 R2 R3

22

23 Seite

Martin Wirsing

Robot Ensemble SCEL Refinement

 Each robot Ri is of form

 Ri = I[.,., explore[col[t]]]

 where

 explore monitors the reactive robot behavior (searching for waste)

 col detects collisions,

 t controls the sleeping time

Parallel

processes

23

24 Seite

Martin Wirsing

Robot Behaviour

 E.g. monitoring the reactive behavior explore of a robot Ri for

performance analysis

 If Ri is exploring for picking up waste then

 if it encounters another robot or a wall, it changes direction and continues exploring

(“normal” moves and direction change abstracted in SCEL)

 if it encounters an item, the robot picks it up (abstracted in SCEL), informs the
environment env and starts returning to the service area

explore = get(collision)@self.explore + get(item)@self.pick

pick = get(items,!x)@env.pick’

pick’ = put(items,x+1)@env.return

. . .

24

25 Seite

Martin Wirsing

Validating Requirements:

Quantitative Analysis

 Validating the adaptation requirements includes the following steps:

 Ensemble simulation

 jRESP, MISSCEL, or SCELua

 Study timing behaviour by abstracting SCEL models to

 Continuous-time Markov chains

 Ordinary differential equations

 Statistical modelchecking

 Validate performance model by comparing to simulation and

 Validate the adaptation requirements by sensitivity analysis

25

26 Seite

Martin Wirsing

Quantitative Analysis

 Simplify robot behavior

 From

 To the (Helena) abstraction

27 Seite

Martin Wirsing

Quantitative Analysis

 Derive continuous-time Markov chain from :

 CTMC as infinitely many states

 Transform into ODE

28 Seite

Martin Wirsing

Quantitative Analysis

 SCELua simulation

 SCELua is an experimental SCEL implementation in Lua/ARGOS [Hölzl 2012]

 Simulate robot example

 20 robots, arena 16 m², 150 independent runs of 10 h simulated time

 Instrument code to record timestamps of transitions and calculate m and g

 Compare

 Steady state ODE estimates of robot subpopulations and

 discrete-event LuaSCEL simulation

 Results

 Maximum error < 3.5%

29 Seite

Martin Wirsing

Sensitivity Analysis for Validating the Adaptation

Requirements

 Adaptation requirements

 Keep area clean (< 300 garbage items) while allowing sleeping time t (e.g.

<= 1000) for each robot

 Energy consumption lower than predefined threshold

 Sensitivity analysis of throughput

 where throughput = frequency of returning garbage items to service area

Model prediction:

 Adaptation requirement is

satisfied

 Maximum allowed rest

time (whilst achieving the

maintain goal): 1580

29

30 Seite

Martin Wirsing

Summary

 ASCENS is developing a systematic

approach for constructing Autonomic

Service-Component Ensembles

 A few development steps for a simple

example

 More research needed for all development

phases, in particular on

 Modeling and formalising ensembles

 Knowledge representation and self-awareness

 Adaptation and dynamic self-expression

patterns and mechanisms.

 Correctness, verification, and security of

ensembles

 Tools and methodologies for designing and

developing correct ensembles

 Experimentations with case studies

D
e
p
lo

y
m

e
n
t

F
e
e
d
b
a
c
k

D
e
s
ig

n

R
u

n
tim

e

30

31 Seite

Martin Wirsing

References

 Rolf Hennicker and Annabelle Klarl. Foundations for Ensemble Modeling - The

Helena Approach. Specification, Algebra, and Software: A Festschrift

Symposium in Honor of Kokichi Futatsugi (SAS 2014) To Appear, April 2014.

 Martin Wirsing, Matthias Hölzl, Mirco Tribastone, and Franco Zambonelli.

ASCENS: Engineering Autonomic Service-Component Ensembles. In Bernhard

Beckert, Ferruccio Damiani, Marcello Bonsangue, and Frank de Boer, editors,

Formal Methods for Components and Objects, 10th International Symposium,

FMCO 2011, LNCS. Springer, 2012.

 Giacomo Cabri, Mariachiara Puviani, and Franco Zambonelli. Towards a

Taxonomy of Adaptive Agent-based Collaboration Patterns for Autonomic

Service Ensembles. In 2011 International Conference on Collaboration

Technologies and Systems, pages 508–515, Philadelphia (PA), May 2011. IEEE

Press.

31

