
Helena@Work:

Modeling the Science Cloud Platform

Annabelle Klarl, Philip Mayer, and Rolf Hennicker

Ludwig-Maximilians-Universität München, Germany??

Abstract. Exploiting global interconnectedness in distributed systems,
we want autonomic components to form teams to collaborate for some
global goal. These teams have to cope with heterogeneity of participants,
dynamic composition, and adaptation.Helena advocates a modeling ap-
proach centered around the notion of roles which components can adopt
to take part in task-oriented teams called ensembles. By playing roles,
the components dynamically change their behavior according to their re-
sponsibilities in the task. In this paper, we report on the experiences of
using Helena in modeling and developing a voluntary peer-2-peer cloud
computing platform. We found that the design with roles and ensem-
bles provides a reasonable abstraction of our case study. The model is
well-structured, easy to understand and helps to identify and eliminate
collaboration mismatches early in the development.

1 Introduction

The development of distributed software systems, i.e. systems in which individ-
ual parts run on di�erent machines connected via some sort of communication
network, has always been a challenge for software engineers. Special care has
to be taken to the unique requirements concerning concurrency and sharing of
responsibilities. In this area, di�cult issues arise particularly in those systems
in which the individual distributed software components have a certain degree
of autonomy and interact in a non-centralized and non-trivial manner.

Such systems are investigated in the EU project ASCENS [1], where the indi-
vidual distributed artifacts are components which provide the basic capabilities
for collaborating teams. These components dynamically form ensembles to per-
form collective tasks which are directed towards certain goals. We believe that
the execution and interaction of entities in such ensembles is best described by
what we call roles. They are an abstraction of the part an individual component
plays in a collaboration. We claim that separating the behavior of components
into individual roles leads to an easier understanding, modeling, and program-
ming of ensemble-based systems. Our modeling approach Helena [9,12] thus
extends existing component-based software engineering methods by modeling
roles. Each role (more precisely role type) adds particular capabilities to the ba-
sic functionalities of a component which are only relevant when performing the

?? This work has been partially sponsored by the EU project ASCENS, 257414.

role. Exploiting these role-speci�c capabilities, we specify role behaviors which
the component dynamically adopts when taking over a role. For the speci�ca-
tion of role behaviors we extend [9] by introducing a process language which
allows to describe dynamic creation of role instances on selected component in-
stances. The structural characteristics of collaborations are de�ned in ensemble
structures capturing the contributing role types and potential interactions.

In this paper, we report on the experiences of using Helena in modeling
and developing a larger software system. As our case study we have selected the
Science Cloud Platform (SCP) [14] which is one of the three case studies used in
the ASCENS project. The SCP is, in a nutshell, a platform of distributed, vol-
untarily provided computing nodes. The nodes interact in a peer-to-peer manner
to execute, keep alive, and allow use of user-de�ned software applications. The
goal of applying Helena to the SCP is to �nd a reasonable abstraction that
serves as clear documentation, analysis model, and guideline for the implemen-
tation. We experienced that the Helena model helps to rigorously describe the
concepts of the SCP. During analysis of the models, collaboration mismatches
can be eliminated at early stages. As we shall discuss, the implementation also
bene�ts from the encapsulation in roles. However, during implementation some
additional e�ort is required to provide an infrastructure which supports the role
concept on top of the component-based system. Lastly, special care has to be
taken to make the system robust against communication failures and to provide
communication facilities between ensembles and the outside world which is not
yet tackled in Helena.

In the following sections, we �rst describe the case study in Sec. 2. Afterwards,
we summarize the Helena modeling approach in Sec. 3 and apply it to the case
study in Sec. 4. Sec. 5 describes the realization of the Helena model on the
infrastructure of the SCP and Sec. 6 discusses some related work. Lastly, we
report on experiences and give an outlook in Sec. 7.

2 Case Study

One of the three case studies in the ASCENS project is the Science Cloud Plat-
form (SCP) [14]. The SCP employs a network of distributed, voluntarily provided
computing nodes, in which users can deploy user-de�ned software applications.
To achieve this functionality, the SCP reuses ideas from three usually separate
computing paradigms: cloud computing, voluntary computing, and peer-to-peer
computing. In a nutshell, the SCP implements a platform-as-a-service in which
individual, voluntarily provided computing nodes interact using a peer-to-peer
protocol to deploy, execute, and allow usage of user-de�ned applications. The
SCP takes care to satisfy the requirements of the applications, keeps them run-
ning even if nodes leave the system, and provides access to the deployed appli-
cations. For a full description of the SCP, we refer to [14]. In the following, we
only discuss those parts relevant for this paper.

The SCP is formed by a network of computers which are connected via the
Internet, and on which the SCP software is installed (we call these nodes). The

2

layout of an SCP node is shown in Fig. 1, along with the technologies involved.
The dashed boxes are those parts contributed in the current work.

Virtual and/or Physical Machine
 (OS Layer)

SCP Node
 (Networking Layer)

App Execution
 (Application Layer)

App1 App2 ...

Java OSGi

Pastry PAST

SCP Role Implementations

Gossip
Communication

TCP/IP

SCP UI

HELENA Framework

Fig. 1: SCP architecture (new parts in dashed boxes)

The bottom layer shows the infrastructure: The SCP is a Java application
and thus runs in the Java VM; it also uses the OSGi component framework to
dynamically deploy and run applications (as bundles). In general, plain TCP/IP
networking is used to communicate between nodes on this level.

