
An Empirical Analysis of the Utilization of Multiple
Programming Languages in Open Source Projects

Philip Mayer
Programming & Software Engineering Group

Ludwig-Maximilians-Universität München
Germany

mayer@pst.ifi.lmu.de

Alexander Bauer
Statistical Consulting Unit

Ludwig-Maximilians-Universität München
Germany

bauer.alexander@campus.lmu.de

ABSTRACT
Background: Anecdotal evidence suggests that software
applications are usually implemented using a combination of
(programming) languages. Aim: We want to provide empir-
ical evidence on the phenomenon of multi-language program-
ming. Methods: We use data mining of 1150 open source
projects selected for diversity from a public repository to a)
investigate the projects for number and type of languages
found and the relative sizes of the languages; b) report on
associations between the number of languages found and
the size, age, number of contributors, and number of com-
mits of a project using a (Quasi-)Poisson regression model,
and c) discuss concrete associations between the general-
purpose languages and domain-specific languages found us-
ing frequent item set mining. Results: We found a) a mean
number of 5 languages per project with a clearly dominant
main general-purpose language and 5 often-used DSL types,
b) a significant influence of the size, number of commits,
and the main language on the number of languages as well
as no significant influence of age and number of contrib-
utors, and c) three language ecosystems grouped around
XML, Shell/Make, and HTML/CSS. Conclusions: Multi-
language programming seems to be common in open-source
projects and is a factor which must be dealt with in tooling
and when assessing development and maintenance of such
software systems.

1. INTRODUCTION
The software engineering community has come up with

numerous programming languages for the various tasks in-
volved in software construction. Anecdotal evidence sug-
gests that software projects often employ combinations of
languages for system implementation, which includes general-
purpose languages (GPLs) such as C++, Java, or Ruby,
and domain-specific languages (DSLs) such as HTML, Make,
XML, or SQL. The utilization of multiple languages within
one project means that for fully understanding, analyzing,
and manipulating the project — which includes not only

©ACM 2015. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was pub-
lished in the proceedings of the 19th International Conference on Evaluation and As-
sessment in Software Engineering (EASE) 2015, Nanjing, China. It is available on
http://dx.doi.org/10.1145/2745802.2745805

understanding the code for the runtime of the system but
also the construction parts such as building and testing —
a developer must have a grasp of each of these languages.
Furthermore, if multiple languages are used, they mostly do
not stand alone — instead, artifacts in each language ref-
erence one another, which increases the complexity of the
software and requires care during maintenance [1].

It is thus important to gain an understanding of how lan-
guage combinations are used in practice. We believe that
this knowledge is an enabler for many efforts related to de-
velopment and maintenance, such as understanding and vi-
sualizing software architectures, creating tool support for
developing and restructuring software, and finally under-
standing system runtime behavior, all of which are affected
by separating concerns into different languages.

Our aim is to aid this understanding with the work at
hand, in which we supply empirical evidence on the phe-
nomenon of multi-language programming with an investiga-
tion of 1150 open source software projects retrieved from the
hosting site GitHub1. We have structured our investigation
along the following three research questions.

• RQ1. How many languages (GPLs and DSLs) are com-
monly used in open source software, and what is their
relative code size and (for DSLs) their type?

• RQ2 : Does the number of languages depend on one of
the following other project properties: size, main lan-
guage, age, number of commits, and number of con-
tributors?

• RQ3 : Which association patterns can be found be-
tween the languages (and in particular, GPLs and
DSLs) used in the projects?

The answer to the first question serves to illuminate the
problem domain and language usage in general. With the
second question, we investigate relationships between project
properties. The third question looks at GPL-GPL and GPL-
DSL associations across the data set, identifying co-occurring
languages and language groupings by association frequency.
This information identifies common sets of languages that
merit attention (e.g. for tool support).

We outline the methods used for project selection and
analysis in the next section. Sections 3 and 4 contain the
results from our analysis and a discussion of the implications
and conjectures we can draw from the data, respectively. We
conclude in section 5.

1www.github.com

2. METHODS
Our analysis is based on concrete real-life open source

projects. To be able to find the effects of different shapes
and forms of these projects on the number of languages, we
used a combined process of random selection and optimal
design (or theoretical sampling). The first is used to reduce
the number of candidates, while the second is aimed at se-
lecting projects with a maximally diverse set of values over
interesting attributes (as listed in RQ2). Both are discussed
in section 2.1.

The number and names of the languages occurring in a
project are not readily available; they must be detected from
the source code, a process we describe in section 2.2.

Once selected, we have analyzed the project set by statis-
tical methods, which are described in section 2.3. Besides
the numbers, it is also interesting to look at the concrete
programming languages; we used a frequent item set mining
approach, which is described in section 2.4.

The complete data and the source code which creates the
data is available on our web page2.

2.1 Data Collection

2.1.1 Random Project Selection
In this first step, we randomly selected projects from Git-

Hub, which is possible since each project is stored with a
numerical identifier. By creating a new project and querying
its identifier, we discovered the current maximum number of
projects, which was then used as an upper bound for random
number generation.

We used the GitHub web service API for querying project
information for each generated ID. The information required
for each project for answering the research questions is shown
in Table 1.

Table 1: Interesting Project Properties
Property Description

Main language
The general-purpose language with the
largest amount of code (in bytes)

Size
The size of the project (bytes written in
the main language)

Age
The age of the project since the first
commit (in months)

Contributors
The number of (unique) people who
contributed to the project

Commits
The total number of commits to the
source code repository

Gathering this information requires several API (HTTP)
requests; one for the primary metadata (such as name, owner,
etc.); one for the languages involved, and a variable number
of requests for the commit history (depending on how many
commits there are; the information is paged). We call this
the initially queried project set.

