
Science of Computer Programming 00 (2015) 1–21

Sci.
Comput.
Program.

Implementation Framework and Code Generator for Helena
Ensemble Specifications

Annabelle Klarl, Rolf Hennicker, Lucia Cichella1

Ludwig-Maximilians-Universität München, Germany

Abstract

Ensembles are collections of autonomic entities which collaborate to perform certain tasks. They exhibit a complex dynamic be-
havior which is difficult to implement with a pure component-based approach. Helena is a modeling approach for the specification
of such ensembles. The conceptual key point of Helena is that components can adopt different roles and can participate (under
certain roles) in several, possibly concurrently running ensembles. In this paper, we present the jHelena framework for the real-
ization of ensemble specifications implementing roles as Java threads on top of a component. The framework contains a metadata
layer, defining the structural aspects of an ensemble, and a developer interface providing abstract classes that can be extended for
the realization of concrete ensemble applications. In the second part of this work, we focus on the automation of ensemble imple-
mentations and provide a tool to generate jHelena code from a Helena ensemble specification. Relying on the Xtext workbench of
Eclipse, we introduce the domain-specific language HelenaText for writing ensemble specifications and provide an Eclipse plug-in
featuring an editor and a code generator. Our approach is demonstrated by a peer-2-peer file system network which is used as a
running example throughout the paper.

© 2011 Published by Elsevier Ltd.

Keywords: Ensemble-based systems, implementation framework, code generation

1. Introduction

The combination of autonomic computing and global interconnectedness in systems with large numbers of dis-
tributed nodes poses new challenges to software engineers. We no longer administrate and maintain systems by hand.
Systems are rather composed of autonomic nodes with the ability to manage themselves. The nodes are able to per-
ceive their environment and adapt their behavior accordingly. At the same time, they interact with other nodes in the
system to collaborate in teams for some global goal. Those teams have to cope with heterogeneity of participants and
dynamic composition.

In the Helena approach [1], we advocate a formal model for the specification of such systems which is centered
around the notion of roles. It provides concepts to describe systems where components team up in many concurrently
running ensembles to perform global goal-oriented tasks. To participate in an ensemble, a component plays a certain
role. This role adds role-specific behavior to the component and allows collaboration with (roles of) other compo-
nents. By switching between roles, the component changes its currently executed behavior. By adopting several roles

1This work has been partially sponsored by the European Union under the FP7-project ASCENS, 257414.
Email addresses: klarl@pst.ifi.lmu.de (Annabelle Klarl), hennicker@pst.ifi.lmu.de (Rolf Hennicker)

1

/ Science of Computer Programming 00 (2015) 1–21 2

in parallel, a component concurrently executes different behaviors and participates at the same time in different en-
sembles. The introduction of roles thereby allows to focus on the particular tasks which components fulfill in specific
collaborations and to structure the implementation of ensemble-based systems. To make the Helena concepts usable
for the realization of ensemble-based systems, we seek to provide tool support for writing ensemble specifications
which conform to the formal foundations of the Helena approach as well as for implementing and executing these
ensemble specifications.

Contributions. Our contribution is twofold: (1) We provide the implementation and execution framework jHelena
which is realized in Java and transfers the concepts of roles and collaborations in ensembles to an object-oriented re-
alization. In jHelena, roles are implemented as Java threads on top of a component. Role objects are bound to specific
ensembles while components can adopt many roles in different, concurrently running ensembles. The framework im-
plements the structural and dynamic rules enforced by the formal modeling concepts of ensemble specifications and
their semantics. It provides an interface for the developer to realize concrete ensemble-based applications according
to the Helena approach and allows to execute them. (2) To ease the implementation of ensemble specifications, we
provide a domain-specific language HelenaText together with a code generator to jHelena. HelenaText allows to
write ensemble specifications by supporting roles and ensembles as first-class citizens and enforces conformance of
the specification to the formal Helena approach. HelenaText relies on the Xtext workbench and is therefore fully
integrated into Eclipse providing an editor and a code generator. We implemented the code generator to translate He-
lenaText specifications to jHelena code. The generated code base must only be instantiated with concrete components
to make the ensemble-based application directly executable.

Outline. The paper first reviews the Helena specification approach in Sec. 2 and sketches its application to a peer-2-
peer file system example. Sec. 3 describes the implementation framework jHelena and shows how it is applied to the
p2p example. Then, in Sec. 4, we introduce the domain-specific language HelenaText and the code generator from
HelenaText ensemble specifications to jHelena code. We finish with some concluding remarks and discussion on
related work in Sec. 5.

Relation to Our Previous Work. This paper is a significant extension of the conference paper [2]. We have added a
detailed description of the jHelena framework, which first has been presented (in a more restrictive version) in [3].
Compared to [2], we have extended the description of the code generator to explain the workflow for the construction
of the tool and the underlying concepts in more detail. The current presentation of the jHelena framework, the He-
lenaText DSL and the code generator subsumes several progressed features of the Helena modeling approach which
have not been considered before. We enforce the connection between components and roles, support synchronous and
asynchronous communication between roles, and specify role behaviors by process terms including guarded choice
of branches. Due to these extensions, we can now generate the complete jHelena code for the implementation of role
behaviors while, in [2], we had to leave open some implementation decisions for the user.

2. Ensemble Modeling with Helena

The role-based modeling approach Helena [1, 3] provides concepts to describe systems of (a large number of)
components teaming up in possibly concurrently running ensembles to perform global goal-oriented tasks. To partic-
ipate in an ensemble, a component plays a certain role. This role adds role-specific behavior to the component and
allows collaboration with (roles of) other components playing other roles. By switching between roles, a component
changes its currently executed behavior. By adopting several roles in parallel, a component concurrently executes
different behaviors. In this section, we summarize the basic ideas and ingredients of the Helena approach.

Notation 1. Whenever we work with tuples t = (t1, . . . , tn), we may use the notation ti(t) to refer to the value ti of t.

2.1. Ensemble Structures

Components form the basic layer of our approach. They provide basic capabilities to store data in attributes and
associations to other components as well as to perform operations. Thus, component instances form the persistent
foundation of ensemble-based systems. Components store data and associations which persist across the life-time of

2

/ Science of Computer Programming 00 (2015) 1–21 3

different dynamically evolving ensembles and provide their computing resources in the form of operations (which can
be exploited by the roles that components play in ensembles). To classify component instances we use component
types. A component type is a tuple ct = (ctnm, ctattrs, ctassocs, ctops) such that ctnm is the name of the component
type, ctattrs a set of attribute types, ctassocs a set of associations to other component types, and ctops a set of operation
types (consisting of an operation name, a formal parameter list, and possibly a return type).

For performing certain tasks, components team up in ensembles. Each participant in the ensemble contributes
specific functionalities to the collaboration, we say, the participant plays a certain role in the ensemble. Roles are
classified by their type. A role type determines the types of the components that are able to adopt this role. It
also defines role-specific attributes (to store data that is only relevant for performing the role), and message types
for incoming and outgoing messages supported by this role type. Thereby, a message type is of the form msg =

msgnm(riparams)(dataparams) such that msgnm is the name of the message type, riparams is a list of (typed) formal
parameters to pass role instances, and dataparams is a list of formal parameters to pass ordinary data. Formally, a
role type rt over a given set of component types CT is a tuple rt = (rtnm, rtcomptypes, rtattrs, rtmsgs) such that rtnm
is the name of the role type, rtcomptypes ⊆ CT is a finite, non-empty subset of component types (whose instances can
adopt the role), rtattrs is a set of role-specific attribute types, and rtmsgs = (rtmsgsout, rtmsgsin) specifies two sets of
message types, one for incoming and one for outgoing messages supported by the role type rt.

To define the structural characteristics of collaborations, an ensemble structure determines the type of an ensemble
that is needed to perform a certain task. It specifies which role types are needed in the collaboration and how many
instances of each role type may (or must) contribute (given by a multiplicity from UML). The roles contributing to
the ensemble can then exchange messages which are outgoing at the source role and incoming at the target role. Inter-
acting role instances can use synchronous or asynchronous communication via input queues. An ensemble structure
specifies, for each role type, the (finite) capacity of the input queue of each role instance of that type (the value 0
expresses synchronous communication). An ensemble structure is always built on top of a given set CT of component
types whose instances can adopt roles as specified in the ensemble structure.