The second layer implements the basic networking logic. The SCP uses the
distributed peer-to-peer overlay networking substrate Pastry [16] for communi-
cation. Pastry works similarly to a Distributed Hash Table (DHT) in that each
node is represented by an ID. Node IDs are organized to form a ring along which
messages can be routed to a target ID. Pastry manages joining and leaving nodes
and contains various optimizations for fast routing. On top of this mechanism,
the DHT PAST allows storage of data at speci�c IDs. On this layer, a gossip
protocol [7] is used to spread information about the nodes through the network;
this information includes node abilities (CPU, RAM), but also information about
applications. Each node slowly builds its own picture of the network, pruning
information where it becomes outdated.

The third layer (from the bottom) is presented in this paper, and implements
the application execution logic based on Helena. The dashed boxes describe
the intended implementation which are discussed throughout the paper. The
required functionality of the application layer is that of reliable application ex-
ecution given the application requirements on the one hand and the instability
of the network on the other hand. This process is envisioned as follows:

1. Deploying and undeploying: A user deploys an application using the
SCP UI (top right). The application is assigned an ID (based on its name)
and stored using the DHT (PAST) at the closest node according to the ID;
this ensures that exactly one node is responsible for the application, and this
node can always be retrieved based on the application name (we call this

3

node the app-responsible node). If this node leaves, the next adjacent node
based on ID proximity takes its place.

2. Finding an executor: Since each application comes with execution re-
quirements and all nodes are heterogeneous, the app-responsible node may
or may not be able to execute the application. Thus, it is tasked with �nding
an appropriate executor (based on the gossiped information).

3. Executing: Once an executor is found, it is asked to retrieve and run the
application. Through a continuous exchange of keep-alive messages, the app-
responsible node observes the executor and is thus able to select a new one
if it fails. The user may interact with the application through the SCP UI.

3 Ensemble Modeling with Helena

With Helena, we model systems with large numbers of entities which collabo-
rate in teams (ensembles) towards a speci�c goal. In this section, we summarize
the basic ideas and ingredients of the Helena approach [9,12]. It is centered
around the notion of roles which components can adopt to form ensembles. The
idea is that components can only collaborate under certain roles.

3.1 Ensemble Structures

The foundation for the aforementioned systems are components. To classify com-
ponents we use component types. A component type de�nes a set of attributes
(more precisely attribute types) representing basic information that is useful in
all roles the component can adopt. Formally, a component type ct is a tuple
ct = (nm, attrs) such that nm is the name of the component type and attrs is a
set of attribute types. For the SCP case study we use a single component type
Node; its attributes are not relevant for the sequel.

For performing certain tasks, components team up in ensembles. Each par-
ticipant in the ensemble contributes speci�c functionalities to the collaboration,
we say, the participant plays a certain role in the ensemble which we classify by
role types. A role type determines the types of the components that are able
to adopt this role. It also de�nes role-speci�c attributes (to store data that is
only relevant for performing the role) and it de�nes message types for incom-
ing, outgoing, and internal messages. Formally, a message type is of the form
msg = msgnm(riparams)(dataparams) such that msgnm is the name of the
message type, riparams is a list of typed formal parameters to pass role in-
stances, and dataparams is a list of (for simplicity untyped) formal parameters
for data.

Given a set CT of component types, a role type rt over CT is a tuple
rt = (nm, compTypes, roleattrs, rolemsgs) such that nm is the name of the
role type, compTypes ⊆ CT is a �nite, non-empty subset of component types
(whose instances can adopt the role), roleattrs is a set of role speci�c attribute
types, and rolemsgs is a set of message types for incoming, outgoing, and internal
messages supported by the role type rt . Fig. 2 shows a graphical representation

4

of the role type for potential executors which will be needed and explained in the
SCP case study later on; see Sec. 4. The notation PotentialExecutor:{Node}

indicates that any component instance of type Node can play this role.

�role type�
PotentialExecutor:{Node}

in ask(Initiator init)(String name,String reqs)
out ack(Executor exec)()
out decline()()
out execute()(String name)

Fig. 2: Role type PotentialExecutor

Role types form the basic building blocks for collaboration in an ensemble. An
ensemble structure determines the type of an ensemble that is needed to perform
a certain task. It speci�es which role types are needed in the collaboration, how
many instances of each role type may contribute and which kind of messages
can be exchanged between instances of the given role types.

De�nition 1 (Ensemble Structure). Let CT be a set of component types.
An ensemble structure Σ over CT is a pair Σ = (roleTypes, roleConstraints)
such that roleTypes is a set of role types over CT and for each rt ∈ roleTypes,
roleConstraints(rt) ∈ Mult and Mult is the set of multiplicities available in
UML, like 0..1, 1, ∗, 1..∗, etc.

For simplicity, we do not use explicit role connector types here opposed to [9]
and assume that between (instances of) role types rt and rt ′ the messages with
the same name that are output on one side and input on the other side can
be exchanged. The ensemble structure for the SCP case study is visualized in
Fig. 3. How it is derived from the requirements will be explained in Sec. 4.

3.2 Role Behavior Speci�cations

After having modeled the structural aspects of ensembles, we focus on the speci-
�cation of behaviors for each role type of an ensemble structure. A role behavior
is given by a process expression built from the null process, action pre�x, nonde-
terministic choice, and recursion. In the following, we use X,Y for role instance
variables, RT for role types, x for data variables1, e for data expressions and
ci for component instances (assuming a given repository of those); #�z denotes a
list of z. There are �ve di�erent kinds of actions. A send action is of the form
X!msgnm(

#�

Y)(#�e). It expresses that a message with name msgnm and actual

parameters
#�

Y and #�e is sent to a role instance named by variable X. The �rst
parameter list

#�

Y consists of variables which name role instances to be passed to

1 We distinguish between role instance variables and data variable since role instance
variables can be used as recipients for messages later on, for instance for callbacks.