A script was written to download this information, taking
care of the limitations imposed by GitHub (5’000 requests
per hour for registered users) as well as all error conditions
(some projects do not have contributors or languages, etc).

The resulting set of metadata was then processed with
several inclusion criteria defined as follows:

2www.xllsrc.net/languagestudy

• The project must (still) exist and be publicly accessi-
ble, i.e. the request may not result in a 404 error.

• The project must contain a general-purpose program-
ming language (there are also other projects on GitHub
such as documentation efforts).

• The project may not be a fork. This avoids duplicates.

• The project must have a minimum of 500 and a max-
imum of 100 million bytes of code (both in the main
language). This avoids both ”Hello World” projects
and one-of-a-kind large projects.

• The project must have consistent metadata (i.e. at
least one contributor and at least one commit).

After applying these inclusion criteria to the initially que-
ried project set, we get what we call the randomly selected
project set, which serves as input for the next step.

2.1.2 Selecting a Diverse Project Set
Our aim in this study was analyzing language occurrence

in projects which are maximally diverse, that is projects of
different forms and shapes, spread out as far as possible over
the input parameters listed in RQ2. To achieve this, we used
the algorithm provided by Nagappan et al. [2]. In a nutshell,
their approach describes how to select a sample of projects
to maximize the diversity by selecting only one from a set
of similar projects — where similarity is defined by certain
similarity functions given below.

Another option would have been selecting a smaller ran-
dom sample, which would have offered representativeness
for all research questions (for GitHub). We have explicitly
opted for diversity since we are interested in language effects
over as many shapes and forms of projects as possible. A
second reason is that GitHub has its own biases; a large part
of projects uses JavaScript as the main language, and there
are many small and/or abandoned projects, which would
have taken up a large part of a random sample. Note, how-
ever, that the sample we have taken is still representative
of GitHub for the (Quasi-)Poisson regression which we have
used for answering RQ2 (see section 2.3).

In the terms of Nagappan et al., our universe (or pop-
ulation) consists of the metadata of the randomly selected
project set. We have characterized these projects along the
dimensions shown in Table 1. Our configuration, i.e. the
similarity function determining whether two projects are
similar, is defined by equality in the following attributes.

• Main language. Languages are split into 13 categories,
with 12 each representing a well-known GPL (the first
12 from Table 3), and the last representing all others.

• Project size (bytes in the main language): 5 groups
based on orders of magnitude: Tiny (less than 1000
bytes), Small (1k to 10k), Middle (10k to 100k), Large
(100k to 1m), and Very large (over 1m).

• Project age, split into 3 groups: Young (less than one
year), Middle (1 to 4 years), Old (5 or more years).

• Number of contributors, split again into 4 groups: Sin-
gle person (one contributor), small team (2 to 7), medi-
um team (8 to 100), large team (over 100).

• Number of commits, split into 4 groups: Single check-
in (one commit), very low (2 to 10), low (11 to 100),
medium (101 to 1000), and high (over 1000).

The algorithm was able to fully cover the universe with a
reasonable amount of projects for analysis as we will discuss
in the results section. We call this set the final input set ; it
was used for all analyses (and thus for all research questions).

2.2 Language Detection
Part of the data available on GitHub is the main language

of a project and a list of other used languages. Unfortu-
nately, this list cannot be used for our analysis since it only
includes ”programming languages and acceptable markup lan-
guages,” as the source code of Linguist3, the tool GitHub
uses for determining the language of source code files, states4.
Unfortunately, the unacceptable languages include very com-
mon languages such as XML and HTML which are indeed
interesting to us.

However, Linguist also allows the discovery of languages
on a file-by-file basis where it does not apply the exclusions
discussed above. We have therefore ascertained our own
count of languages and sizes by acquiring the source code of
each project and detecting the language by file-by-file invo-
cations of Linguist.

We were thus able to re-use this tool which was very help-
ful since Linguist not only includes detection mechanisms for
a large amount of languages but also contains other helpful
features which improve the quality of the data. First, Lin-
guist detects languages used for documentation purposes,
such as reStructuredText or MarkDown. These languages
are correctly considered to be prose by Linguist and were
excluded from all language counts. Secondly, Linguist at-
tempts to exclude generated files (for example, files gener-
ated by the XCode IDE or by the Java JNI tool) which are
identified by name or by text within the file. Finally, Lin-
guist excludes so-called vendored files which are well-known
libraries included in source (such as the jQuery library for
JavaScript).

Thus, for all projects in the final input set, the latest
version was retrieved from the repository URL provided by
GitHub. Each project then was analyzed file-by-file and the
results accumulated and stored for further analyses.

2.3 Statistical Analysis
For our first glimpse into the data set and for answering

our first research question, simple descriptive statistics such
as the mean and the interquartile range suffice.

However, for answering research question 2, we require
more complex methods, since we attempt to analyze the
associations between the different attributes of our input
data. As we have discussed in section 2.1, we use a two-
step process of project selection: the first step selects ran-
dom projects, while the second uses theoretical sampling and
aims at selecting a maximally diverse set of projects based
on different parameters of the input data.

This second step suggests using a regression analysis in-
cluding the exact same parameters we used for selection
(main language, size, age, number of contributors, and num-
ber of commits) as the covariates since it is thus permissible

3github.com/github/linguist
4github.com/github/linguist/blob/master/lib/
linguist/repository.rb\#L162 (line 162)

to generalize the results from the analysis. The regression
analysis tests the influence of several project properties on
the number of languages, i.e. if there is a significant change
in the number of languages given a change in one of the
input parameters.