Definition 1 (Ensemble Structure). Let CT be a set of component types. An ensemble structure Σ over CT is a tuple
Σ = (nm, roletypes, roleconstraints) such that nm is the name of the ensemble structure, roletypes is a set of role types
over CT and for each rt ∈ roletypes, roleconstraints(rt) is a pair of a multiplicity (from UML), like 0..1, 1, ∗, 1..∗, etc.
and the finite capacity c ∈ N of the input queue of rt.

P2P Example. Let us illustrate the Helena concepts at the example of a peer-2-peer network supporting the distributed
storage of files which can be retrieved upon request. Several peers are connected in a ring structure and work together
to request and transfer a file: One peer plays the role of the Requester of the file, other peers act as Routers and the
peer storing the requested file adopts the role of the Provider. All these roles can be adopted by component instances
of the type Peer. Fig. 1 shows the component type Peer and all three role types in a UML-like graphical notation.
For simplicity, we only consider peers which can store one single file. The attribute hasFile of a Peer (cf. Fig. 1a)
indicates whether the peer has the file independently from the file’s content information represented by the attribute
content. A Peer is furthermore connected to its neighbor depicted by the association neighbor. The three role types
Requester, Router, and Provider indicate by the notation RoleType:{Peer} that any component instance of type
Peer can adopt the role RoleType. The Requester, for instance, stores in its attribute hasFile whether it already has
the file and it supports two incoming and two outgoing messages which will be explained below.

Fig. 2 shows a graphical representation of the ensemble structure Σtransfer for the p2p example. It consists of the
three role types Requester, Router, and Provider where we now associate multiplicities and capacities for their input
queues. For instance, exactly one Requester is required in a file transfer ensemble while arbitrarily many Routers
might be necessary to route messages through the network. The input queue of a Requester or Router can store up
to two messages, of a Provider only one message. Arrows denote the messages which can be exchanged between
the roles. For instance, the Requester can send the message reqAddr(Requester req)() to a Router. This message
will be used for requesting the address of a provider for the requested file such that the file can be directly downloaded
afterwards using the messages between Requester and Provider.

2.2. Ensemble Specifications
An ensemble specification adds dynamic behavior to an ensemble structure by equipping each role type with a

role behavior. A role behavior is given by a process expression built from the null process, action prefix, guarded
3

/ Science of Computer Programming 00 (2015) 1–21 4

«component type»
Peer

boolean hasFile
int content

neighbor

(a) Component type Peer

«role type»
Requester:{Peer}

boolean hasFile

out reqAddr(Requester req)()
in sndAddr(Provider prov)()
out reqFile(Requester req)()
in sndFile()(int cont)

(b) Role type Requester

«role type»
Router:{Peer}

out reqAddr(..)(..)
in reqAddr(..)(..)
out sndAddr(..)(..)

(c) Role type Router

«role type»
Provider:{Peer}

in reqFile(..)(..)
out sndFile(..)(..)

(d) Role type Provider

Figure 1: All types for the p2p example

«role type»
Requester

mult = 1
cap = 2

«component type»
Peer

«role type»
Router

mult = 1..*
cap = 2

«role type»
Provider

mult = 0..1
cap = 1

reqAd
dr(..

)(..)

sndAd
dr(..

)(..)

reqFile(..)(..)
sndFile(..)(..)

reqAddr(..)

«playedBy»
«playedBy» «playedBy»

Figure 2: Ensemble structure Σtrans f er for the p2p example

choice (branch is nondeterministically selected if several branches are executable), and process invocation. Guards
are predicates over component or role attributes. There are seven different kinds of actions: creation and retrieval of
role instances, sending (!) and receiving (?) a message, operation calls on the owning component, and setting attribute
values for the role instance itself or the owning component. These actions must fit to the declared ensemble structure,
e.g., messages can only be sent by roles which declare them.2 We additionally use predefined expressions like self to
refer to the current role instance and owner to refer to the owning component instance. The attributes of the current
role instance and its owning component instance are accessed in a Java like style and we provide a predefined query
plays(rt, ci) to request whether the component instance ci currently plays the role rt.

Definition 2 (Role Behavior). Let Σ be an ensemble structure and rt be a role type in Σ. A role behavior RoleBehrt

for rt is a process expression built from the following abstract syntax:

P ::= nil (null process)

| a . P (action prefix)

| if (condition1) then {P1}

(or (condition2) then {P2})∗ (guarded choice)

| N (process invocation)

2In the following, we use X,Y for role instance variables, rt′ for role types, x for data variables, E, F for role instance expressions, e for data
expressions, and ci for component instances (assuming a given repository of those); ~z denotes a list of z.

4

/ Science of Computer Programming 00 (2015) 1–21 5

a ::=| X←create(rt′, ci) (role instance creation)

| X←get(rt′, ci) (role instance retrieval)

| F!msgnm(~E)(~e) (sending a message)

| ?msgnm(~rt′ ~X)(~x) (receiving a message)

| [x =] owner.opnm(~e) (component operation call)

| owner.attr = e (component attribute setter)

| self.attr = e (role attribute setter)

The full ensemble specification in Helena consists of two parts: an ensemble structure describing the structural
composition of the ensemble and a set of role behavior declarations describing the interaction behavior of the ensemble
by introducing a dynamic behavior for each role type occurring in the ensemble structure.

Definition 3 (Ensemble specification). An ensemble specification is a pair EnsSpec = (Σ,RoleBeh) such that Σ is
an ensemble structure and a family RoleBeh of role behavior specifications RoleBehrt, one for each role type rt of Σ.

P2P Example. The full ensemble specification for the p2p example can be found on our website [4]. Exemplarily,
we here discuss the behavior specification of a Router (cf. Fig. 3). Initially, a router is able to receive a request for
an address of the provider of the requested file. Depending on whether the router’s owner has the file or not, it either
provides the file to the requester in the process Pprovide or forwards the message to another router Pfwd. To provide
the file in Pprovide, the router creates a new role instance of type Provider on its owning component and sends the
reference of the newly created provider back to the requester. To forward the message in Pfwd, the router checks
whether the neighboring component of its owner already plays the role Router. If so, the neighboring component
does not have the file (since it already forwarded the message in its role as a router) and the router can stop to forward
the message (represented by nil). That means for the whole ensemble that the file does not exist in the p2p network.
If the neighboring component does not play the role Router, a new router is created on the owner’s neighbor and the
request is forwarded to this new router (cf. process Pcreate). Afterwards, it resumes its behavior from the beginning.

RoleBehrouter = ?reqAddr(Requester req)() .
if (owner.hasFile) then {Pprovide}

or (!owner.hasFile) then {Pfwd}

Pprovide = prov←create(Provider, owner) .
req!sndAddr(prov)() . nil

Pfwd = if (plays(Router, owner.neighbor)) then { nil }
or (!plays(Router, owner.neighbor)) then { Pcreate }

Pcreate = router←create(Router, owner.neighbor) .
router!reqAddr(req)() . RoleBehrouter

Figure 3: Role behavior for the router in the p2p example

2.3. Ensemble Automata

Helena ensemble specifications are semantically interpreted by ensemble automata [1]. Ensemble automata are
labeled transition systems describing the evolution of ensemble states. Intuitively, given a set of component instances,
the states of an ensemble automaton capture the currently existing role instances of each role type occurring in the
ensemble, for each role instance, a unique component instance which currently adopts this role, the data values

5

/ Science of Computer Programming 00 (2015) 1–21 6

currently stored for each attribute of the role instance, the local environment for local variables of this role instance,
the current content of the input queue of the role instance, and the current progress of execution according to the
specified role behavior for each role instance. Transitions between ensemble states are triggered by role instance
creation or retrieval, communication actions, operation calls, and (role or component) attribute update. For message
exchange, we assume binary communication between role instances, but support both, synchronous (rendezvous) and
asynchronous, communication. For that purpose, each instance ri of a role type rt is equipped with an input queue
to which messages addressed to ri are delivered. In the synchronous case, the sender is blocked until the receiver
has consumed the message. However, it is important to note that the communication style is not determined by an
ensemble specification since the role behaviors specify local behaviors.