5

the receiver; with the second parameter list #�e , data is passed to the receiver. A
receive action is of the form ?msgnm(

#�

X :
�

RT)(#�x). It expresses the reception of
a message with name msgnm. The values received on the parameters are bound
to the variables

#�

X for role instances and to #�x for data. Internal actions are
represented by msgnm(

#�

Y)(#�e) denoting an internal computation with actual pa-
rameters. Internal computations can be used, e.g., to model the access of a role
instance to its owning component instance. With the actionX ← create(RT , ci)
a new role instance of type RT is created, adopted by the component instance
ci , and referenced by the variable X of type RT in the sequel. Similarly the
action X ← get(RT , ci) retrieves an arbitrary existing role instance of type RT

already adopted by the component instance ci . Thus, the variables
#�

X, #�x used
in message reception and the variable X for role instance creation and retrieval
open a scope which binds the open variables with the same names in the succes-
sive process expression. The bound variables receive a type as declared by the
role types

�

RT ,RT resp.

De�nition 2 (Role Behavior). Let Σ be an ensemble structure and rt be a
role type in Σ. A role behavior RoleBehrt for rt is a process expression built
from the following abstract syntax:

P ::= nil (null process)

| a.P (action pre�x)

| P1 + P2 (nondeterministic choice)

| µV.P (recursion)

a ::= X!msgnm(
#�

Y)(#�e) (sending a message)

| ?msgnm(
#�

X :
�

RT)(#�x) (receiving a message)

| msgnm(
#�

Y)(#�e) (interal computation)

| X ← create(RT , ci) (role instance creation)

| X ← get(RT , ci) (role instance retrieval)

To be well-formed a role behavior RoleBehrt must satisfy some obvious con-
ditions: 1) For sending a message X!msgnm(

#�

Y)(#�e) the role type rt must support
the message type msgnm(riparams)(dataparams) as outgoing message and the
actual parameters must �t to the formal ones. Moreover, X must be a vari-
able of some role type RT which supports the same message type as incoming
message. Similarly, well-formedness of incoming and internal messages is de-
�ned. 2) Role instance creation X ← create(RT , ci) and role instance retrieval
X ← get(RT , ci) are well-formed if RT is a role type in Σ, and if the component
instance ci if of a type whose instances can adopt a role of type RT .

De�nition 3 (Ensemble speci�cation). An ensemble speci�cation is a pair
EnsSpec = (Σ,RoleBeh) such that Σ is an ensemble structure, and RoleBeh is
a family of role behaviors RoleBehrt for each role type rt occurring in Σ.

6

The ensemble speci�cation for the SCP case study will be made up by the
ensemble structure in Fig. 3 and by the role behavior speci�cations described
in Sec. 4. Three concrete examples of role behavior speci�cations, translated to
their graphical LTS representation, are shown in Fig. 4.

In this paper, we do not de�ne a formal semantics of ensemble speci�cations
which must take into account the form of process terms de�ned above; this is left
to future work. However, some hints on the envisaged approach may be helpful.
As a semantic basis to describe the evolution of ensembles we will use ensemble
automata as de�ned in [9]. The states of an ensemble automaton show 1) the
currently existing role instances of each role type occurring in Σ, 2) for each
existing role instance, a unique component instance which currently adopts this
role, 3) the data currently stored by each role instance, and 4) the current control
state of each role instance showing its current progress of execution according
to the speci�ed role behavior. Ensemble automata model role instance creation
as expected by introducing a fresh role instance which starts in the initial state
of its associated role behavior. Retrieval of role instances delivers an existing
role instance of appropriate type played by the speci�ed component instance if
there is one. Otherwise it is blocked. Concerning communication between role
instances �rst an underlying communication paradigm must be chosen. The en-
semble automata in [9] formalize synchronous communication such that sending
and receiving of a message is performed simultaneously. If the recipient is not
(yet) ready for reception of the message the sender is blocked. However, it is im-
portant to note that the communication style is not determined by an ensemble
speci�cation since the role behaviors specify local behaviors and thus support
decentralized control which is typical for the systems under investigation. In
particular, an asynchronous communication pattern can be chosen as well for
the realization of an ensemble speci�cation and this is indeed the case for the
ensembles running on the SCP.

4 Modeling the SCP with Helena

Let us revisit our case study from Sec. 2 to explain the bene�ts of the role-based
modeling approach for such a system. In the SCP, distributed computing nodes
interact to execute software applications. For one app, several computing nodes
need to collaborate: They have to let a user deploy the app in the system, to
execute (and keep alive) the app on a node satisfying the computation require-
ments of the app, and to let a user request a service from the app. For each
of these responsibilities we can derive a speci�c behavior, but at design time it
is unclear which node will be assigned with which responsibility. Additionally,
each node must also be able to take over the same or di�erent responsibilities
for the execution of di�erent apps in parallel. In a standard component-based
design, we would have to come up with a single component type for a computing
node which is able to combine the functionalities for each responsibility in one
complex behavior. This is the case in the previous �all-in-one� implementation
of the SCP [14]. The Helena modeling approach, however, o�ers the possibility

7

to model systems in terms of collaborating roles and ensembles. Firstly, roles
allow to separate the de�nition of the capabilities and behavior required for a
speci�c responsibility from the underlying component. Secondly, adopting dif-
ferent roles allows components to change their behavior on demand. Thirdly,
concurrently running ensembles support the parallel execution of several tasks
possibly sharing the same participants under di�erent roles.

