
Interface Utilization in the JAVA DEVELOPMENT KIT
Jens Gößner Philip Mayer Friedrich Steimann

Institut für Informationssysteme
Fachgebiet Wissensbasierte Systeme
Universität Hannover, Appelstraße 4

D-30167 Hannover

{goessner, mayer, steimann}@kbs.uni-hannover.de

ABSTRACT
Interfaces as defined in the JAVA programming language can
enhance both decoupling and comprehensibility of large code
bases. Several researchers have pointed out this key role of in-
terfaces in object-oriented programming, but so far only little
insight as to how interfaces are actually used in practice has
been made available. We fill this gap by applying a special met-
rics suite to one of the most popular pieces of software, the JAVA
DEVELOPMENT KIT, and present interesting results.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Abstract data types, Classes and objects, Data types
and structures, Frameworks, Inheritance, Patterns, Polymor-
phism

General Terms
Measurement, Design, Experimentation, Languages.

Keywords
Metrics, Interfaces, JAVA, Frameworks, Refactorings.

1. INTRODUCTION
 “Program to an interface, not an implementation” [1].

The extensive use of interfaces in object-oriented programming
can enhance both comprehensibility and modularity of the code.
However, as recent research has shown [2][3], interfaces are not
very popular among programmers, not even of large and widely
visible code bases. As has been point out, the reason for this
may lie in the additional expenditure of time needed for the
introduction and maintenance of interfaces, and in the failure to
understand how to use interfaces in the first place.
In [2], a set of refactorings towards a better use of interfaces has
been proposed together with a suite of interface-related metrics
measuring the actual utilization of interfaces in object-oriented

programs, but neither a precise definition nor an implementation
has been provided. In this paper, we formalize the metrics pro-
posed in [2], comparing them to the better known fan-in/fan-out
metrics where possible, and make corrections where necessary.
We then apply these metrics to one of the world’s most popular
code bases, the JAVA DEVELOPMENT KIT (JDK)1, and present the
results in tabular form, discussing our findings and the insights
gained. As it turns out, interfaces are used in the JDK for many
different purposes, but not always as consistently and to the
extent one might have expected. By investigating the effects of a
simple sequence of refactorings on the relevant metrics we show
how the use of interfaces can be increased even after a program
has been written.

2. RATIONALE
For the following we have chosen a JAVA project because JAVA
(like C#, but unlike C++ or SMALLTALK) lets the programmer be
explicit about a given type being an abstract class or an inter-
face. We have chosen the JDK because we assume that its con-
tents are known (and our results will be meaningful) to a wide
readership. Results are biased to a certain extent by the JDK’s
being a class library; however, for large parts it is also a frame-
work (a semi-complete application) and as such representative
of many code bases in use. Last but not least, some of the JDK’s
frameworks (as for example the collections framework) are
heavily used from within the JDK, so that it is really a mixture
of a class library, a framework, and an application. Generalizing
the results presented here to current programming practices is
another story; for the time being, we encourage all readers inter-
ested in their use of interfaces to apply the metrics we provide to
their programs.

3. INTERFACE STATISTICS
3.1 The JDK’s most general interfaces
An interface can be very specific in the sense that only few
classes implement it. Conversely, we can say that the more often
an interface is implemented, the more general are the features
offered by this interface. To measure this fact, a metric called
Interface Generality has been defined as follows:
“Generality of an interface measures its dissemination defined
as the number of classes implementing it. The more classes im-
plementing an interface, the more general this interface may be
assumed to be. If there is only one class implementing the inter-
face, this indicates that it is rather special.” [2].