Ensemble States. Let us now look more closely to the formal definition of ensemble states. For this purpose, we
assume given an ensemble structure Σ and a set INS T of component instances. Since component instances are of
global nature and can be used across different ensembles, component instances and their local states do not belong
themselves to an ensemble state, but are used as a basic layer.

An ensemble state σ (over Σ and INS T) describes the local states of all currently existing role instances. A local
state of a role instance ri is a tuple (rt, ci, roledata, ρ, q, ctrl) which stores the following information: (1) The role
type rt of the instance, (2) the component instance ci ∈ INS T , which currently adopts the role, (3) the current data
values roledata stored by ri (for the attributes rtattrs of rt), (4) the local environment ρ of ri mapping local variables to
values, (5) the current content q of the input queue of the role instance ri, and (6) the current control state ctrl showing
the next step in the role behavior execution of ri. We denote by Λ the set of possible local states.

We assume that a role instance is represented by a unique identifier which stems from a universal, countably
infinite set RID. Then, an ensemble state representing the local states of all currently existing role instances is given
by a finite function σ : RID → Λ. Finiteness of σ means that σ is defined only for a finite subset roleinsts(σ) ⊂ RID
which represents the currently existing role instances of σ. We say that a component instance ci ∈ INS T participates
in an ensemble in state σ if ci occurs in the local state of a role instance ri ∈ roleinsts(σ).

P2P Example. We illustrate the definition of an ensemble state at our p2p network. We assume given four component
instances of type Peer, i.e. INS T = {p1, p2, p3, p4}. Then, an ensemble state could be that p1 has adopted the role
of a requester (in terms of the role instance req); p2 and p3 work as routers, adopting the role instances rout1

and rout2 resp., and p3 provides the file and has, additionally to its router role, currently adopted the role instance
prov; component p4 is not involved in this collaboration. A graphical representation of this state (not showing local
environments and input queues) is depicted in Fig. 4. The current control state of each role instance is shown in an
ellipse. We omit the representation of the local environments and the current content of the input queues.

p1:Peer

hasFile = false
content = 0

p2:Peer

hasFile = false
content = 0

p3:Peer

hasFile = true
content = 12345

p4:Peer

hasFile = false
content = 0

req:Requester

hasFile = false

rout1:Router rout2:Router prov:Provider

ctrlreq ctrlrout1 ctrlrout2 ctrlprov

neighbor neighbor neighbor

neighbor

Figure 4: An ensemble state over {p1,p2,p3,p4} for the ensemble structure Σtransfer in graphical notation

Ensemble Automaton. An ensemble automaton describes the execution of an ensemble in an abstract mathematical
way. In [1], we have formally defined when an ensemble automaton conforms to a set of role behavior specifications.
Here, we use ensemble automata as a semantic foundation for the development of the framework in Sec. 3. The
states of an ensemble automaton are ensemble states as defined above. Transitions between ensemble states are

6

/ Science of Computer Programming 00 (2015) 1–21 7

triggered by ensemble actions which are either (a) management actions, for creating and retrieving role instances,
(b) communication actions, for sending and receiving messages of collaborating role instances, (c) operation calls
from role instances to their owning components, or (d) setting the values of (component and role) attributes.

(a) Ensemble automata handle role instance creation and retrieval as expected by introducing a fresh role in-
stance or retrieving an existing one. For instance, a create action is formally represented by a label of the form
ri:X←create(rt′, ci) expressing that the role instance ri has created a role instance of type rt′ which is adopted by the
component instance ci. The reference to the newly created role instance was bound to the variable X. (b) Communi-
cation actions realize binary communication between role instances. A send action is of the form ri:F!msgnm(~E)(~e)
such that ri is the sending role instance, F denotes the target role instance, ~E is a list of actual role instance parameters
and ~e is a list of actual data parameters that has to match to the formal parameters of the message type referred to
by msgnm. The effect of a send action is that the message is put in the input queue of the role instance referred to
by F. It depends on the assumed communication style whether the sender is blocked until the receiver consumes the
message (synchronous communication) or not (asynchronous communication). Similarly, a receive action is of the
form ri:?msgnm(~rt′ ~X)(~x) expressing that the role instance ri consumes the message from its input queue and binds
the received parameters to ~X and resp. ~x. (c) Operation calls have the form ri:owner.opnm(~e) such that owner is
the owning component instance of ri and ~e is a list of actual data parameters for the call to the operation with name
opnm. An operation call initiates an internal computation on a component instance and can only be issued from a
role instance ri which is currently owned by the component instance. However, component instances may adopt sev-
eral role instances (even from different ensembles) in parallel. Therefore, operation calls must be mutually exclusive
over all role instances the component adopts. (d) Lastly, setting an attribute is described by ri:owner.attr = e resp.
ri:self.attr = e. Its effect is that the value of the corresponding attribute is set to the given value.

To evolve an ensemble automaton according to an ensemble specification, we start from a given initial state.
This normally consists of a single role instance initiating the collaboration of the ensemble which then evolves in
accordance to the behavior specifications of each of its role types.

3. Ensemble Implementation with the jHelena Framework

jHelena is a framework which allows to implement ensemble specifications on an object-oriented platform. The
framework is written in Java and realizes the syntax and semantics of the Helena modeling approach described in
Sec. 2. The overall architecture of the framework is shown in Fig. 5. It contains two layers, the metadata layer and
the developer-interface which both are used by a system manager.

Component

Metadata

Ensemble

Metadata

Component

Developer Interface

Ensemble

Developer Interface

SysManager

ConcSysManager C1 C2 C3 E1 E4E2 E3

m
et
ad
at
a

d
ev
el
o
p
er

in
te
rf
ac
e

Figure 5: Architecture of the jHelena framework

The metadata layer allows to define the meta model of ensemble specifications in terms of component types and
ensemble structures (and thus role types etc.) according to the definitions in Sec. 2.1. The classes of this layer
are used to describe the structural aspects of an ensemble structure while the framework guarantees that all
conditions of the definitions are respected.

7

/ Science of Computer Programming 00 (2015) 1–21 8

The developer-interface provides the basic functionality to realize an actual ensemble-based application. By ex-
tending the abstract base classes of the developer-interface, the developer implements concrete components,
indicated by C1,C2,C3, as well as concrete ensembles, indicated by E1,E2,E3,E4. This layer also allows to re-
alize role behaviors in terms of Java threads, following an ensemble specification in the sense of Sec. 2.2, and
forces implementations to follow the abstract principles and conditions established by an ensemble automaton
(cf. Sec. 2.3).3

The system manager and its concrete, application-dependent extension are responsible for the configuration of the
component-based platform and ensemble structures, the creation of initial ensemble states, and the launch of
concrete ensemble-based applications running ensembles concurrently on top of the component-based plat-
form. Extending the abstract SysManager guides the user through the development process: the user first needs
to implement the method configureTypes() (cf. Fig. 6) which configures all structural types for the appli-
cation; afterwards the method createComponents() initializes all components providing the component-based
platform for the application-specific ensembles; lastly, the initial state of each ensemble is established and the
ensembles themselves are launched in the method startEnsembles(). With this method, many concurrently
running ensembles can be started one after the other.

In this section, we first discuss how the formal definitions of ensemble structures are realized in the metadata layer
of jHelena. Afterwards, we explain the infrastructure that the developer-interface provides for the implementation
of actual ensemble-based applications. Lastly, we exemplify the usage of jHelena at our running p2p example.

3.1. Metadata Layer

The upper package of Fig. 6 gives an overview of the metadata layer. All types used to build ensemble structures
are realized by corresponding metadata classes; the relationships between types are represented by associations in
the metadata layer of the framework. Hence, this layer defines the meta model of ensemble structures. Concrete
instances of classes on this layer represent the types contributing to the ensemble-based system (and not the actual
instances of the types).