In the SCP, we assume given the basic infrastructure for communication
between nodes (Pastry), storing data (PAST), and deploying and executing apps
(OSGi) (two bottom layers in Fig. 1). We apply Helena for modeling the whole
process of application execution on top of this infrastructure. Computation nodes
represent the components underlying the Helena model.

Ensemble Structure The �rst step is to identify the required role types from
the stated requirements in Sec. 2.

1. Deploying and undeploying: For this subtask, we envision two separate
role types. The Deployer provides the interface for deploying and undeploy-
ing an app and is responsible for the selection of the app-responsible node
for storing the app code. The app-responsible node adopts the Storage role
taking care for the actual storage and deletion of the app code and initiates
the execution of the app.

2. Finding an executor: Three further roles are required for �nding the ap-
propriate execution node. The app-responsible node in the role Initiator

determines the actual Executor from a set of PotentialExecutors and
takes care that it is kept running until the user requests to undeploy the
app. A PotentialExecutor is a node which the Initiator believes is able
to execute the app based on the requirements of the app. However, it might
currently not be able to do so, e.g., due to its current load. The actual
Executor is selected from the set of PotentialExecutors and is responsible
for app execution.

3. Executing: Once started, the app needs to be available for user requests.
The Requester provides the interface between the user and the Executor

and forwards requests and responses. The Executor from the previous sub-
task gives access to the executed app.

In Fig. 3, we summarize the ensemble structure composed of these six roles
graphically. Each role can be supported by the components of type Node. The
multiplicities of the role types express that a running ensemble contains just one
role instance per role type except for PotentialExecutor and Requester. La-
bels at the connections between roles depict which messages can be exchanged
between these roles for collaboration. For instance, the incoming arrows on the
role type PotentialExecutor show the incoming message types speci�ed in
Fig. 2 and similarly for the outgoing messages. We explain the exchanged mes-
sages in more detail when we focus on role behaviors. For each deployed app,
one instance of this ensemble structure is employed. Di�erent components may
take over the required roles in one ensemble, but a single component may also

8

adopt di�erent roles in the same ensemble. Moreover, di�erent components can
take part at the same time in di�erent ensembles under di�erent roles.

Deployer:{Node} 1

Storage:{Node} 1
Initiator:{Node} 1

PotentialExecutor:{Node} ∗

Executor:{Node} 1

Requester:{Node} ∗

deploy()(app) undeploy()()

store()(app)
unstore()()

init()(name,reqs)
stop()()

ask(init)(name,reqs) ack(exec)()
decline()()

execute()(name)

overload()()

stop()()reqCode(exec)()

sndCode()(code)

askForExec(req)()

reportOnExec(exec)()

sendUIReq(req)() waitForUIResp()(resp)

reqFromUser()(name) informUI()(resp)

Fig. 3: Ensemble structure for app execution in the SCP

Role Behavior Speci�cations On the basis of this ensemble structure, we
specify a behavior for each role. For the roles Deployer and Storage taking
part in the �rst subtask, the role behaviors are rather straightforward and we
give only an informal description. In the initial state the Deployer waits for the
user to ask for app deployment and forwards the app code to the Storage for
archiving and vice versa for undeployment. The Storage role starts by waiting
for a request to store an app. Upon storage, it issues the creation of an Initiator

which takes care that the app is executed. Afterwards the Storage is ready to
provide the app code to an Executor or to delete it.

What is interesting about these two role types is which component instances
are selected to adopt the roles. The Deployer is automatically played by the com-
ponent instance where the user actually places her deployment request. When
the Deployer creates a Storage it selects the component whose ID according to
Pastry (cf. Sec. 2) is next to the ID of the app (given by the hash value of the
app name). The uniqueness of component selection is essential since for any later
communication with the Storage, e.g., for code retrieval, it must be possible to
identify the owning component instance just from the app's name. For the same
reason, we choose the owning component of the Storage to additionally adopt
the Initiator role.

The behavior of the Requester is also straightforward and is again informally
described. In the initial state, a Requester waits for the user to request a service
from the app. It retrieves a reference to the Executor from the Initiator2 and

2 Note that for communication with the Initiator its owning component must be
uniquely identi�able as mentioned before.

9

forwards the request to the Executor. It gets back a response from the Executor
which it routes to the user. The part played by the Executor in this collaboration
is depicted in Fig. 4c by the loop between states e5 and e6.

The most interesting behavior concerns the selection of an appropriate ex-
ecutor. In Fig. 4, we translated the process terms of the role behaviors for
Initiator, PotentialExecutor and Executor into a labeled transition sys-
tem which makes it easier to explain. Concerning the initiator of an app the
main idea is that it asks a set of potential executors, one after the other, for
execution of the app until one of them accepts. Since each node maintains a list
of all other nodes and their abilities through a gossip protocol (cf. Sec. 2), the
initiator can easily prepare this list of nodes satisfying the requirements of the
app based on its current belief of the network. Triggered by the reception of the
init message, the Initiator starts to walk through the list. It �rst creates a
new PotentialExecutor on the next node satisfying the requirements and asks
it for execution. If it declines, the next node satisfying the requirements is asked
until one accepts (states i1 to i4). As soon as a PotentialExecutor accepts,
the Initiator waits for one of three messages in state i4: 1) an overload mes-
sage meaning that the current Executor is not able to execute the app anymore
and the Initiator has to �nd a new one, 2) a request for the reference to the
Executor (issued by a Requester), or 3) a stop message triggering stopping the
execution of the app on the Executor.