In detail, we perform a Poisson regression analysis [3] and
employ a (Quasi-)Poisson model with the number of lan-
guages found by the Linguist tool as the response variable.
Regarding the covariates, all except the main language are
metric; the main language itself is a categorical variable and
was implemented in the model using dummy coding. The
Poisson regression is the standard model for modeling count
data as it assumes that the response variable follows a Pois-
son distribution. In contrast, a linear regression analysis
would assume a normal distribution for the response and is
therefore only applicable for metric variables.

We used the R statistical package with the mgcv (Mixed
GAM Computation Vehicle) library5 for this analysis.

2.4 Association Rule Mining
While the statistical analysis gives us answers in terms of

numbers and associations, it does not give insights into the
actual languages and language types. Since research ques-
tion 3 is about associations between individual languages,
we require another approach for querying the search space.

We employ frequent item set mining as well as associ-
ation rule mining using variants of the two-step approach
proposed by Agrawal and Srikant [4] (Apriori). In particu-
lar, we use the FP-Growth algorithm for frequent item sets
and the ”faster algorithm” for association rule mining de-
scribed in the above paper. For both algorithms, we use the
implementations of the SPMF library6.

We use languages as the items and projects (in the sense
of combinations of languages) as the transactions; in other
words, we discover frequent sets of languages across all pro-
jects. Of particular interest in our case are one-item sets
and the association rules between one-item GPL sets and
their associated DSLs.

3. RESULTS

3.1 Data Collection
At the time of data collection, the highest repository ID on

GitHub was 25’855’878. For data discovery, we thus selected
random IDs between 1 and 25 million. Over the course of one
week, we downloaded the metadata of 500’000 repositories,
which is our initially queried project set.

Our defined inclusion criteria were now applied to this
project set, which reduced the set to 82’547 projects (the
randomly selected project set). The reasons for exclusion
are shown in Table 2. Most queries resulted in a resource
not found (404) error; this means either a) the project was
deleted or b) the project is private. A sizeable amount of
projects are forks, followed by projects that are not software
systems (no programming language).

A total of 3’232 projects were too small or too large, with
the overwhelming number being too small (3’045). Other
reasons are technical in nature (no contributors found, no
commits found, project access is forbidden due to DMCA,
no size found for main language, etc.).

5cran.r-project.org/web/packages/mgcv
6www.philippe-fournier-viger.com/spmf

Table 2: GitHub request results
Initial Amount 500’000

404 (project no longer exists or is private) 215’227

Project is a fork (i.e. a duplicate) 126’220

Project does not contain a GPL 71’339

Project too small / too large 3’232

Other reasons 1’435

Selected repositories 82’547

This set was then processed with the algorithm of Nagap-
pan et al. [2], which completed with the final input set of
1150 projects that fully represent the input space. These
projects were then checked out (around 38 GB of data) and
analyzed with the Linguist tool for language occurrence.

3.2 Basic Language Co-Occurrence Data
Our first results relate to the basic numbers of language

co-occurrence in the final input set of 1150 projects. Linguist
has found 151 non-prose languages in total in the projects;
we list all languages occurring in at least ten projects in
Table 3. For the DSL languages, the type is given in the
table as well.

Table 3: Single language occurrence in the in-
put set, with project count and language type for
DSLs. UI= User Interface; SD= Structured Data;
DB= Database; i18n= Internationalization; Stats=
Statistics/Math; Trans=Transformation

GPL Pr DSL Pr Type
JavaScript 368 XML 501 SD
C 265 HTML 370 UI
C++ 242 CSS 348 UI
Python 229 Shell 321 Shell
Ruby 181 Make 243 Build
Perl 180 JSON 239 SD
Java 167 YAML 204 SD
PHP 154 INI 192 Config
Objective-C 131 Batchfile 113 Shell
C# 96 SQL 80 DB
CoffeeScript 79 Groff 79 Text
Scala 58 HTML+ERB 50 UI
Erlang 28 ApacheConf 49 Config
GAS 28 Gettext 45 i18n
Go 25 Diff 44 Diff
D 21 SCSS 44 UI
Groovy 20 XSLT 41 Trans
Assembly 14 Sass 35 UI
C. Lisp 13 Less 24 UI
FORTRAN 12 PowerShell 22 Shell
Visual Basic 12 R 20 Stats
Scheme 11 ASP 18 UI
ActionScript 10 VimL 18 Script
Tcl 10 Emacs Lisp 17 Script

CMake 16 Build
DSL Pr Type Puppet 16 Config
Smarty 15 UI Jade 14 UI
Haml 13 UI NSIS 13 Install
JSP 11 UI Lua 10 Script

A general overview of the language numbers found in the
projects is shown in Figure 1. The three boxplots shows the
occurrence of GPLs, DSLs, and of their combination (i.e. all
languages). For each group, the values of the five-number
summary are shown. As usual, the bar represents the me-

GPLs DSLs Both

0
2

4
6

8
10

14
18

22
26

30
34

N
um

be
r

of
 L

an
gu

ag
es

Figure 1: Plot of the number of languages found
across all projects

dian and the box encloses the first and third quartiles. The
whiskers present the lowest and highest datum still within
1.5 interquartile range. Outliers are marked ”o”.

The medians (shown as thick bars in the figure) are 2 for
GPLs, 2 for DSLs, and 4 for all languages, respectively. The
means and standard deviation are 2.12±1.79, 3.05±2.86,
and 5.17±4.3. As usual, 75% of the values lie within the
whiskers, which means between 1 and 3 GPLs, 0 and 8 DSLs,
and a total of 1 to 14 languages. There are also several out-
liers, ranging up to 36 languages, which is the maximum
found in any project. There are only 2 projects with over
30 languages; both use C as the main language.