For example, to represent role types rt = (rtnm, rtcomptypes, rtattrs, rtmsgs) we use the class RoleType. The name
rtnm is stored in an attribute name of the class RoleType (not shown in the diagram). It has the type
Class<? extends Role>. This ensures, using the reflection mechanism of Java, that only those objects of the class
RoleType can be created whose name attribute refers to a role class extending the abstract class Role of the
developer-interface (cf. Sec. 3.2). The set rtcomptypes of component types, which are able to adopt the role
type, is represented by an association with end compTypes directed from RoleType to the class ComponentType. The
role type attributes rtattrs are determined by the association with end attrTypes directed from RoleType to the class
AttributeType. Similarly, the sets of message types rtmsgsout and rtmsgsin occurring in rtmsgs are modeled as asso-
ciations with end msgTypesOut and msgTypesIn directed to the class MessageType. Particular role types used in an
ensemble structure are then represented by objects of the class RoleType. They are constructed with the static factory
method createType of the class RoleType (not shown in the diagram) such that the actual parameters point to objects
representing the constituent parts of a role type.

An ensemble structure Σ = (nm, roletypes, roleconstraints) is represented by an object of the corresponding class
EnsembleStructure. It has an association with end roleTypes to navigate to the role types needed to contribute to
the ensemble structure.

Similarly, all types of an ensemble-based system are realized in the metadata layer.

3Note that in both layers of the framework, the ensemble-related parts are built upon the component-related parts as indicated by the dependency
arrows from left to right.

8

/ Science of Computer Programming 00 (2015) 1–21 9

Figure 6: jHelena framework and its application to the p2p example

3.2. Developer Interface

The goal of the developer-interface layer is to facilitate the implementation of concrete ensemble applications
by following the execution model of an ensemble automaton. In contrast to the metadata classes, we now concentrate
on classes which are extended to represent concrete components, ensembles, roles and messages, i.e., instances of
those classes are actual instances of components etc. An overview of the developer-interface is shown in the sec-
ond package of Fig. 6. It offers abstract classes Component, Ensemble, Role, etc. for each metadata class, apart from
AttributeType4. Each abstract class has an association to the corresponding metadata class representing the type

4We do not need an abstract class Attribute since attribute instances are implicitly represented by Java instance variables and their values
associated to component and role instances. Operations, however, are represented by the abstract class Operation although they are represented
by Java methods associated to component instances. This is mainly because calls to operations as actions in a role behavior can then explicitly be
validated by the framework. They are issued by passing an instance of the class Operation and call the corresponding method of the component by
the reflection mechanism of Java.

9

/ Science of Computer Programming 00 (2015) 1–21 10

of an instance. To implement an actual ensemble-based application, the abstract classes of the developer-interface

must be extended by concrete subclasses as indicated by the inheritance arrows in Fig. 6. The framework ensures,
using the reflection mechanism of Java, that concrete subclasses and the attributes of concrete component and role
classes fit to an ensemble structure represented by type instances on the metadata level.

The design of jHelena is guided by the idea that any running ensemble can be abstractly considered as an ensemble
automaton. Hence, the states of a concrete ensemble must reflect the formal definition of an ensemble state in Sec. 2.3
and the execution steps have to correspond to the transitions of an ensemble automaton.

Ensemble States. Let us first consider how ensemble states are reflected in jHelena. Formally, an ensemble state is
a finite function σ : RID → Λ. In jHelena, an ensemble is represented by an instance of the class Ensemble. The
set of role instances roleinsts(σ) currently existing in the ensemble is given by the association with end roleinsts

directed from Ensemble to the class Role. Formally, the local state of a role instance in roleinsts(σ) is given by a
tuple (rt, ci, roledata, ρ, q, ctrl) as explained in Sec. 2.3. In jHelena, the role type rt of a role instance can by accessed
via the association from the class Role to the class RolyType with association end type. The association adoptedBy

with end owner navigates to the unique component instance ci which currently adopts this role. The attribute values
roledata of a role instance are given by the current values of the instance variables of the concrete role class. The local
environment ρ is implicitly given by another set of instance variables of the concrete role class which are accessed
when the role behavior is executed. Similarly, the current control state ctrl of each role instance is implicitly given
by the program counter of the thread executing the role behavior. Finally, the input queue q is represented by the
association with end input from Role to RoleInputChannel.

Ensemble Automaton. To advance an ensemble, each role executes its role behavior. For the realization of a role
behavior the class Role prescribes the implementation of its abstract method roleBehavior(). All actions executed
in a role behavior are reflected by calls to their method counterparts in the class Role. The corresponding methods
implement the effect of those actions as described in Sec. 2.3. Furthermore, the class Role extends the class Thread
such that whenever a role instance is created a new thread is started which executes the roleBehavior() method
(usually concurrently to other role instances).

The execution steps of all roles of an ensemble together have to correspond to the transitions of an ensemble
automaton. According to the definition of ensemble automata, four types of actions thereby advance the system:
(a) management actions, (b) communication actions, (c) operation calls to the owning component, and (d) setting the
values of (component and role) attributes.

(a) Management labels, like ri:X←create(rt′, ci), are implemented in jHelena by calls to the corresponding method
in the class Role (parameters are not shown). In this case, the createRole() method in the class Role issues a call to
the createRole() method of the class Ensemble. The ensemble creates a new role instance, advises the component
instance ci to adopt the new role instance, and starts the thread of the role instance representing the role behavior. The
ensemble takes also care to validate the correctness of the action execution, e.g., that the component instance ci is al-
lowed as an owner for the desired role type rt and that the number of currently existing role instances does not exceed
the multiplicity specified in the ensemble structure. (b) Communication labels are of the form ri:F!msgnm(~E)(~e) for
sending a message and ri:?msgnm(~rt′ ~X)(~x) for receiving a message. They are represented by calls to the correspond-
ing methods in the class Role. For sending a message, the target role and the message has to be given. While the
role is represented by a reference to an existing role instance, the message part msgnm(~E)(~e) is represented in jHelena
by an instance of (a subclass of) Message where message parameters are implemented as attributes. Internally, the
action is first validated for well-formedness, e.g., that the sending role supports the message as an outgoing message.
Afterwards, it is transmitted to the input queue of the receiving role. Depending on the used implementation for the
input queue (SynchronousInputChannel or AsynchronousInputChannel), the sender is blocked until the message is
consumed by the receiver. To receive the message, the receiver calls the corresponding method of the class Role. The
expected type of the message has to be given. Internally, the role retrieves a waiting message from its input queue that
matches the expected message type. (c) Operation calls are implemented in jHelena by the method callOperation()

of the class Role. The operation itself is represented by an instance of (a subclass of) Operation where operation
parameters are implemented as attributes. Internally, the action is again first validated, e.g., whether the actual param-
eters match the formal parameters. Afterwards, the corresponding method on the owning component is called via the

10

/ Science of Computer Programming 00 (2015) 1–21 11

reflection mechanism of Java. Note that we have to use reflection since operation calls are implemented on the frame-
work level where the actual application-specific operations are not yet known. (d) Similarly, setting a (component or
role) attribute is implemented by the corresponding method in the class Role. Internally, Java’s reflection mechanism
is used again to access the (component’s or role’s) attribute for the same reasons as before.

System Manager. Lastly, the abstract SysManager class provides the means to actually start an ensemble by the
template method start(). This method sequentially calls the methods configureTypes() (to configure all structural
types for the application), createComponents() (to initialize all components providing the underlying component-
based platform) and startEnsembles() (to initialize and start concrete ensembles on top of the component-based
platform). They all need to be implemented in a subclass of the SysManager according to the specific application.

3.3. Framework Application

We illustrate the use of the framework by implementing the p2p file transfer ensemble. We perform the imple-
mentation in two major steps concerning the structural aspects and the dynamic behavior.

Structural Aspects. For the static aspects, we first extend the classes of the developer-interface for each type in
the example as shown in the package p2p in Fig. 6: Peer extends Component, Requester, Router, and Provider

extend Role, etc. We define attributes as instance variables of component and role classes, (operations as methods of
component classes,) and parameters of messages as attributes of the particular message classes. However, we do not
realize the role behaviors yet.