The behavior of a PotentialExecutor starts with waiting for a request for
app execution. If it does not satisfy the requirements of the app (like current
load), it internally decides to refuse and sends back a decline message. Oth-
erwise, it creates a new Executor on its owner, issues the execution, and ac-
knowledges execution to the Initiator. An Executor starts by waiting for an
execute message. Then the Executor retrieves a reference to the Storage, re-
quests and gets the app code from it and starts execution of the app (states
e1 to e5). As soon as the app has been started, the Executor can answer user
requests or stop execution due to internal overload or an external stop request.

Analysis The role behaviors provided by an ensemble speci�cation can be used
to analyze the dynamic behaviors of ensembles before implementing the system.
A particularly important aspect concerns the avoidance of collaboration mis-
matches (collaboration errors) when role instances work together. Two types of
errors can be distinguished. Firstly, an instance expects the arrival of a message
which never has been issued. Secondly, an instance sends a message, but the re-
cipient is not ready to receive. Let us analyze the latter type of collaboration error
by considering the cooperation between Initiator and PotentialExecutor.
The only output action occurring in RoleBehInitiator which is addressed to a
PotentialExecutor is the message ask occurring in state i2. It is sent to the
PotentialExecutor, named by the variable pot, which has just been created
in state i1. This potential executor starts in its initial state p0 in which it
is obviously ready to accept the message ask. Afterwards, the Initator is in
state i3 and is ready to receive either a decline or an ack message which both

10

can only be sent from the PotentialExecutor. After the reception of ask the
PotentialExecutor is in state p1 and it has two options: 1) It can decide to
refuse the request and sends the message decline which the Initiator accepts
being back in state i1. In this case, the current PotentialExecutor terminates,
a new one is created, the Initiator goes to state i2, and we are in a situ-
ation which we have already analyzed. 2) The other option in state p1 is to
accept the execution request, to create an Executor, to cause the Executor to
start execution and then to send the message ack to the Initator who is still
in state i3 and takes the message. So the instances of both roles, Initator
and PotentialExecutor, work well together. Interestingly this holds whether
one uses synchronous or asynchronous communication in the implementation.
How such an analysis can be performed on the basis of formal veri�cation is a
challenging issue of future research.

Limitations At this point, we want to mention some restrictions underlying
the current Helena approach. Firstly, we rely on binary communication and do
not support broadcast yet. Though broadcast sending could be easily integrated
in our process expressions, to collect corresponding answers would still be an
issue. Secondly, we build ensemble speci�cations on a given set of components
such that we cannot model situations in which components fail. However, we are
aware that one of the main characteristics of our case study is that nodes may
fail and leave the network at any time. We wish that such failovers are handled
transparently from the role behaviors. The idea is that components are monitored
such that when failing all adopted roles are transparently transferred to another
component and restarted there. A further issue concerns robustness since we
assume reliable network transmission in our models. We do not want to include
any mechanisms for resending messages in the role behavior speci�cations. Like
failover mechanisms, this should be handled transparently by an appropriate
infrastructure.

5 Using the Helena Model for the SCP Implementation

In this section, we report on the experimental realization of the Helena model3.
Helena separates between base components and roles running on top of them.
The SCP is already built on components (the SCP Node layer in Fig. 1); thus,
the Helena implementation can build on the given infrastructure and realize
the application layer shown by the dashed boxes in Fig. 1 by a role-based im-
plementation as envisioned in the Helena approach.

ThisHelena framework amounts to around 1000 LOC and o�ers role-related
functionality, such as the ability to create and retrieve roles via the network, and
routing messages between roles by using Pastry. (This layer implements the same
basic ideas already presented in the Helena framework [12], but is based on the

3 The code can be retrieved from http://svn.pst.ifi.lmu.de/trac/scp, version v3
of the node core implementation with gossip strategy.

11

i
0

i
1

i
2

i
3

i
4

i
5

i
6

i
7

?
i
n
i
t
(
)
(
n
a
m
e
,
r
e
q
s
)

p
o
t
←

c
r
e
a
t
e
(
P
E
,
s
e
l
e
c
t
(
n
x
t
N
o
d
e
S
a
t
i
s
f
y
i
n
g
(
r
e
q
s
)
)
)

p
o
t
!
a
s
k
(
s
e
l
f
)
(
n
a
m
e
,
r
e
q
s
)

?
a
c
k
(
e
x
e
c
:
E
)
(
)

?
s
t
o
p
(
)
(
)

e
x
e
c
!
s
t
o
p
(
)
(
)

?
d
e
c
l
i
n
e
(
)
(
)

?
o
v
e
r
l
o
a
d
(
)
(
)

?
a
s
k
F
o
r
E
x
e
c
(
r
e
q
:
R
)
(
)

r
e
q
!
r
e
p
o
r
t
O
n
E
x
e
c
(
e
x
e
c
)
(
)

(a)
R
o
leB

eh
I
n
i
t
i
a
t
o
r

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

?
a
s
k
(
i
n
i
t
:
I
)
(
n
a
m
e
,
r
e
q
s
)

r
e
f
u
s
e
(
)
(
r
e
q
s
) i
n
i
t
!
d
e
c
l
i
n
e
(
)
(
)

a
c
c
e
p
t
(
)
(
r
e
q
s
)e
x
e
c
←

c
r
e
a
t
e
(
E
,
o
w
n
e
r
)

e
x
e
c
!
e
x
e
c
u
t
e
(
)
(
n
a
m
e
)

i
n
i
t
!
a
c
k
(
e
x
e
c
)
(
)