1 The version analyzed was J2SE 1.4.1_02.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04...$5.00

1310

2004 ACM Symposium on Applied Computing

Formally, the definition of Interface Generality (IGEN) trans-
lates to

∑
= 

 ≤⇔

=
n

i

i
I else

IC
IGEN

1 0
1

where Ci ranges over all classes in a project and Ci ≤ I stands for
class Ci implementing interface I (directly or indirectly, either
through extending superclasses or through implementing subin-
terfaces). IGEN is equivalent to the inheritance fan out factor of
an interface — where inheritance fan out generally measures the
number of subtypes of a chosen type — only that subtypes are
restricted to classes (thus excluding subinterfaces) [4].
Table 1 shows the most general interfaces of the JDK. Not sur-
prisingly, the interface implemented most often is Serializ-
able (22.8% of all interface implementations). Serializ-
able, like Clonable and other empty interfaces, are some-
times called marker or tagging interfaces [5][6].
Next comes java.util.EventListener, which intro-
duces a second family of interfaces extensively implemented:
the Listener interfaces. Listeners are the Observers in the Ob-
server pattern [1] which is heavily used in the AWT and Swing
implementations. EventListener — which is also called a
tagging interface in the JAVA documentation [5] — is subtyped
by ActionListener (4th) and ImageObserver (6th).

Tagging interfaces are called tagging because they classify the
implementing class as being of a certain type.2 More character-
istically, they enable the use of the class’s instances in a specific
context. Therefore, we prefer to call these interfaces enabling
interfaces [7]. However, enabling interfaces need not be empty:
for instance, by specifying compareTo(.) the java.
lang.Comparable interface enables the ordering of the in-
stances of its implementing classes. Likewise, Runnable lets
instances of its implementing classes run their own thread of
execution, simply by implementing run().

Enabling interfaces are often recognized by their suffix “-able”
or “-ible”. However, the Listener interfaces are also enabling
interfaces, since they enable the implementing classes’ partici-
pation in the notification procedure implemented by the Subject
of the Observer pattern [1]. Clearly, enabling interfaces domi-
nate Table 1: supplying 111 out of 829 interfaces (13.3%) in the
JDK, these two groups account for 53.7% of the total number of
interface implementations (30.9% without Serializable).

Table 1. The most general interfaces of the JDK
Name of Interface IGEN IPOP3
1 java.io.Serializable 1975 140
2 java.util.EventListener 584 92
3 java.lang.Cloneable 535 0
4 java.awt.event.ActionListener 235 79
5 javax.accessibility.Accessible 210 194
6 java.awt.image.ImageObserver 209 43
7 java.awt.MenuContainer 209 8
8 org.omg.CORBA.portable.IDLEntity 183 1
9 javax.swing.Action 178 175
10 java.security.PrivilegedAction 158 8

2 Of course, they share this property with all other interfaces.
3 IPOP stands for Interface Popularity (subject of Section 3.2).

3.2 The JDK’s most popular interfaces
While generality of an interface considers the supplier’s view,
i.e., how many classes offer the services specified by an inter-
face, the client side also deserves some attention. The question
here is: How many times is an interface type used/referenced by
a client for a variable declaration? The more references to an
interface type occur in a project, the more popular this type may
be thought to be:
“Popularity of an interface counts the number of variables de-
clared with that interface as their type. The higher the popular-
ity, the more use is made of the interface; the greater is the
number of contexts in which it appears” [2]. Interface Popular-
ity (IPOP) can be formalized as follows:

∑
= 

 ⇔

=
n

i

i
I else

IV
IPOP

1 0
:1

where Vi ranges over all variables (i.e. fields, temporary vari-
ables and formal parameters) in a project and Vi : I means that
the variable Vi is declared with interface I.4 Like IGEN, the
IPOP metric can be expressed as a fan factor: IPOP is equivalent
to the coupling fan in factor of the interface, with coupling be-
ing defined as the number of variables declaring the interface as
their type. 5