Afterwards, we extend the abstract class SysManager by the class PeerSysManager and implement the method
configureTypes() to configure all types of the p2p example. This method instantiates all type classes of the metadata
layer and connects them appropriately to represent the ensemble structure Σtransfer in Fig. 2. An excerpt of the im-
plementation is shown in Fig. 7. The method first has to create all component types underlying the ensemble-based
system. For the p2p example, we instantiate only one component type for peers (instantiation of attribute types
and component association types is shown inline as well as the empty set for operation types) and add it to the list
componentTypes of the system manager by calling the method addComponentType() (cf. line 2-9 in Fig. 7). After-
wards, we create instances for all types of the ensemble structure and connect them accordingly. Line 11-21 in Fig. 7
exemplify this for the role type of a requester. Lastly, we compose all types to the desired ensemble structure and add
it to the list of ensemble structures ensembleStructures for the system (line 24-25).

Dynamic Behavior. The second step is to add dynamic behavior. For this purpose, we realize the ensemble spec-
ification by first implementing the methods roleBehavior() of all concrete role classes and the methods repre-
senting operations of components. Afterwards, we indicate how to concretely start an ensemble by implementing
startEnsemble() of the class TransferEnsemble. Lastly, we realize a concrete application by implementing the
methods createComponents() and startEnsembles() of the class P2PSysManager.

Implementing the method roleBehavior() for each concrete role class essentially means deriving an appropriate
branching sequence of methods calls representing actions from the process expressions used in the role behavior
descriptions of the ensemble specification. Particularly interesting is the translation of guarded choice. In
Helena, all guards are evaluated and the executed branch is nondeterministically selected from all branches
guarded by a condition evaluating to true. In jHelena, nondeterminism cannot be reflected, thus the first
branch guarded by a condition evaluating to true is selected. The method roleBehavior() in Fig. 8 shows
the implementation of the behavior RoleBehrouter of a router which was specified in Fig. 3. All guards are
mutually exclusive, thus we do not suffer from sequentializing nondeterminism as explained before. Each
action is translated to a call to its corresponding method in the class Role. Thereby, binding a value (e.g.,
from receiving an incoming message) is realized by setting a particular role instance variable. For example, the
router receives the reference to the requester with the incoming message reqAddrMsg in line 11. To be able to
forward this reference later on (e.g., in line 37), it is stored in the instance variable req in line 12. Lastly, to
access (component and role) attributes, particular getters are called like the method getNeighborOfOwner() for
retrieving the value of the attribute neighbor of the owner in line 27.

11

/ Science of Computer Programming 00 (2015) 1–21 12

1 public void configureTypes() {
2 ComponentType peer = ComponentType.createType(Peer.class ,
3 getAsSet(
4 AttributeType.createType("hasFile", Boolean.c lass),
5 AttributeType.createType("content", Integer.c lass)),
6 getAsSet(
7 ComponentAssociationType.createType("neighbor", Peer.c lass),
8 new HashSet<OperationType>());
9 th i s.addComponentType(peer);

10

11 Set<ComponentType> reqCompTypes = getAsSet(peer);
12 Set<AttributeType> reqAttrTypes = getAsSet(AttributeType.createType("hasFile", Boolean.c lass));
13 Set<MessageType> reqMsgsOut =
14 getAsSet(
15 MessageType.createType(ReqAddrMessage.c lass),
16 MessageType.createType(ReqFileMessage.c lass));
17 Set<MessageType> reqMsgsIn =
18 getAsSet(
19 MessageType.createType(SndAddrMessage.c lass),
20 MessageType.createType(SndFileMessage.c lass));
21 RoleType req = RoleType.createType(Requester.class , reqCompTypes, reqAttrTypes, reqMsgsOut,reqMsgsIn);
22 ...
23

24 EnsembleStructure transferEnsemble = EnsembleStructure.createType(TransferEnsemble.class , ...);
25 th i s.addEnsembleStructure(transferEnsemble);
26 }

Figure 7: Instantiation of types in the method configureTypes() of the class P2PSysManager

Operations of components are implemented as methods of the corresponding (subclass of the) class Component.
They have to take the parameters of the operation as input. The body of the method implements the behavior of
the operation which was not yet part of the ensemble specification, but has now to be added by the developer.
In our p2p example, we do not have any operations.

The method startEnsemble() of the class TransferEnsemble actually starts an instance of the ensemble (cf. Fig. 9).
The method gets an initial component as input where the file was initially requested. It creates a role instance
of type Requester adopted by the initial (peer) component, thus starting to execute the requester’s behavior.

Lastly, a concrete scenario needs to be set up. The system is populated by concrete peers in the method
createComponents() of the P2PSysManager (cf. Fig. 10). Each peer is initialized as indicated in line 2-3, the
network of peers as a ring structure is set up (line 4-5), and each peer is added to the list currentComponents
(line 6-7). Afterwards, concrete ensemble instances are created and run in the method startEnsembles()

(cf. Fig. 11).

Using our framework, the implementation of the p2p example was straightforward and could easily be derived
from the formalization in Helena. Different file transfer ensembles could be instantiated (cf. line 6 in Fig. 11)
and run concurrently.

12

/ Science of Computer Programming 00 (2015) 1–21 13

1 public c lass Router extends Role {
2 protected Requester req;
3 protected Provider prov;
4 protected Router router;
5

6 public Router(Ensemble ens, Integer capacity) throws ... {
7 super(ens, capacity);
8 }
9

10 protected void roleBehavior() throws ... {
11 ReqAddrMessage reqAddrMsg = (ReqAddrMessage) th i s.receiveMessage(ReqAddrMessage.c lass);
12 th i s.req = reqAddrMsg.getReq();
13

14 i f (th i s.getHasFileOfOwner()) {
15 th i s.provide();
16 }
17 e l se i f (!(th i s.getHasFileOfOwner())) {
18 th i s.fwd();
19 }
20 }
21 private void provide() {
22 th i s.prov = th i s.createRole(Provider.class , th i s.owner);
23

24 th i s.sendMessage(th i s.req, new SndAddrMessage(th i s.prov));
25 }
26 private void fwd() {
27 i f (th i s.playsRole(Router.class , th i s.getNeighborOfOwner())) {
28 // do nothing
29 }
30 e l se i f (!(th i s.playsRole(Router.class , th i s.getNeighborOfOwner()))) {
31 th i s.create();
32 }
33 }
34 private void create() {
35 th i s.router = th i s.createRole(Router.class , th i s.getNeighborOfOwner());
36

37 th i s.sendMessage(th i s.router, new ReqAddrMessage(th i s.req));
38

39 th i s.roleBehavior();
40 }
41 ...
42 }

Figure 8: Implementation of RoleBehrouter in Fig. 3

1 protected void startEnsemble(Component initComp) {
2 Requester req = th i s.createRole(Requester.class ,initComp);
3 }

Figure 9: Implementation of the method startEnsemble() in the class TransferEnsemble

1 protected void createComponents() {
2 Peer peer1 = new Peer(fa lse , 0);
3 Peer peer2 = new Peer(true, 12345); ...
4 peer1.setNeighbor(peer2);
5 peer2.setNeighbor(peer3); ...
6 th i s.addComponent(peer1);
7 th i s.addComponent(peer2); ...
8 }

Figure 10: Instantiation of peers in the method createComponents() of the class P2PSysManager

13

/ Science of Computer Programming 00 (2015) 1–21 14

1 public void startEnsembles() {
2 Ensemble ens1 = new TransferEnsemble("ens1");
3 th i s.addEnsemble(ens1);
4 ens1.startEnsemble(th i s.getComponent());
5

6 Ensemble ens2 = ...
7 }

Figure 11: Implementation of the startEnsembles() in the class P2PSysManager

4. HelenaText and Code Generation

When modeling and implementing an ensemble-based system according to Helena, the developer may experience
two pitfalls. Without any editor support for writing ensemble specifications, the developer has to ensure herself that
her specifications conform to Helena and respect all constraints formulated in the formal definitions. To implement
an ensemble, she has to translate an ensemble specification to jHelena code by hand and has no guarantee that
the implementation indeed corresponds to the ensemble specification. Therefore, we propose the domain-specific
language (DSL) HelenaText. The language provides a concrete syntax for ensemble specifications supporting roles
and ensemble structures as first-class citizens. It is fully integrated into Eclipse with an editor including syntax
highlighting, content assist, and validation. Moreover, we provide an automatic code generator which translates a
HelenaText specification to jHelena code.