(b
)
R
o
leB

eh
P
o
t
e
n
t
i
a
l
E
x
e
c
u
t
o
r

e
0

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
1
0

e
1
1

e
1
2

?
e
x
e
c
u
t
e
(
)
(
n
a
m
e
)

m
a
i
n
←

g
e
t
(
S
,
s
e
l
e
c
t
(
h
a
s
h
(
n
a
m
e
)
)
)

m
a
i
n
!
r
e
q
C
o
d
e
(
s
e
l
f
)
(
)

?
s
n
d
C
o
d
e
(
)
(
c
o
d
e
)

e
x
e
c
u
t
e
A
p
p
(
)
(
c
o
d
e
)

?
o
v
e
r
l
o
a
d
(
)
(
)

i
n
i
t
←

g
e
t
(
I
,
s
e
l
e
c
t
(
h
a
s
h
(
n
a
m
e
)
)
)

i
n
i
t
!
o
v
e
r
l
o
a
d
(
)
(
)

s
t
o
p
A
p
p
(
)
(
)

?
s
t
o
p
(
)
(
)

s
t
o
p
A
p
p
(
)
(
)

?
s
e
n
d
U
I
R
e
q
(
r
e
q
:
R
)
(
)

r
e
q
!
w
a
i
t
F
o
r
U
I
R
e
s
p
(
)
(
)

(c)
R
o
leB

eh
E
x
e
c
u
t
o
r

F
ig
.4
:
R
o
le
b
eh
av
io
rs

fo
r
I
n
i
t
i
a
t
o
r
,
P
o
t
e
n
t
i
a
l
E
x
e
c
u
t
o
r
,
a
n
d
E
x
e
c
u
t
o
r
(a
ll
ro
le
ty
p
es

a
re

a
b
b
rev

ia
ted

)

12

SCP and thus, Pastry). In a second step, we have translated the behavioral spec-
i�cations of the six roles to Java code using the previously created framework.
Each of the role implementations stays below 150 LOC with another 400 LOC
in message classes. In the following two subsections we discuss the framework
and role implementations, respectively, stressing where direct translation of the
Helena model was possible and where special care had to be taken to make the
realization robust.

5.1 Implementing the Helena Framework

A framework for implementing role behaviors needs to o�er several features to
role implementors.

Structural Aspects The most important concept in Helena are roles. Thus, the
framework must o�er the ability to create role types, and to instantiate and
execute them. This maps quite naturally to using one Java class per role type,
and instantiating this class for role instances. A registry on each node stores all
instances currently adopted by the node and allows their retrieval. To enable
concurrent execution, each role instance is realized as a Java thread, running
locally in the OSGi container of the current node.

The framework provides means to create, retrieve, and address existing roles
on other nodes; this requires a way of addressing roles. Thus, the second impor-
tant structural aspect is addressing. In Pastry, each node is already identi�ed by
a unique 160-bit identi�er. It is relatively straightforward to add a similar unique
identi�er for roles. However, there is also another kind of structuring element
which is not directly visible in the behavioral speci�cations: The ensemble which
constitutes the environment for the roles. This can clearly be seen when looking
at the functions the framework needs to o�er for role handling � these are the
create and the get functions. Both require knowledge about which ensemble is
addressed for creating a new role or where to look for an existing role. We have
thus three identi�ers in use in the Helena framework: The node identi�er (for
addressing nodes using Pastry), the ensemble identi�er (for creating new roles
and retrieving existing roles) and the role identi�er (which uniquely identi�es
one role instance).

Behavioral Aspects This discussion already brings us to the behavioral aspects of
the framework. Two functions of the framework were already mentioned � create
and get. They are implemented as the Java methods (createRoleInstance and
getRoleInstance) which both perform a full network round-trip between two
Pastry nodes: They require a node and an ensemble ID as well as the class of
the required role as input. The target node is instructed to create and start the
new role (or retrieve it, in the second case). A role identi�er as discussed above
is returned which can then be used for role-to-role message routing.

The behavioral speci�cations make heavy use of role-to-role communication.
A role must be able to send a message and to expect to receive a certain mes-
sage in its behavior. For this purpose the framework provides the two methods
sendMessage() and waitForMessage() for communication between roles.

13

The method sendMessage() takes a message and a target role; the message
is routed between Pastry nodes to an input bu�er in the target role. The method
only returns when this has been successfully completed (i.e., an internal acknowl-
edge is sent back upon which the sendMessage() function returns normally).
Otherwise, an exception is raised. Of course, correct collaboration requires that
any message is �nally consumed from the bu�er. Moreover, any consumed mes-
sage should also be expected by the target role as an input message in accordance
with its role behavior speci�cation. For this purpose we perform behavioral com-
patibility checks between role behaviors already during the ensemble modeling
phase as discussed in Sec. 4.

The second method is waitForMessage() which instructs the framework to
wait for a message of a certain type, or a selection of certain di�erent types. The
latter is required, for example, in the Initiator role when waiting for one of
three possible messages in state i4 in Fig. 4a. The waitForMessage() function
also takes a timeout value; an exception is raised if a message does not arrive in
the given time (though specifying INFINITY is an option).

Given the basic infrastructure for role management and the communication
functions above, we can now proceed to the role implementations.