Table 2. The most popular interfaces in the JDK
Name of Interface IPOP IGEN
1 org.w3c.dom.Node 715 65
2 javax.swing.text.Element 525 8
3 javax.swing.text.AttributeSet 486 20
4 java.util.Iterator 446 49
5 java.util.Enumeration 423 36
6 javax.swing.Icon 379 65
7 org.omg.CORBA.Object 364 77
8 java.awt.Shape 316 33
9 java.util.Map 248 30
10 java.util.List 234 29
…
13 java.util.Set 197 29
…
18 java.util.Collection 158 69
…
29 java.lang.CharSequence 95 14

The most popular interface in the JDK is org.w3c.dom.
Node, which is „the primary data type for the entire Document
Object Model”[5]. Instances of this type represent a node in a
XML-document. Interestingly, at rank two there is another inter-
face that represents a part in a document model: javax.
swing.text.Element describes “a structural piece of a
document. It is intended to capture the spirit of an SGML ele-
ment” [5].
The interfaces ranked 3rd and 6th–8th (javax.swing.text.
AttributeSet, javax.swing.Icon, org.omg.
CORBA.Object, java.awt.Shape) have something in

4 Return types could be included as well, but have been omitted

here since we have focused on the use of variables.
5 In general, coupling fan factors measure the degree to which

types depend on one another.

1311

common, too: they each form the head or root of a family of
classes [7]. They could equally have been represented by ab-
stract classes, but were presumably designed as interfaces be-
cause of JAVA’s lack of multiple (implementation) inheritance.
In fact, in JAVA “[t]he org.omg.CORBA.Object interface is
the root of the inheritance hierarchy for all CORBA object ref-
erences in the Java programming language” [5]. By contrast, in
C++ CORBA:Object it is a class from which all other
CORBA-classes inherit implicitly: “The Object class is the
base class for all normal CORBA objects.” [8].
4th in our list comes java.util.Iterator, followed im-
mediately by java.util.Enumeration. Both interfaces
can really be considered as one, since they share the same pur-
pose: iteration over collections. Taken together, the two are the
most popular interfaces in the JDK (referenced 869 times). Of
course, the reason for this is the absence of a built-in iterator
construct in JAVA, an issue that is hoped to be remedied in future
versions. Table 2 may be considered evidence that such a fix is
truly needed.
The top 10 of the most popular interfaces is concluded by
java.util.Map and java.util.List, which stem from
the JAVA collections framework. This raises the question how
often the other collection interfaces are referenced. In fact, ac-
cumulated all collection interfaces (Appendix A) would be
ranked first, referenced 1785 times. Even more revealingly,
although only 1.44% of all interfaces in the JDK are collection
interfaces the combined popularity of them is 12.68%. Note that
like Icon, Object, and Shape, the collection interfaces are
roots of small families of classes, too.
It is instructive to note that the top 10 of the most popular inter-
faces does not include any of the interfaces from the top 10 of
the most often implemented interfaces (and vice versa). In fact,
the correlation between Interface Popularity and Interface Gen-
erality is only 0.1757 for all 829 interfaces of the JDK (and
0.2288 without Serializable): it appears that general inter-
faces are not very popular and vice versa.

4. CLASS STATISTICS
Like the interface metrics of Section 3, the class metrics pre-
sented next describe the relationship between classes and inter-
faces as expressed by the implements relationship, only this
time from the classes’ side. Since classes deliver the instances of
a running system, the focus of these metrics is on the polymor-
phism of instances, i.e., their capability to take on different
types.

4.1 JDK’s most popular classes
In analogy to interfaces, we consider a class the more popular,
the more references by clients it has. The formal definition for
Class Popularity (CPOP) is

∑
= 

 ⇔

=
n

i

i
C else

CV
CPOP

1 0
:1

where Vi ranges over all variables in a project and Vi : C means
that the variable Vi is declared with class C. Since it is analo-
gous to the Interface Popularity metric, Class Popularity can be
expressed as a coupling fan in factor, too, only this time as the
coupling fan in factor of the class (with coupling being defined
as the number of variables declared with that class).