This section first gives an overview about the workflow for defining the HelenaText DSL and implementing the
corresponding Eclipse plug-in (which provides the editor and the code generator). Afterwards, we describe how
HelenaText realizes the Helena modeling approach and outline the generation rules of the code generator.

4.1. Workflow for the Implementation of the HelenaText Plug-In

For the development of the HelenaText DSL and the corresponding Eclipse plug-in, we rely on the Xtext work-
bench of Eclipse (www.eclipse.org/Xtext/). This workbench provides not only the possibility to define the DSL
itself, but also supports the implementation of a customized editor, validator, and Java code generator in one work-
bench. Fig. 12 gives an overview of the steps that have to be taken for the implementation of the HelenaText plug-in
with Xtext.

Figure 12: Workflow for the implementation of the HelenaText plug-in

In the first step, a new Xtext project is created. Amongst others, it has to be defined which file ending the desired
DSL files should have. In our case, we chose the String helena. A simple Eclipse plug-in is created, that is
already executable, but provides only a standard editor which accepts any text.

Together with the plug-in stub, an example grammar file is generated. In this Xtext file, we define the grammar that
determines our new DSL HelenaText. The grammar rules in Xtext are described in detail in Sec. 4.2. Any
ensemble specification defined by the user of the Eclipse plug-in later on has to conform to this grammar.

14

www.eclipse.org/Xtext/

/ Science of Computer Programming 00 (2015) 1–21 15

Afterwards, the command Generate Xtext Artifacts is triggered to validate the specified grammar for correct-
ness. For the valid grammar, the metamodel (in form of an Ecore metamodel) as well as Java classes imple-
menting the DSL are derived from the grammar. Moreover, Xtend classes which serve as stubs for the code
generator and the validator are created.

The validator stub is then extended by validation rules for properties and context conditions of Helena which could
not be expressed in the grammar. The validation rules are written in Xtend and are described in detail in
Sec. 4.2. When defining a concrete ensemble specification in HelenaText later on, the Eclipse plug-in will
issue validation based on these rules to check that the specification satisfies the conditions required by Helena.

The generator stub is extended to be able to transform concrete HelenaText ensemble specifications to executable
jHelena code. The generation rules are also written in Xtend and are described in detail in Sec. 4.3. The Eclipse
plug-in will issue code generation based on these rules whenever a valid ensemble specification is created in the
HelenaText plug-in later on.

The complete Eclipse plug-in for HelenaText consists of an HelenaText editor supporting the specified grammar
and its validation rules as well as the code generator. To make it accessible to a user, the plug-in is exported
using the Eclipse plug-in development assistant (e.g., as a jar file) and then imported into her Eclipse platform
by the user.

4.2. The Domain-Specific Language HelenaText
For our domain-specific language HelenaText, we define the grammar in a BNF-like notation of Xtext. The

grammar follows the formal definitions of the Helena modeling elements like component and role types, ensemble
structures and role behaviors. Constraints which cannot be included into the DSL grammar are formulated as valida-
tion rules written in Xtend. The rules for all syntactic constructs of HelenaText can be found at [4]. Here, we only
want to focus on two particular aspects.

Structural Aspects:. To exemplify the derivation of the grammar rules for types, let us revisit the definition of a role
type from Sec. 2.1: a role type rt over a given set of component types CT is a tuple rt = (rtnm, rtcomptypes, rtattrs, rtmsgs).
Fig. 13 shows the corresponding grammar rule. A role type declaration in HelenaText must start with the keyword
roleType followed by its name referring to rtnm. The set rtcomptypes of component types which can adopt the role
are reflected by the list compTypes after the keyword over. It is a list of references to already defined component
types which is expressed by the square brackets, the cross reference concept of Xtext. In curly braces, the two sets
roleattrs referring to rtattrs and rolemsgs referring to rtmsgs are defined in arbitrary order. Opposed to Helena, we
assume typed attributes and typed data parameters in HelenaText.

1 RoleType:
2 ’roleType’ name=ValidID ’over’ compTypes+=[ComponentType](’,’compTypes+=[ComponentType])* ’{’
3 (
4 roleattrs += (’roleattr’ type=JvmTypeReference name=ValidID ’;’)
5 | rolemsgs += (’rolemsg’ direction=MsgDirection name=ValidID
6 formalRoleParamsBlock=FormalRoleParamsBlock
7 formalDataParamsBlock=FormalDataParamsBlock ’;’)
8)*
9 ’}’

10 ;

Figure 13: Xtext grammar rule for role types in HelenaText

However, the DSL grammar rule cannot express that the lists compTypes, roleattrs, and rolemsgs all have to
be duplicate-free to represent the sets rtcomptypes, rtattrs, and rtmsgs. For that, a validation rule in Xtend is added
(cf. Fig. 14). Each set of elements is handled separately, for messages we even split the set according to whether they
are incoming or outgoing messages (cf. line 5-6). For each set, we call the method findDuplicates which reports an
error in line 13 if an element with the same name exists in the investigated set.

The concrete syntax for the declaration of the role type Router of Fig. 1c is shown in Fig. 15.

15

/ Science of Computer Programming 00 (2015) 1–21 16

1 @Check
2 def check_rt_hasDuplicates(RoleType rt) {
3 findDuplicates(rt.compTypes);
4 findDuplicates(rt.roleattrs);
5 findDuplicates(rt.rolemsgs.filter[direction == MsgDirection.OUT || direction == MsgDirection.INOUT]);
6 findDuplicates(rt.rolemsgs.filter[direction == MsgDirection.IN || direction == MsgDirection.INOUT]);
7 }
8

9 private def void findDuplicates(Iterable<T extends AbstractDuplicateFreeObject> list) {
10 var Set<String> nameSet = new TreeSet();
11 for (AbstractDuplicateFreeObject elem : list.filterNull) {
12 if (!nameSet.add(elem.name)) {
13 error(’Duplicate declaration of ’ + elem.name, ...)
14 }
15 }
16 }

Figure 14: Xtend validation rule for role types in HelenaText

1 roleType Router over Peer {
2 rolemsg in/out reqAddr(Requester req)();
3 rolemsg out sndAddr(Provider prov)();
4 }

Figure 15: Router in the p2p example specified in HelenaText

Dynamic Behavior. The second step is to add dynamic behavior to complete the ensemble specification. For that
purpose, we have to specify role behaviors which are given by process terms including actions for role instance
creation and retrieval, sending and retrieving messages, operations calls, and setting values of attributes. The grammar
rule for defining process terms (cf. Fig. 16) directly follows the inductive definition in Def. 2.

1 Process: ’process’ name=ValidID ’=’ processTerm=ProcessTerm;
2

3 ProcessTerm:
4 {NilTerm} ’nil’
5 | {ActionPrefix} (action=Action ’.’ processTerm=ProcessTerm)
6 | {GuardedChoice}
7 (’if’ ’(’ ifGuard = Guard ’)’ ’then’ ’{’ ifBranch = ProcessTerm ’}’
8 (’or’ ’(’ orGuards += Guard ’)’ ’then’ ’{’ orBranches+= ProcessTerm ’}’)*)
9 | {ProcessInvocation} process=[Process]

10 ;

Figure 16: Xtext grammar rule for process terms in HelenaText

In Sec. 2.2, we informally stated that role behaviors have to be well-formed, e.g., messages can only be sent by
roles which declare them. Those well-formedness conditions cannot be expressed in the DSL grammar. Therefore,
we add validation rules written in Xtend. Fig. 17 shows the validation of outgoing message calls. In line 3, we
iterate over all declared messages of the corresponding role type of the role behavior where the outgoing message
call was issued. If none of the messages has the same name as the called message (cf. line 4), we report an error in
line 25. Otherwise, we check whether the message was declared outgoing in the role type in line 5, whether the actual
parameters of the call match the formal parameters in line 9 and line 13, and whether the called message is allowed
as incoming message at the receiving role in line 17.