For comparing the relative sizes of languages within the
projects, we use the output of Linguist, which is in source
lines of code (SLOC). The results show that the mean num-
ber of lines of code of the main GPL compared to all GPLs
per project is 91%±14 — thus, in most cases we have a
clearly dominant main GPL language. If we compare the
lines of code of languages in the GPL group with those of
the DSL group, we find the GPL lines of code to amount
to a mean of 74%±27 of the DSLs; i.e., about 3/4th of a
project’s code is written in GPLs on average (albeit with a
rather high standard deviation).

For further insights into DSL usage it is interesting to look
at the types of DSLs present in each project, and the num-
ber of languages present with each type. There are five DSL
types which occur in 100 or more projects; these are Struc-
ture Data (for example, XML), User Interface Description
(for example, HTML), Shell (for example, Bash), Build (for
example, Make), and Configuration (for example, .INI).

Looking at the number of languages per type per project,
we find that the mean of occurring languages lies between 1.0
to 1.35 for all types except UI, where the value is 2.0. The
mean numbers for Build and Configuration are very close
to one — they are 1.03±0.17 and 1.08±0.27, respectively.
For Structured Data and Shell, we get slighter higher val-
ues of 1.35±0.60 and 1.22±0.42. The languages in the user

interface type have the highest mean as well as the highest
standard deviation (2.0±1.07).

All other DSL categories — that, is, those occurring in
less than 100 projects — have means of about one.

3.3 Regression Analysis
In this step, the final input set was subjected to a Poisson

regression analysis with main language, size, age, number of
contributors, and number of commits as the covariates and
the number of languages as the response variable.

Creating a Poisson model requires several decisions. The
first relates to the coding of variables. Regarding the covari-
ates, it appears that size, age, the number of contributors
and the number of commits are metric variables. However,
the main language is measured on a nominal scale with a
total of 48 values. This variable was thus factored; we used
dummy encoding to compare each language category against
a reference, for which we selected the Java language. As
there are many categories that are represented by only very
few projects in our sample we furthermore decided to group
main languages with less than five projects each into a single
category named ”Other”, reducing the number of language
categories to 20. Note that this only refers to the main
GPL of a project (the one with the highest number of bytes
written in the language), not to the overall list of GPL ap-
pearances shown in Table 3.

With the Poisson model being designed for modeling count
data including zero values it was more adequate to use the
number of additional languages (i.e., the number of lan-
guages subtracted by one) as the response variable, as each
project includes at least one language. Since this does not
change the model as regards to content, we still refer to this
variable as the number of languages.

To avoid the problem of overdispersion, which can occur
while using a Poisson model, we also tested a Quasi-Poisson
model in our analysis. Overdispersion means that the vari-
ance of the response variable is greater than its expected
value. In such situations, a Poisson regression is not ad-
equate as it assumes that the variance and the expected
value of the response are equal. The Quasi-Poisson model is
a modification of the normal Poisson model and estimates an
additional parameter — the dispersion parameter — which
is multiplied with the variance from the Poisson model. If
this parameter is greater than 1, a normal Poisson model
should not be used as overdispersion exists in the data.
In our case, with the dispersion parameter being 2.07, the
Quasi-Poisson model seems clearly more adequate for our
data than a pure Poisson regression.

For the metric variables (age, number of contributors,
number of commits, and size) only few high values appear;
we thus considered it appropriate to use the log10-trans-
formed variables in the regression model to improve the qual-
ity of the model and the interpretability of the estimated
effects. Since the age variable is measured in months and
includes zero, we used age increased by one, which allows us
to use the logarithm while keeping the origin of the variable.

We used smooth functions to estimate the effect of the
above-mentioned metric variables except the project age; the
latter was implemented as a linear term in the final model as
the estimated smooth function only led to a linear function.
The deviance explained by our final Quasi-Poisson regression
model is 50.2%, which is an acceptable value.

For each variable, the Quasi-Poisson regression estimates

Table 4: Results from the Quasi-Poisson Regression
Model with the outcome variable number of addi-
tional languages. edf = Estimated Degrees of Free-
dom. Significance: ** = <0.01, * = <0.05, . =
<0.1

Variable exp(Estimate) Significance

log10(Age) 0.918 0.06 .

Variable edf Significance

log10(Contributors) 1.554 0.59

log10(Commits) 2.811 <0.01 **

log10(Size) 2.433 <0.01 **

Main Language exp(Estimate) Significance

ActionScript 0.368 0.09 .

C 1.328 <0.01 **

C# 0.834 0.13

C++ 1.167 0.12

CoffeeScript 1.568 <0.01 **

Common Lisp 1.098 0.67

FORTRAN 1.18 0.49

Go 0.588 0.07 .

Groovy 2.195 <0.01 **

Haskell 0.791 0.58

JavaScript 1.529 <0.01 **

Objective-C 1.112 0.36

Other 1.194 0.19

Perl 0.971 0.81

PHP 1.118 0.26

Python 0.971 0.77

Ruby 1.447 <0.01 **

Scala 1.112 0.45

TypeScript 1.965 <0.01 **

the effect of the variable on the number of languages, given
that all other covariates stay constant.

These results are shown in Table 4. The covariate names
are shown on the left (log10 where appropriate). The middle
column shows the exponential of the estimate for age and
the main language categories, and the estimated degrees of
freedom (edf) for the smooth functions of the number of con-
tributors, number of commits, and size. The right column
shows the significance. As indicated, age and number of con-
tributors do not have a significant influence on the number
of languages found in a project, whereas the influence of size
and number of commits is significant.