Table 3. The most popular classes of the JDK
Name of Class CPOP
1 java.lang.String 16143
2 java.lang.Object 5684
3 java.awt.Component 1610
4 java.lang.Class 1342
5 javax.swing.JComponent 1077
6 java.awt.Rectangle 1006
7 java.awt.Dimension 997
8 java.awt.Color 900
9 org.omg.CORBA.TypeCode 749
10 java.awt.Graphics 704
11 java.util.Vector 635

Table 3 shows the results of applying Class Popularity to the
JDK. Not surprisingly, java.lang.String is by far the
most popular class. By contrast, its interface CharSequence,
whose use should allow other implementations to take
String’s place, is used only 95 times (Table 2).

The classes java.lang.Object (ranked 2nd), java.
awt.Component (ranked 3rd) and javax.swing.JCom-
ponent (ranked 5th) are typical roots of (sub)hierarchies of
classes. Other popular classes are container classes6
(java.awt.Rect angle at rank 6, java.awt.Dimen
sion at rank 7, java.awt.Color at rank 8 and org.
omg.CORBA.Type Code at rank 9).

At the 11th place we find the class java.util.Vector. Even
though the direct use of Vector should be avoided, this class is
referenced approx. 2.5 times more than its interface List,
which contains most of the needed functionality and should be
used instead. A possible explanation for this is the high ranking
of java.lang.Class (ranked 4th), which is complemented
by java.lang.reflect.Method at rank 31 (referenced
258 times). This is an indication of introspection being heavily
used in the JDK and explains why interfaces such as List in-
troduced in later versions did not generally replace their imple-
menting classes. The subject is continued in Section 5.

4.2 Polymorphic Grade
Using classes in variables declared with interfaces increases the
use of polymorphism in a program. The more interfaces a class
implements, the more polymorphic situations can possibly arise
in using the class, a property that has been termed Polymorphic
Grade [2]. Note that Polmorphic Grade only gathers information
about the supplier’s view, not the client’s view. It is defined as
follows:
“[T]he polymorphic grade of a class [is defined] as the number
of interfaces implemented by the class, independent of how
much these interfaces overlap. This is to acknowledge that over-
lapping or even identical interfaces can nevertheless serve dif-
ferent purposes.” [2].
More formally,

∑
= 

 ≤⇔

=
n

i

i
c else

IC
PG

1 0
1

6 Container classes are classes, whose instances’ main purpose is

to contain other objects or collections of other objects.

1312

where Ii ranges over all interfaces in a project. Polymorphic
Grade of a class is the class counterpart of Interface Generality.
It is identical to the little known CLIFIN7 metric defined in [10].
Table 4 shows the result of our analysis regarding the Polymor-
phic Grade of the JDK classes. The maximum number of inter-
faces implemented by a class is 20. The 4th column shows the
results of the Polymorphic Use (PU) metric, which is explained
in Section 4.4 below.

Table 4. The most polymorphic classes of the JDK
Name of Interface PG PU
1 java.awt.dnd.DnDEventMulticaster 20 1
2 java.awt.AWTEventMulticaster 18 0.996
3 java.beans.[…].BeanContextServicesSupport 12 1
4 com.sun.corba[…]vation.ServerManagerImpl 11 0.996
5 java.beans.beancontext.BeanContextSupport 11 1
6 javax.swing.JTable 10 0.927
7 com.sun.corba[…]._ServerManagerImplBase 10 1
8 com.sun.corba[…]icAny.DynValueBoxImpl 9 1
9 com.sun.corba[…]namicAny.DynValueImpl 9 1
10 org.omg.DynamicAny._DynValueStub 9 0.999
…
170 java.util.Vector 5 0.456
...
402 java.lang.String 3 0.017

The histogram of Figure 1 shows the concentration in the distri-
bution of PG around zero and one implemented interfaces. Very
few classes implement more than 8 interfaces. Interestingly, the
top 10 of the most polymorphic classes contains mostly rather
exotic classes.