5.2 Implementing Roles

As discussed above, role (types) are implemented in Java using classes. Thus,
for each of the six roles above, a class is created, inheriting from an abstract role
template for easier access to framework methods. Each role is instantiated within
a certain ensemble and node. Upon startup, the main method implementing the
role behavior is called.

The actions in role behavior speci�cations are translated to message ex-
changes. For each message type, a message class with an appropriate name is
created, and equipped with the required parameters as indicated in the role
types. For example, the execute message shared between PotentialExecutor

and Executor is implemented by an instance of the ExecuteMessage class which
carries the application name as a �eld.

A role behavior is translated into Java as follows:

� Transitions with incoming messages, e.g. ?store()(app), are translated into
a waitForMessage() framework call for the corresponding message class,
e.g. StoreApplicationMessage. The waitForMessage() method returns an
instance of the message once received, which can be queried for the actual
app.

� Transitions with an outgoing message, e.g. !init()(name,reqs), are trans-
lated into a sendMessage() framework call. The message to be sent must
be given as a parameter.

� Transitions referring to the two framework functions get and create are di-
rectly translated to calls to the corresponding framework methods
getRoleInstance() and createRoleInstance(). They return role IDs
which can then be used for communication.

14

� All other transitions, as well as loops and decisions are translated into their
appropriate Java counterparts.

1 public void run() {
2 RAskForExecutionMessage askMsg =
3 waitForIncomingMessage(INFINITY ,RAskForExecutionMessage.class);
4 i f (refuseToExecute(askMsg.getAppInfo (). getReqs ())) {
5 sendMessage(
6 new RDeclineExecutionMessage(getRoleId(),askMsg.getInit ()));
7 }
8 else {
9 RoleId exec = createLocalRoleInstance(ExecutorRole.class);

10 sendMessage(
11 new RExecuteAppMessage(getRoleId(),exec ,askMsg.getAppInfo ()));
12 sendMessage(
13 new RAckExecutionMessage(getRoleId(),askMsg.getInit(),exec));
14 }
15 }

Fig. 5: Behavior implementation for PotentialExecutor

With this basic description, most of the role behaviors are directly trans-
latable into Java code. As an example Fig. 5 shows (in condensed form) the
run-method of the PotentialExecutor role which is directly derived from its
behavior speci�cation in Fig. 4b. Thus, many collaboration errors are avoidable
by a careful analysis of the ensemble model. Nevertheless, we were interested in
a robust system implementation and hence we followed a defensive strategy such
that not only semantic errors are taken into account.

One issue in the implementation is that each of the framework methods may
fail for various reasons, and the resulting exceptions must be handled. Firstly, in
all operations, timeouts may occur if a message could not be delivered. Secondly,
role-to-role messages may fail if the target node does not (yet) participate in the
expected ensemble or does not (yet) play an expected role; this also applies to
the getRoleInstance() method. The createRoleInstance() may fail if the
role class could not be instantiated or started. These errors are not captured
in the role behaviors, but may occur in practice (in particular, they may occur
during development if the implementation is not yet fully complete and stable).

A second issue is bootstrapping, both of Helena ensembles and of basic node
identi�cation. At each ensemble startup, at least one role needs to be instantiated
by an outside party before messages can be received. In this case study, the main
entry point is the Deployer role; a second entry point is the Requester role. The
bootstrapping point cannot be deduced from the local behavior speci�cations
and therefore must be treated individually outside of the framework. In the case
of the SCP, this part is played by the SCP UI (top right in Fig. 1).

There are also some points where the roles need to return information to an
outside party. For example, the Requester role is invoked each time a UI request
is made for an app; the response from the application must be presented to the
user. This is exactly the opposite of the bootstrapping problem and requires ex-

15

plicit invocation of an outside party from the role. One could think of specialized
actions for this; or introduce answers a role in general gives to users.

Basic node identi�cation is another topic of interest: To create a role, the ID
of the target node must be known. In the case of the SCP, we heavily rely on the
fact that the Initiator and Storage node ID can always be found using the app
name (as explained in Sec. 2). This makes both of these roles communication
hubs. If such a mechanism is not available, other forms of node ID retrieval
need to be found; one example is the Initiator role which uses the underlying,
gossip-provided node information as an ID source. A similar problem applies to
�nding ensembles: A node which does not currently have a role in an ensemble
does not know the ensemble ID and thus cannot route messages, which might
occur in a formerly non-associated node on which a Requester is instantiated.
We solve this again by using the app name as a hash for the ensemble ID, but
this might be di�cult in other settings.

6 Related Work

Combining the three paradigms of cloud computing, voluntary computing, and
peer-to-peer computing has started to attract attention in recent years. Most
approaches bridge volunteer and cloud computing for infrastructure-as-a-service
systems. Cunsolo et al. [5], and Chandra and Weissman [4], they propose to
use distributed voluntary resources with an architecture similar to our three-
layered approach, but with a centralized management subsystem. Advocating
a �fully decentralized p2p cloud�, Babaoglu et al. [2] implement a system very
similar to the SCP. They also introduce the idea of partitioning the system in
slices matching a user's request. The idea is to create a subcloud in the system
providing resources for one task. This resembles our approach of assembling
nodes in task-oriented ensembles.