In Fig. 18, we present the role behavior of a router specified with HelenaText.

4.3. Code Generator

To make HelenaText specifications executable, we provide an automatic code generator. The generator uses rules
written in Xtend to translate HelenaText elements to jHelena code. It takes a HelenaText file containing a particular
ensemble specification as input and generates a package for the ensemble application which is split into two parts, the
(sub)packages src-gen and src-user. The package src-gen is already complete and must not be touched anymore
while the package src-user offers templates which must be implemented by the user.

16

/ Science of Computer Programming 00 (2015) 1–21 17

1 @Check
2 def check_rb_messageCallFitsToRoleType(OutgoingMessageCall call) {
3 for (roleMsg : call.parentRoleBehavior.roleTypeRef.rolemsgs) {
4 if (call.msgName == roleMsg.name) {
5 if (!call.directionMatches(roleMsg)) {
6 error(’The underlying role type has to allow sending/receiving the message.’,...);
7 return;
8 }
9 if (!call.roleParamsMatchInType(roleMsg)) {

10 error(’The role parameters do not fit to the ones of the message in the role type.’,...);
11 return;
12 }
13 if (!call.dataParamsMatchInType(roleMsg)) {
14 error(’The data parameters do not fit to the ones of the message in the role type.’,...);
15 return;
16 }
17 if (!call.communicationPartnerHasMatchingMsg()) {
18 error(’The message has to be allowed as incoming message at the receiver.’,...);
19 return;
20 }
21 // everything was ok
22 return;
23 }
24 }
25 error(’The message has to be a message of this role type.’,...);
26 }

Figure 17: Xtend validation rule for role types in HelenaText

1 roleBehavior Router = RouterProc {
2 process RouterProc =
3 ? reqAddr(Requester req)() .
4 if (owner.hasFile) then { Provide }
5 or (! owner.hasFile) then { Fwd }
6

7 process Provide =
8 prov <- create(Provider, owner) .
9 req ! sndAddr(prov)() . nil

10

11 process Fwd =
12 if (plays(Router, owner.neighbor)) then { nil }
13 or (!plays(Router, owner.neighbor)) then { Create }
14

15 process Create =
16 router <- create(Router, owner.neighbor) .
17 router ! reqAddr(req)() .
18 RouterProc
19 }

Figure 18: Router in the p2p example specified in HelenaText

For the p2p example, the generated package p2p is shown in Fig. 19. In comparison to Fig. 6 where we explained
the implementation of the p2p example by hand, the package p2p is now split into two parts: the package src-gen

contains only classes which could be completely generated from the HelenaText specification; the package src-user

provides base classes where the user has to implement the parts which cannot be generated from the ensemble speci-
fication.

Package src-gen. Let us start with the classes of the package src-gen. It contains the generated subclasses for the ab-
stract base classes of the developer-interface. These subclasses, like Peer, Requester, Router, and Provider cor-
respond to the types of the given ensemble structure. They implement the structural composition of a TransferEnsemble
as well as the dynamic behavior of all roles as explained in Sec. 3.3. The generated P2PSysManager implements the
method configureTypes() as shown in Fig. 7. It takes care to create objects for the metadata classes which represent
types and the ensemble structure in accordance with the p2p ensemble specification.

Package src-user. The package src-user provides generated implementation classes to realize the parts which were
not specified in the HelenaText ensemble specification like the effect of component operations (i.e., the body of the

17

/ Science of Computer Programming 00 (2015) 1–21 18

Figure 19: Generated jHelena implementation for the p2p example

corresponding methods) and the initialization of ensembles. In the p2p example, components do not have any opera-
tions, thus we can omit their implementation which would be part of the class PeerImpl. However, to initialize the en-
semble for file transfer the user needs to implement the two generated implementation classes P2PSysManagerImpl and
TransferEnsembleImpl. They are generated with empty stubs for the methods createComponents(),
startEnsembles(), and startEnsemble() resp. to be implemented by the user.

Generator Rules. The rules to generate the code for both packages are defined by template expressions in Xtend.
Fig. 20 shows an excerpt of such an Xtend rule for the generation of the role classes. The operation compile is called
for any role type given in a HelenaText specification and generates the corresponding class declaration in jHelena.
Basically anything in the operation compile is written to the generated class file except text enclosed in tag brackets
«» which must be evaluated first. For example, in line 2 the class-header is built. The name of the class is dynamically
evaluated from the expression «it.classname». This is a function of RoleType which is called for the first parameter
it of the operation (see line 1) and retrieves the name of the role type it (the resulting class-header for the role type
Router is shown in line 1 of Fig. 8 in Sec. 3.3). Afterwards, in line 4-6 of the Xtend rule, all attributes of the role type
are generated as instance variables (which are none for the role type Router). Lines 7-9 declare additional instance
variables for any parameters of incoming messages or created role instances in the role behavior of the role type such
that their values can be accessed throughout the execution of the role behavior. For example, for the role behavior of
the Router, we need instance variable to store the values of the two created role instances prov and router as well as
of the parameter req of the incoming message reqAddr (cf. Fig. 8).

For the role behavior itself the method roleBehavior is generated from the process term representation in He-
lenaText (cf. line 15-18). Basically, the process term is generated by calling the function compileProcessTerm.
Similarly to the formal definition of role behaviors in Def. 2, this function is inductively defined. Here, we only show
the translation of action prefix in line 27-30. The generated method roleBehavior for the router is shown in Fig. 8.

Lastly, we also generate getters and setters for all attributes of the considered role type and its owning component
types (cf. line 20-23). These methods are not shown in Fig. 8 since they are standard implementations.

Similarly, Xtend rules for all concepts of Helena are defined such that executable jHelena code can be generated
from a HelenaText specification. The full set of generator rules can be found at [4].

18

/ Science of Computer Programming 00 (2015) 1–21 19

1 def compile(RoleType it){
2 ’’’public class «it.classname» extends Role {
3

4 «FOR field : it.roleattrs»
5 protected «field.type» «field.name»;
6 «ENDFOR»
7 «FOR inst : rb.abstractInstances»
8 protected «inst.type» «inst.name»;
9 «ENDFOR»

10

11 public «it.classname»(Ensemble ens, Integer capacity) throws ... {
12 super(ens, capacity);
13 }
14

15 @Override
16 protected void roleBehavior() throws ... {
17 «compileProcessTerm(rb.compileRoleBehavior)»
18 }
19 ...
20 «FOR field: allFields»
21 private «field.type» «field.getterName»() {...}
22 private void «field.setterName»(«field.type» «field.name») {...}
23 «ENDFOR»
24 }’’’
25 }
26

27 def compileProcTerm(ActionPrefix actionPrefix){
28 ’’’«compileAction(actionPrefix.action)»
29 «compileProcTerm(actionPrefix.processTerm)»’’’
30 }
31 ...

Figure 20: Xtend generation rule for role types in HelenaText

5. Conclusion

In this paper, we presented HelenaText, a domain-specific language to specify ensembles, and jHelena, a Java
framework to realize and execute ensemble specifications. HelenaText relies on the Xtext workbench of Eclipse and
therefore provides an Eclipse plug-in with an editor which gives the user full content assist for writing ensemble spec-
ifications and checks the user-defined models for validity according to the formal Helena definitions. Additionally, a
code generator was implemented which translates ensemble specifications in HelenaText to executable jHelena code.
jHelena transfers the concepts of roles and ensembles to an object-orientated platform and directly implements the
formal foundations and the execution model of the Helena approach. The use of HelenaText and its code generator
(and thus jHelena) was demonstrated at a p2p example throughout the paper.