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

Polymorphic Grade

Fr
eq

ue
nc

y

Figure 1: Histogram of the Polymorphic Grade

4.3 Versatility
Different interfaces need not specify different access protocols;
they can overlap. The degree of that overlapping further quali-
fies the Polymorphic Grade of a class.
“Versatility measures the disjointness of the interfaces imple-
mented by a class as

∑∑
=

−

= ∪

∩
−=

n

i

i

j ji

ji
C II

II
n

nVers
2

1

1

2

7 CLIFIN stands for “class interface extension fan-in”, which is

another interpretation of the fan-in-metric. Another name
would be the “inheritance fan in” of the class, if only inter-
faces are taken into consideration.

where Ii stands for the set of features of the ith interface of a
class. Versatility values range from 0 (no interface imple-
mented) to the polymorphic grade of the class (all interfaces
pairwise disjoint). A versatility value of 1 means that all inter-
faces are identical. Higher values are indicative of the diversity
of the class utilization — hence the name” [2].
Versatility cannot be expressed in fan factors.

Table 5. Versatility of classes in the JDK
Name of Interface PG Vers PU
1 java.awt.dnd.DnDEventMulticaster 20 20 1
2 java.awt.AWTEventMulticaster 18 18 0.996
3 java.beans[…]ntextServicesSupport 12 11.5 1
4 java.bea[…].BeanContextSupport 11 10.7 1
5 javax.swing.JTable 10 10 0.927
6 com.sun.corba[…]rverManagerImpl 11 9.7 0.996
7 org.apache.xala[…]utputProperties 9 8.6 0.981
8 org.apache.xalan[…]StylesheetRoot 9 8.6 0.951
9 com.sun.corba[…]anagerImplBase 10 8.6 1
10 javax.swing.text.DefaultCaret 8 8 0.999
…
195 java.util.Vector 5 4.76 0.456
…
472 java.lang.String 3 3 0.017

The Versatility of Vector is 4.76. Its Polymorphic Grade be-
ing 5, this shows that there are some overlapping methods de-
fined in the interfaces. The overlapping results from the similar-
ity of the interfaces List and Collection: in fact, List
extends Collection (and, for obscure reasons, re-declares all
methods declared in the Collection interface).

4.4 Polymorphic Use
If a class implements interfaces, the instances of these classes
can be accessed via an interface type. It is then interesting to
know how often variable declarations make use of interfaces
instead of using the class itself. In fact, this is what measures the
degree to which the “program to an interface” directive is fol-
lowed. The corresponding metric has been termed Polymorphic
Use in [2]. In contrast to Polymorphic Grade, this metric as-
sesses the client’s view of a class and its implemented inter-
faces.
“The polymorphic use of a class relates the number of variables
in a program typed with an interface implemented by the class
to the total number of variable declarations assignment compati-
ble with the class. A polymorphic use of 1 indicates that all
instances of the class are accessed through interfaces, whereas
one of 0 indicates that none are.” [2]
Deviating from this definition, we define Polymorphic Use as
follows:

∑

∑

=

=



 ∨≤∧⇔



 ≤∧⇔

=
n

i

ii

n

i

i

C

else
CVICIV

else
ICIV

PU

1

1

0
::1

0
:1

where Vi ranges over all variables in the project. Excluding su-
perclasses from the denominator is to acknowledge for the fact
that each superclass of C defines its own polymorphic use,
which is not to be accumulated by its subclasses.

1313

Polymorphic Use can be expressed as a combination of several
fan factors. The numerator of the fraction defined above can be
seen as the cumulated coupling fan in factors of the imple-
mented interfaces of C, whereas the denominator may be seen as
the cumulated coupling fan in factors of C itself as well as of the
implemented interfaces of C.