With Helena, we o�er a rigorous modeling method for describing such task-
oriented groups. Modeling evolving objects with roles as perspectives on the ob-
jects has been proposed by various authors [13,17], but they do not see them
as autonomic entities with behavior as we do in Helena. For describing dy-
namic behaviors, we share ideas with di�erent process calculi [6,8], but we use
dynamic instance creation for roles on selected components. The idea to describe
structures of interacting objects without having to take the entire system into
consideration was already introduced by several authors [11,3,15], but they do
not tackle concurrently running ensembles of autonomic entities. For a more de-
tailed comparison of the Helena ideas with the literature see [9]. Finally, let us
stress that the SCEL approach [6] supports ensembles via group communication.
After discussion with the authors of SCEL it seems straightforward to represent
roles and the message passing communication paradigm also in SCEL. Then one
could also experiment with the jRESP platform of SCEL for executing Helena
ensemble speci�cations.

16

7 Conclusion

We have shown how the Helena modeling approach can be applied to a larger
software system. Starting from the description of our case study, the Science
Cloud Platform, we developed an ensemble speci�cation based on six collab-
orating roles. An instance of this speci�cation is able to deploy and execute
a software application in a voluntary peer-to-peer network. Splitting the task
of app execution in several independent roles was quite natural and helped to
understand the individual subtasks. Compared to the development of one big
component which combines all behaviors at one place, it was straightforward
to derive behaviors for each role individually. However, we experienced that the
granularity when deciding which roles to introduce was not always clear. Us-
ing the Helena modeling approach allowed us to examine the modeled system
for communication errors before implementation. During implementation of the
model, translating the role behaviors to Java code has proven to be straightfor-
ward. To gain this complexity reduction, �rst a (reusable) Helena framework
layer was needed to provide Helena-speci�c functionalities. The encapsulation
of responsibilities in separate roles helped to make the SCP code clean and easy
to understand. Special care had to be taken in four areas: Handling faults during
communication, node identi�cation for role creation and retrieval, handling node
failures, and communication between ensembles and the outside world.

In the future, we want to pursue di�erent research directions. In [9], we have
given a formal semantics for ensemble speci�cations in terms of ensemble au-
tomata. In a next step we want to de�ne rules for the generation of an ensemble
automaton from an ensemble speci�cation based on the new process expres-
sions for role behaviors. Secondly, based on the ensemble automaton, we want to
de�ne when an ensemble can be considered communication-safe (for static archi-
tectures, called assemblies, this has been considered in [10]). We want to inves-
tigate conditions under which communication-safety of an ensemble automaton
can be derived from pairwise behavioral compatibility of role behaviors. Thirdly,
we want to support the composition of large ensembles from smaller ones and
to study which properties can be guaranteed for the composed system. Lastly,
we want to construct an infrastructure for Helena models that can cope with
unreliable systems and failing components.

References

1. The ASCENS Project, http://www.ascens-ist.eu
2. Babaoglu, Ö., Marzolla, M., Tamburini, M.: Design and implementation of a P2P

Cloud system. In: Symposium on Applied Computing. pp. 412�417. ACM (2012)
3. Baldoni, M., Studi, U., Italy, T.: Interaction between Objects in powerJava. Journal

of Object Technology 6, 7�12 (2007)
4. Chandra, A., Weissman, J.: Nebulas: Using Distributed Voluntary Resources to

Build Clouds. In: Conf. on Hot Topics in Cloud Computing. USENIX Association
(2009)

17

5. Cunsolo, V.D., Distefano, S., Pulia�to, A., Scarpa, M.: CloudHome: Bridging the
Gap between Volunteer and Cloud Computing. In: Int. Conf. on Intelligent Com-
puting. pp. 423�432. LNCS, Springer (2009)

6. De Nicola, R., Ferrari, G.L., Loreti, M., Pugliese, R.: A Language-Based Approach
to Autonomic Computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue,
M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol. 7542, pp.
25�48. Springer (2011)

7. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database
maintenance. In: Symposium on Principles of Distributed Computing. pp. 1�12.
ACM (1987)

8. Deniélou, P.M., Yoshida, N.: Dynamic Multirole Session Types. In: Symposium on
Principles of Programming Languages. pp. 435�446. ACM (2011)

9. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling - The Helena Ap-
proach - Handling Massively Distributed Systems with ELaborate ENsemble Ar-
chitectures. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Speci�cation, Algebra, and
Software. Lecture Notes in Computer Science, vol. 8373, pp. 359�381. Springer
(2014)

10. Hennicker, R., Knapp, A., Wirsing, M.: Assembly theories for communication-safe
component systems. In: From Programs to Systems - The Systems Perspective in
Computing. LNCS, vol. 8415. Springer (to appear 2014)

11. Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collabora-
tions. In: Int. Conf. NetObjectDays on Objects, Components, Architectures, Ser-
vices, and Applications for a Networked World. pp. 248�264. Springer (2003)

12. Klarl, A., Hennicker, R.: Design and Implementation of Dynamically Evolving En-
sembles with the Helena Framework. In: Australasian Software Engineering Conf.
IEEE (to appear 2014)

13. Kristensen, B.B., Østerbye, K.: Roles: Conceptual Abstraction Theory and Prac-
tical Language Issues. Theor. Pract. Object Syst. 2(3), 143�160 (1996)

14. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bure², T.: The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer Cloud
Computing. In: Wshp. on Challenges for Achieving Self-Awareness in Autonomic
Systems. pp. 1�6. IEEE (2013)

15. Reenskaug, T.: Working with objects: the OOram Framework Design Principles.
Manning Publications (1996)

16. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Int. Conf. on Distributed Systems
Platforms. pp. 329�350. Springer (2001)

17. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data Knowl. Eng. 35(1), 83�106 (2000)

18