5.1. Related Work
Ensemble-Based Systems. The EU project ASCENS [5, 6] develops foundations, techniques and tools to support
the whole life cycle for the construction of Autonomic Service Component ENSembles. In this context, several
approaches to formalize and implement ensemble-based systems have been developed. SCEL [7, 8] provides a kernel
language for abstract programming of autonomic systems, whose components rely on knowledge repositories, and
models interaction by knowledge exchange. In SCEL (and its implementation jRESP) ensembles are understood
as group communications. In contrast, Helena relies on message exchange between participants of ensembles and
introduces a second role layer on top of a component-based platform to allow a more flexible mechanism for dynamic
ensemble composition. DEECo [9] introduces an explicit specification artifact for ensembles dynamically formed
according to a given membership predicate. Interaction is realized by implicit knowledge exchange managed by
DECCo’s runtime infrastructure. However, Helena is more concrete since we include explicit notions of interaction
and collaboration. Related approaches have been developed in the context of multi-agent systems and multi-party
session types, for instance in the Scribble framework [10]. However, none of these methods formalizes concurrent
execution of ensembles which is built-in in our ensemble automata5.

5For a more detailed comparison of the Helena ideas with the literature see [1].
19

/ Science of Computer Programming 00 (2015) 1–21 20

Roles. With Helena, we offer a rigorous modeling method for describing task-oriented groups. Modeling evolving
objects with roles as perspectives on objects has been proposed by various authors [11, 12, 13, 14], but they do not
see them as autonomic entities with behavior as we do in Helena. Steegmans et al. [15] propose a role model where
agents commit themselves to roles and therefore execute the associated behavior given by action diagrams. However,
they do not transfer the idea of roles to the implementation level as we do it with jHelena, but rather rely on free-flow
architectures for realization. For describing dynamic behaviors, we share ideas with different process calculi [7, 16],
but we introduce dynamic instance creation for roles on selected components5.

Implementation Frameworks. The idea to describe structures of interacting objects without having to take the entire
system into consideration was already introduced by several authors [17, 18, 19, 20], but they do not consider roles
as autonomic entities and do not tackle concurrently running ensembles as we do in Helena. The modeling approach
Macodo [21] introduces a set of role-based abstractions to define collaborations. It is supported by a proof-of-concept
middleware which provides appropriate programming concepts to map the role-based abstractions to Web service
technologies. However, their focus is only on the collaboration-level and does not include the concrete realization of
individual role behaviors.

5.2. Future Work
In the near future, we intend to provide a graphical DSL in addition to HelenaText which implements our UML-

like notation used throughout the paper. Moreover, we are currently investigating how to check ensemble specifica-
tions for goal satisfaction [22]. Thereby, we rely on LTL formulae to express goals like proposed in [23, 24]. We
generate Promela code from ensemble specifications which can be validated for the satisfaction of goals with the
model-checker Spin [25]. Lastly, we plan to examine requirements for collaboration correctness and to integrate tools
for the analysis of ensemble specifications to check the absence of collaboration errors.

References

[1] R. Hennicker, A. Klarl, Foundations for Ensemble Modeling - The Helena Approach, in: Specification, Algebra, and Software, Vol. 8373 of
LNCS, Springer, 2014, pp. 359–381.

[2] A. Klarl, L. Cichella, R. Hennicker, From Helena Ensemble Specifications to Executable Code, in: International Symposium on Formal
Aspects of Component Software, Vol. 8997 of LNCS, Springer, 2015, pp. 183–190.

[3] A. Klarl, R. Hennicker, Design and Implementation of Dynamically Evolving Ensembles with the Helena Framework, in: Australasian
Software Engineering Conference, IEEE, 2014, pp. 15–24.

[4] A. Klarl, R. Hennicker, The Helena Framework (2015).
URL http://www.pst.ifi.lmu.de/Personen/team/klarl/helena

[5] The ASCENS Project (2015).
URL http://www.ascens-ist.eu

[6] M. Wirsing, M. Hölzl, M. Tribastone, F. Zambonelli, ASCENS: Engineering Autonomic Service-Component Ensembles, in: B. Beckert,
F. Damiani, M. Bonsangue, F. de Boer (Eds.), 10th International Symposium on Formal Methods for Components and Objects, Vol. 7542 of
Lecture Notes in Computer Science, Springer, 2012.

[7] R. De Nicola, G. L. Ferrari, M. Loreti, R. Pugliese, A Language-Based Approach to Autonomic Computing, in: B. Beckert, F. Damiani, F. S.
de Boer, M. M. Bonsangue (Eds.), 10th International Symposium on Formal Methods for Components and Objects, Vol. 7542 of Lecture
Notes in Computer Science, Springer, 2011, pp. 25–48.

[8] R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi, SCEL: a Language for Autonomic Computing, Tech. rep., IMT, Institute for Advanced Studies
Lucca, Italy (2013).

[9] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, DEECo: an Ensemble-based Component System, in: Proceedings of
16th International Symposium on Component-Based Software Engineering, ACM, 2013, pp. 81–90.

[10] N. Yoshida, R. Hu, R. Neykova, N. Ng, The Scribble Protocol Language, in: M. Abadi, A. L. Lafuente (Eds.), 8th International Symposium
Trustworthy Global Computing, Vol. 8358 of Lecture Notes in Computer Science, Springer, 2013, pp. 22–41.

[11] G. Gottlob, M. Schrefl, B. Röck, Extending Object-Oriented Systems with Roles, ACM Trans. Inf. Syst. 14 (3) (1996) 268–296.
[12] B. B. Kristensen, K. Østerbye, Roles: Conceptual Abstraction Theory and Practical Language Issues, TAPOS 2 (3) (1996) 143–160.
[13] F. Steimann, On the representation of roles in object-oriented and conceptual modelling, Data Knowl. Eng. 35 (1) (2000) 83–106.
[14] F. Steimann, Formale Modellierung mit Rollen, Habilitation Thesis, Universität Hannover (2000).
[15] E. Steegmans, D. Weyns, T. Holvoet, Y. Berbers, A Design Process for Adaptive Behavior of Situated Agents, in: International Conference

on Agent-Oriented Software Engineering, Springer, 2005, pp. 109–125.
[16] P.-M. Deniélou, N. Yoshida, Dynamic Multirole Session Types, in: Symposium on Principles of Programming Languages, ACM, 2011, pp.

435–446.
[17] S. Herrmann, Object teams: Improving modularity for crosscutting collaborations, in: Revised Papers from the International Conference

NetObjectDays on Objects, Components, Architectures, Services, and Applications for a Networked World, NODe ’02, Springer-Verlag,
London, UK, UK, 2003, pp. 248–264.

20

http://www.pst.ifi.lmu.de/Personen/team/klarl/helena
http://www.pst.ifi.lmu.de/Personen/team/klarl/helena
http://www.ascens-ist.eu
http://www.ascens-ist.eu

/ Science of Computer Programming 00 (2015) 1–21 21

[18] M. Baldoni, U. Studi, T. Italy, Interaction between Objects in powerJava, Journal of Object Technology 6 (2007) 7–12.
[19] T. Reenskaug, Working with objects: the OOram Framework Design Principles, Manning Publications, Greenwich, CT, 1996.
[20] T. Tamai, N. Ubayashi, R. Ichiyama, Objects as Actors Assuming Roles in the Environment, in: Software Engineering for Multi-Agent

Systems V, Vol. 4408 of LNCS, Springer, 2007, pp. 185–203.
[21] R. Haesevoets, D. Weyns, T. Holvoet, Architecture-Centric Support for Adaptive Service Collaborations, Transaction on Software Engineer-

ing Methodology 23 (2014) 2:1–2:40.
[22] R. Hennicker, A. Klarl, M. Wirsing, Model-Checking Helena Ensemble Specifcations with Spin, in: Logic, Rewriting, and Concurrency -

Festschrift Symposium in Honor of José Meseguer, LNCS, Springer, submitted.
[23] A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Software Specifications, Wiley, 2009.
[24] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in Property Specifications for Finite-state Verification, in: International Conference on

Software Engineering, ACM, 1999, pp. 411–420.
[25] G. Holzmann, The Spin Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.

21

	Introduction
	Ensemble Modeling with Helena
	Ensemble Structures
	Ensemble Specifications
	Ensemble Automata

	Ensemble Implementation with the jHelena Framework
	Metadata Layer
	Developer Interface
	Framework Application

	 HelenaText and Code Generation
	Workflow for the Implementation of the HelenaText Plug-In
	The Domain-Specific Language HelenaText
	Code Generator

	Conclusion
	Related Work
	Future Work