Table 6. Polymorphic Use of the classes in the JDK
Name of Interface PU PG
1 java.awt.dnd.DnDEventMulticaster 1 20
2 java.beans[…]xt.BeanContextServicesSupport 1 12
3 java.beans[…]eancontext.BeanContextSupport 1 11
4 com.sun.corba[…]L._ServerManagerImplBase 1 10
5 com.sun[…].DynamicAny.DynValueBoxImpl 1 9
6 com.sun[…]ernal.DynamicAny.DynValueImpl 1 9
7 org.apache.xalan.templates.ElemApplyImport 1 8
8 org.apache.xalan.templates.ElemCallTemplate 1 8
9 org.apache.xalan.templates.ElemChoose 1 8
10 org.apache.xalan.templates.ElemComment 1 8
…
261 java.util.AbstractSet 1 2
…
1898 java.util.Vector 0.456 5
…
1960 java.lang.String 0.017 1
1961 javax.swing.text.GlyphView 0 3

As can be seen from Tables 5 and 6, classes with high PG values
also have high PU values. In fact, the correlation between PU
and PG of the JDK’s classes is 0.57, which should come as no
surprise since the more interfaces a class implements, the higher
is the probability that instances of this class are accessed over
one of these interfaces. Correlations between PG and CPOP and
between PU and CPOP are close to zero, however, indicating
that these metrics are completely independent.
Interestingly, only 1003 out of the 3231 classes of the JDK
(31%) are exclusively accessed through interfaces. The general-
purpose class java.util.Vector, although implementing
five interfaces and to a large extent covered by the List inter-
face, has a polymorphic use of only 45.6%. The picture is much
worse for the most popular class java.lang.String, which
is accessed in only 1.7% of all cases through one of its inter-
faces, despite the introduction of its interface CharSequence
in JDK 1.4.

5. INCREASING INTERFACE UTILIZA-
TION
Given that the PU of all classes (and thus adherence to the “pro-
gram to an interface” rule) is only 0.57 on average, one may
wonder why this is so and what could be done to increase this
value. We have chosen the Vector class from the JDK to per-
form some exemplary refactorings to assess what it takes to
increase the PU value.
Ranked 11th in the hit list of the most popular classes, Vector
is often accessed directly, even though it implements five inter-
faces (Cloneable, Collection, List, RandomAccess,
Serializable).

Table 7, which shows the most frequently found access sets
(with access set being defined as the set of methods called on a
variable assignment compatible with the class; see [3]) of Vec-

tor, displays many legacy methods; the method most often
used, elementAt (referenced 1080 times in the JDK), as well
as addElement and others (see Appendix B) should really
have been replaced by the corresponding methods from the
List interface.

Table 7. Top 10 different access sets of Vector
Freq. Access Set
1 100 elementAt(int):Object, size():int
2 61 addElement(Object):void,

elementAt(int):Object, size():int
3 49 addElement(Object):void
4 34 add(Object):boolean
5 30 iterator():Iterator
6 21 get(int):Object, size():int
7 20 addElement(Object):void, elements():Enumeration
8 17 size():int
9 14 addElement(Object):void,

copyInto(Object[]):void, size():int
10 10 iterator():Iterator, size():int
 10 addElement(Object):void, elementAt(int):Object,

removeElementAt(int):void, size():int

To eliminate this legacy problem, we have first renamed Vec-
tor’s legacy methods to their equivalent pendants from List,
by using the “Change method signature” refactoring. This alone
does not change the polymorphic use of Vector, however,
because the clients are still using variables of the Vector class.

In a second step we have therefore performed the refactoring
“Use interface where possible” (which is part of the refactoring
suite implemented with IntelliJ IDEA [10]8) to substitute the
references to the Vector class by references of the interface
List wherever possible. Note that although this refactoring
does not introduce static typing errors, correctness of the result-
ing code cannot be guaranteed, as long as methods are called
using the introspective capabilities of JAVA. This however is
difficult to decide; the heavy use of the Class class suggests
that problems are likely to occur.