As mentioned above, our analysis of the influence of the
main programming language is based on dummy coding with
the language Java as the reference category. The data shows
that projects with most other main languages have no signif-
icantly different amount of languages. Regarding the cate-
gories with significant effects, JavaScript, CoffeeScript, and
Ruby show about 52%, 56%, and 44% more languages on
average than Java, while TypeScript shows an increase of
96%. C- and Groovy-based projects show about an increase
of 32% (C) and even 119% (Groovy) of the languages of
Java-based projects.

A graphical representation of the estimated smooth func-
tions is shown in Figure 2, with the solid line representing
the estimate which is enclosed in dashed lines representing
the 95% confidence interval of the function, while the y axis
shows the estimated effect of the response variable for a
given x. The first function (number of contributors) shows

0.0 0.5 1.0 1.5 2.0 2.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

I(log10(contributors))

s(
I(

lo
g1

0(
co

nt
rib

ut
or

s)
),

1.
55

)

0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

I(log10(commits))

s(
I(

lo
g1

0(
co

m
m

its
))

,2
.8

1)

3 4 5 6 7 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

I(log10(size))

s(
I(

lo
g1

0(
si

ze
))

,2
.4

3)

Figure 2: Estimated effect of the number of contrib-
utors, number of commits, and the size of the main
language on the number of languages

little deviation from zero across the number of contribu-
tors and is not significant. The second and third functions
shows a clear dependence of the number of languages on the
number of commits and on the size of the main language,
respectively.

3.4 Language Associations
For frequent item set mining and association rule mining,

we first had to select appropriate parameters for support and
confidence. As research question 3 states, our interest are
GPL-to-GPL and GPL-to-DSL associations, i.e. association
rules between single languages and thus single-item sets.

Accordingly, we chose a low minimum set support value
of 5% to include as many language sets as possible, which
means that a set must occur in around 57 projects to be rec-
ognized. As the association rule confidence value, we chose a
higher value of 45% to only include associations with a good
basis in the data. Thus, we gain association rules between
sets of languages in which, given a first set A, set B occurs
in at least 45% of those projects in which A occurred.

From the resulting data, we selected the association rules
between the top 10 GPLs according to our project table
(Table 3) (left side of the rule) and any (single) language (on
the right side of the rule) with a confidence of at least 45%
for further inspection. The result is best shown graphically
and is thus displayed in Figure 3.

Each rectangle in the figure represents one of the top 10
general-purpose languages. The number indicated in each
rectangle is the support for the single-item frequent item
set with this language; that is the percentage of projects in
which this language occurred. This number is also used for
the size of the rectangle. For example, JavaScript is used in
32% of projects in the input set which is the highest count;
it is thus the largest rectangle. Each circle represents a
domain-specific language that has an association rule from
a general-purpose language with a confidence of at least 45%.
Again, the circle size represents the support for the single-
item frequent item set (also shown numerically).

The arrows between the languages represent association
rules. Light-grey arrows show an association rule between
GPLs, while black arrows show rules between a GPL (source)
and a DSL (target). Association rules between DSLs or from
DSL to GPL are not shown. Each arrow has a label that
shows the confidence for this rule. The thickness of the ar-
row represents this size, scaled from the lowest value (45%)
to the highest (90%).

4. DISCUSSION

4.1 Answering the research questions

4.1.1 RQ1
We begin with answering our first research question: How

many languages (GPLs and DSLs) are commonly used in
open source software, and what is their relative code size
and (for DSLs) their type?

We can answer this question with the basic language co-
occurrence data selected by our dual random/theoretical
sampling approach, and thus over projects with differing age,
size, main languages, number of contributors, and number
of commits. As discussed in the results section, the median
number of GPLs, DSLs, and all languages is 2, 2, and 4,
respectively, while the means and standard deviations are
2.12±1.79, 3.05±2.86, and 5.17±4.3. The maximum num-
ber of languages found in any one project is 36.

Intuitively, the low number of GPLs per project makes
sense: We can expect one GPL to be used as the main
programming language of the project, and the use of ad-
ditional ones for specific tasks (such as using JavaScript for
improving the client user interface, or using C for imple-
menting native functionality in interpreted languages). In
fact, we already saw in the result sections that one GPL
usually dominates all others with 91%±14 of all GPL code.

Interestingly, the mean number of DSLs found is not much
higher than that of the GPLs. This seems surprising given

Make
(21)

68

57

49

Shell
(28)

60

55

90

83

INI
(17)

56

Java
(15)

76

HTML
(32)

71

80 60

XML
(44)

56

C#
(8)

C
(23)

64

51

49

YAML
(18)

45

49

60

49

74

Objective
 C (11)

62

50

PHP
(13)

Ruby
(16)

CSS
(30)

Perl
(16)

54

C++
(21)

50

Python
(20)

53

46

JavaScript
(32)

Figure 3: Single-Item Frequent Item Sets and Association Rules between Languages

the vast number of DSLs out there. We discuss two probable
reasons for this. First, many DSLs share the same type, i.e.,
they are used for one certain purpose and thus we can ex-
pect to see only one of these languages in any given project.
We have found five often-used DSL categories, which are
Structured Data, User Interface Description, Shell, Build,
and Configuration. The categories in themselves are not
surprising. Only the UI category has a median (and mean)
of languages per project of 2; all other categories have only
one language per project on average.

A second and more technical reason lies in the way lan-
guages are detected. Some of the most-used languages in
our projects include XML, JSON, and YAML. All three are
languages that can be used for multiple purposes ranging
from data storage via configuration and messaging to actual
executable code. These different dialects are not detected

by Linguist. The detection mechanism also has no support
for DSLs that are used inline (such as SQL) or those hand-
crafted for a specific project or purpose, and for the use of
multiple languages within one file. Detecting such languages
would mean a more thorough investigation of files, possibly
even with an understanding of the syntax of each individual
language, which is a major increase in effort.

Thus, it is probable that the number of DSLs reported is
too low; a follow-up investigation with a more fine-grained
detection mechanism seems worthwhile, although — due to
the effort involved — it will probably have to focus on indi-
vidual languages instead of providing a generic overview.

As shown in the results section, 3/4th of a project’s code
on average is written in GPLs, although the mean number of
GPLs and DSLs is the same (and the spread is higher in the
number of DSLs). This indicates that DSLs are indeed used

as their name implies — that is, for specialized purposes with
less code required than for the main program logic written
in the respective GPL.

To sum up RQ1, we conclude that with the mean number
of languages being 5 — with 2 GPLs and 3 DSLs — we
can empirically support the expectation of the utilization of
multiple languages per project; however, the number is not
as high as might have been expected, which may be due to
the reasons listed above.

4.1.2 RQ2
Our second research question is Does the number of lan-

guages depend on one of the following other project prop-
erties: size, main language, age, number of commits, and
number of contributors?

This question is answered by our regression model. We
first discuss the result regarding size, age, number of com-
mits, and contributors: Increasing the size of the main lan-
guage (bytes written in that language) as well as increasing
the number of commits — while keeping all other variables
constant — significantly increases the number of languages
found. On the other hand, changing the age and the num-
ber of contributors does not have a significant effect on the
number of languages used.

An increasing number of languages with an increase of
size seems to make sense. Small projects may not have need
of certain DSLs, for example dedicated build scripts or shell
scripts for startup or maintenance. The need for these will
become more pronounced as the size of the project grows.
A similar argument can be applied to the number of com-
mits: Although we disregard commit size, it can be expected
that most commits add to the project, which obviously will
include additions in languages.

On the other hand, the missing effect of the variables
age and number of contributors on the number of languages
comes as a bit of a surprise. One could intuitively have ex-
pected older projects (i.e. projects with an earlier creation
date) to have a combination of legacy and new languages,
and a greater number of contributors to lead to an increase in
the number of languages since there are different languages
an individual developer may be more proficient in.

There may be several reasons for this lack of effect. First,
the age of projects on GitHub is a difficult issue in general.
GitHub was founded in 2008, which means that the old-
est projects by date of creation on GitHub are 6 years old.
However, some projects have been imported with their com-
mit history, reaching back to the seventies in some cases, as
indicated by the date of first commit which we have used
as the project age. Unfortunately, it is unknown for how
many projects this was done, i.e. how many of the projects
with their first commit after 2008 have been truly created
at that date — or whether they have simply been migrated
to GitHub without history.

Thus, the age of some projects is probably effectively much
higher than reported. Repeating this analysis using other
repositories (such as SourceForge) may indeed yield different
effects. As it is, the age of a project (i.e., months since the
first commit) does not seem to have any bearing on the
number of languages used. Taking a different angle, one
could also take the view that the number of commits is a
sort of working age of the project — which may indeed be
more relevant than the calendar age.

The amount of contributors to a project has a range from

1 to 462, although the data of projects with a contribu-
tor count of higher than 100 is very thin (38 projects). A
possible explanation for the non-influence of contributors
on languages is that GitHub encourages using forks and re-
integration of code into the original repository, which will
add many contributors with very small contributions each.
Thus, the number of contributors on GitHub does proba-
bly not relate to larger development teams, but to an added
number of bug fixers. However, it may also be the case that
the addition of new languages is more of a team decision and
thus indeed more contributors do not automatically mean
more languages. As it is, we do not see a significant associ-
ation between the number of contributors and the number
of languages in our data set.

We finally come to the question of the main general-pur-
pose language of a project and its effect on the number of
languages. As discussed, we use the Java programming lan-
guage as a reference. We first assert that there is no sig-
nificant difference in the number of languages between Java
projects and projects with other well-known and much-used
GPLs, namely C++, PHP, Objective-C, C#, Perl, Python,
and Scala. Thus, changing the main programming language
of a project to another in this group doesn’t have much bear-
ing on the number of languages used in each project. This
result is probably expected since each of these languages
has the same primary purpose (and in particular, does not
include the particular functionality of most DSLs).

However, there are some programming languages with a
significantly different number of languages than Java pro-
jects. Firstly, JavaScript, CoffeeScript, and Ruby show a
significant deviation with about 44% to 56% more languages
used. We believe that this is due to these languages serving
the web domain, that is, they will always use HTML and
CSS, possibly a template language, plus all of the languages
the other projects use; it is however interesting that this does
not seem to apply to PHP, the cause of which is unknown.
TypeScript is an exception: Six of the seven projects with
this main language are implementations of BitCoin. Thus,
the number of languages here is probably more related to
BitCoin than to TypeScript.

There are two additional languages that show a significant
deviation from the reference category. First, projects using
the C language use about 33% more languages than Java;
a fact we attribute to the low-level nature of C, requiring
more helper languages. The second is Groovy, which is the
exact opposite, being a very new, dynamic language built on
top of the Java platform and uses twice as many languages
as Java, for which there is no obvious reason. However,
there are only six projects with this main language; thus,
we should be careful in reading too much into this result.

We can conclude that most of the main programming lan-
guages used (C++, Java, C#, Python, Objective-C, PHP,
Scala, Perl) do not exhibit a significant difference in the
number of languages used. However, there is a significant
and relevant effect in web-related languages (JavaScript, Cof-
feescript, and Ruby) as well as in the C language, where the
number of languages is increased by about 33% to 56%.

4.1.3 RQ3
Our last research question is Which association patterns

can be found between the languages (and in particular, GPLs
and DSLs) used in the projects?

This question is related to the actual languages, not the

number of languages, found in the projects. As discussed in
the previous section, our primary result is shown in Figure 3.

When interpreting this figure, we need to keep in mind
that the sizes of the boxes depend on the number of projects
in the underlying set, which are GitHub-dependent; the
arrow sizes are relative associations between the projects,
which are project-dependent.

The figure can be divided into three parts — languages
grouped around Shell and Make (top right), XML (left), and
HTML/CSS (bottom). When looking at the GPLs, most are
indeed grouped to one or at most two of these groups; none
covers all three. We now look at each of these ecosystems in
more detail.

The first ecosystem is grouped around Shell (which in-
cludes all Unix-based shells) and Make. Here, we find the
languages C and C++ (for Make and Shell) as well as Python
and Perl (for Shell). Objective-C is added to the area via
C and C++ to which it is associated. C# is conspicuously
missing here, which is probably due to it being part of the
Microsoft .NET platform and thus a different setup and com-
munity. The languages in this area also show the highest
amounts of GPL-to-GPL associations: Objective-C occurs
with both C and C++, and C++ and C are associated with
one another. Note also that all C-based languages have an
association with XML as well. Thus, given C or C++, we
can expect to see both the other language, respectively, as
well as make files, shell scripts, and (perhaps not as intu-
itively) XML.

The second ecosystem is grouped around XML, which is
the most-associated language in the set with 7 of the 10 lan-
guages referencing it directly (all except Perl, Python, and
Ruby). The strongest associations come from C#, Java,
and Objective-C with 90%, 83%, and 80% of the respective
projects also featuring XML. In fact, C# references nothing
else, while Java only additionally references the INI format
(which includes many line-based formats such as .properties,
.ini, .cfg, etc.). As we have discussed before, the XML for-
mat is problematic (and probably referenced as much) due
to its flexibility and many use cases. In fact, we can expect
different XML dialects to be used; in particular, the func-
tionality of Make is probably replicated in the Java ecosys-
tem using Maven or Ant scripts, which are based on XML.

This ecosystem seems to confirm the anecdotal association
of Java and C# with XML; however, due to the generic
nature of XML any further insights would require, again,
XML dialect recognition. Note also that C# and Java are
not associated with any other GPL (in contrast to C, C++,
and Objective-C on the upper right).

Finally, the third part of the figure is grouped around
HTML and (to a lesser extent) CSS. The JavaScript lan-
guage shows the strongest associations to these two lan-
guages with 71% and 76% of JavaScript projects using these
languages. PHP projects use CSS in 64% of cases.

Besides JavaScript, we have associations to HTML from
Ruby, PHP, Python, and Perl. PHP is the only language in
the lower ecosystem associated to another GPL — in this
case JavaScript, and it is to be expected that this sort of
relationship is very different compared to the association of
C++ and Objective-C to C in the ecosystem at the top. Re-
garding the Ruby language, it can be assumed that YAML
is used to take the place of XML.

Our three ecosystems also use three different DSL types:
The first (Shell, Make) shows languages related to the pro-

cess of building the software and generic file-oriented tasks;
the second (XML) shows the use of a very generic language
for structured data, while the third (HTML and CSS) is
concerned with user interface tasks.

Thus, the answer to our third research question shows
clear associations between languages, and these differ mar-
kedly between the three ecosystems shown, both in GPL-to-
GPL associations as well as GPL-to-DSL associations.

4.2 Comparison with Related Work
To our knowledge, this is the first empirical study that

discusses the association between different properties of soft-
ware projects and the number of languages (i.e., RQ2), and
the first study that uses the combined random/theoretical
sampling approach. However, there are studies with a par-
tial overlap to our answers to RQ1 and RQ3 with different
sampling approaches, which we compare in the following.

In 2014 [5], Tomassetti and Torchiano have inspected a set
of 15’000 randomly selected GitHub projects with the aim
of investigating multi-language applications (using the term
polyglotism). Their findings yield a mean of 6 languages
per project, of which 2 are GPLs and 4 DSLs, which is close
to our result (which is 5, 2, and 3, respectively). We sus-
pect that the additional language reported may be a prose
language (such as MarkDown) which they include and we
exclude. Furthermore, they investigate pairs of interacting
languages, which is similar to what we report as results for
RQ3. Here, the random vs. theoretical selection of projects
(and in particular our criteria of differing main languages)
seems to be a major factor, since the languages and relation-
ships reported are quite different (for example, C# and Perl
are missing and C/C++ are not connected with the rest
of the graph; instead, several web-related languages show
up which we suspect is due to the large percentage of web
projects on GitHub). Still, two of our clusters can be found
in these results as well (XML as well as HTML/CSS).

Deloray et al. [6] (2007) analyzed 9’997 open source pro-
jects from SourceForge.net7. They list the most popular
languages found in these projects, which are very similar
to what we have found (if we replace Ruby and Objective
C from our list with Pascal and Tcl from theirs, we get
the same top 10 — this might be due to the publication
date difference). Furthermore, they investigate combina-
tions of (GPL) programming languages they call ”language
profiles” from the perspective of the author, i.e., how com-
monly languages are used together by an author compared
to a standalone use. The top combinations are C/Perl,
C/C++, and Javascript/PHP; two of these (C/C++ and
Javascript/PHP) also show up in our association rules. Thus,
we can (partially) confirm their findings on our (smaller, but
differently sampled) GitHub-based data set.

In another study of 22 open source projects, Karus and
Gall [7] (2011) focused on language usage evolution. They
explicitly list DSLs. The analysis is based on revision data
in version control systems, i.e. file types in developer com-
mits. Thus, instead of being focused on projects as in our
case, an author perspective is taken. It was found that devel-
opers work with 4 different languages on average (including
DSLs) which is close to our mean number of languages. Also,
the analysis of common (programming language) file types
in commits shows several co-changing languages. Intersec-
tions with our association rules are Java/XML, C/Make,

7http://www.sourceforge.net/

and JavaScript/CSS. A direct comparison with our data is
difficult due to the different focus (projects vs. authors) and
the different input set (1150 projects without version history
in our case; 22 projects with full version history in theirs).

A different take on multiple programming languages is
presented by Vasilescu et al. [8] (2013). They investigate
pairs of languages in the sense that developers have knowl-
edge about both of them based on language tags associated
to users on StackOverflow8. It is noted that they expect
similarity by usage to imply similarity by knowledge; and
in fact, the presence and confidence of the association rules
shown in Figure 3 seem to be reflected, at least by tendency,
in the mutual intelligibility measures by Vasilescu et al.

4.3 Limitations of our analysis
In general, it should again be noted that our project se-

lection focused on diversity, which means that the results of
RQ1 and RQ3 are not representative of GitHub. Here, we
follow the line of argument brought forward by Naggapan
et al. [2]: By selecting projects with a maximally diverse
set of properties, we include as many shapes and forms of
projects as possible (which are all actually existing open
source projects), which in our opinion is actually more use-
ful than proportional coverage. In any case, GitHub itself
has its own biases — towards JavaScript as a main language
as well as small (”Hello World”) projects.

Second, we only report languages that are detectable by
the Linguist tool. Since this tool is in industrial use and is
continually being worked on, we believe that the number of
undetected relevant languages to be low. However, Linguist
does not inspect the code within a file, and thus will miss
multiple languages within one file or dialects of languages
such as XML. As discussed before, this means that the actual
number of languages might be higher than reported.

Finally, two of the covariates we have used in the regres-
sion model have important limitations. The first is the age
of the project, which as discussed is problematic due to the
founding date of GitHub and the question of migration with
or without history. We have found no association between
the age and the number of languages; this may be different
if a repository provider with a longer history is used. The
second is the number of contributors, which — due to the
way GitHub works — includes users that have simply pro-
vided bug fixes or small changes. Contributors thus do not
equal full team members, and again the missing correlation
might be attributed due to this fact.

5. CONCLUSION AND OUTLOOK
This work has examined 1150 open source software sys-

tems selected for diversity regarding language usage. Our
analysis has shown that typical projects use a mean of 5 lan-
guages with a clearly dominant main GPL. The main DSL
categories used are Structured Data, User Interface Descip-
tion, Shell, Build, and Configuration. The average number
of languages in each DSL category per project is 1 except
for UI (where it is 2). Also, on average, only about 1/4th of
the code of a project is written in a DSL.

Second, we have shown that there is a significant asso-
ciation between the size and the number of commits in a
project and the number of languages; and no significant in-
fluence of age of the project and the number of contributors.

8www.stackoverflow.com

Furthermore, the number of languages used does not seem
to vary significantly between major languages — except for
C and the languages used in the web domain (JavaScript,
CoffeeScript, and Ruby).

Finally, we have identified three language ecosystems with-
in the top 10 GPLs using association rule mining. These
systems seem to be grouped around a) Shell and Make; b)
XML, and c) HTML and CSS.

We believe that these answers can help us focus both prac-
tical efforts and further research. Regarding practical ap-
plications, it seems beneficial to provide developer tool sup-
port for much-used DSL types (RQ1) and the concrete DSLs
identified as part of RQ3; having IDE support for multi-
language systems seems important, especially for larger sys-
tems as indicated by RQ2. Our work also the highlights key
multi-language combinations that developers (and students)
should be aware of today.

There are several avenues for future research. First, it
will be interesting to inspect generic DSLs such as XML
for the dialects used. Secondly, we have seen that the vari-
ables of age and number of contributors of a project suffer
from issues on GitHub; other repositories should be investi-
gated here. Finally, project-specific and internal DSLs are
not supported by current language detection tools; here, a
qualitative approach to investigating example projects may
yield interesting results.

Acknowledgments
The authors would like to thank Helmut Küchenhoff of the
Statistical Consulting Unit of LMU for his support in per-
forming the statistical analysis for this research.

6. REFERENCES
[1] P. Mayer and A. Schroeder, “Automated

Multi-Language Artifact Binding and Rename
Refactoring between Java and DSLs used by Java
Frameworks,” in ECOOP 2014. Springer, 2014, pp.
1–26.

[2] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity
in software engineering research,” in ESEC/FSE 2013.
ACM, 2013, pp. 466–476.

[3] Ludwig Fahrmeier and Thomas Kneib and Stefan Lang
and Brian Marx, Regression: Models, Methods and
Application. Springer, 2013.

[4] R. Agrawal, R. Srikant et al., “Fast algorithms for
mining association rules,” in VLDB 1994. Morgan
Kaufmann, 1994, pp. 487–499.

[5] F. Tomassetti and M. Torchiano, “An Empirical
Assessment of Polyglot-ism in GitHub,” in EASE 2014.
ACM, 2014, pp. 1–4.

[6] D. P. Delorey, C. D. Knutson, and C. Giraud-Carrier,
“Programming language trends in open source
development: An evaluation using data from all
production phase sourceforge projects,” in WoPDaSD
2007. Springer, 2007, pp. 1–5.

[7] S. Karus and H. Gall, “A study of language usage
evolution in open source software,” in MSR 2011.
IEEE, 2011, pp. 13–22.

[8] B. Vasilescu, A. Serebrenik, and M. G. J. van den
Brand, “The Babel of Software Development: Linguistic
Diversity in Open Source,” in SocInfo 2013. Springer,
2013, pp. 391–404.