Table 8. Top 10 different access sets after the refactoring
Freq. Access Set
1 121 get(int):Object, size():int
2 74 add(Object o): boolean
3 68 add(Object o):boolean, get(int):Object, size():int
4 30 iterator():Iterator
5 17 size():int
6 13 add(Object o):boolean, get(int):Object,

remove(int):Object, size():int
7 12 add(Object o):boolean, contains(Object):Boolean
8 10 get(int):Object
9 10 iterator():Iterator, size():int
10 9 add(Object o), size():int

After this second refactoring, which changed the hit list of dif-
ferent access sets as shown in Table 8, we found that the Poly-
morphic Use of Vector has increased from 45.6% to 84.5%.
At the same time, the Interface Popularity of java.util.
List has grown from 234 (Table 2) to a value of 686, meaning

8 This refactoring is also available in the ECLIPSE framework,

where it is called “Use supertype where possible”.

1314

that after the refactoring List would be ranked 2nd in the IPOP
top 10. Conversely, Class Popularity of Vector has decreased
from 635 to 183.

6. CONCLUSION
In order to allow for a more thorough understanding of the goals
of interface-based programming and the corresponding metrics
suggested in [2], formal definitions have been provided and
complemented with a comparison to the better-known fan fac-
tors [4]. The results of the application of these metrics on the
JDK provide interesting insights into the usage of interfaces. In
particular, we detected a certain dominance of so-called ena-
bling [7] interfaces, comprising the tagging (or marker) and the
Listener interfaces of the JDK (and possibly more). Also, while
the general utilization of interfaces does not seem very high,
there are some “hot spots” in the code where interfaces are in-
troduced and used on a massive scale, as for example in the
collections framework (as the results from popularity tests sug-
gest). Last but not least — and not surprisingly —, it appears
that some of the uses of interfaces are owed to JAVA’s lack of
multiple class inheritance.
Regarding classes, the metrics indicate that many root and/or
container classes are among the most popular, indicating a high
utilization of polymorphism. Metrics analyzing the imple-
ments relationship from the classes’ side suggest that most
classes implement only few interfaces. This is aggravated by the
fact that in most cases (64%) the interfaces of a class are also
overlapping.
On the other hand, even though only 20% of the total types
available in the JDK are interfaces, 31% of the classes are ex-
clusively accessed through interfaces. While this is encouraging,
many key classes still show a low value of Polymorphic Use.
To test the possibilities of bettering interface utilization, we
applied a sequence of existing refactorings on the Vector
class. As could be demonstrated, the relevant metrics values,
especially Polymorphic Use (which is an important indicator of
client/server decoupling) can be significantly increased in only
few steps. Other refactorings that foster the use of interfaces are
made available through the FUJI project (see below).
Software products are highly complex entities offering many
possibilities for quantitative analysis. The possibilities of ex-
pressing software in numbers are unlimited, and so is the num-
ber of available software metrics. To overcome the “yet another
metric” trap, the Goal Question Metric (GQM) paradigm has
been developed [11]. Using this approach, metrics are derived
by defining goals which should be achieved in the development
of a system, by then asking specific questions as to whether the
goals have been achieved, and only then by providing metrics
answering these questions. Elsewhere we have applied the GQM
approach to justify the definitions of the metrics presented here;
the interested reader is referred to [12] for a complete analysis.
The metric results presented in this paper were calculated using
a plug-in for INTELLIJ IDEA [13]. This plug-in is part of our
Framework for the Use of Java Interfaces (FUJI), which focuses
on providing tools and guidelines for a better use of interfaces in
large object-oriented projects. More information, including a
download of the plug-in, is available at
http://www.kbs.uni-hannover.de/fuji/

REFERENCES
[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design

Patterns – Elements of Reusable Software. Addison-
Wesley, 1995.

[2] Steimann, F., Siberski, W., Kühne, T. Towards the system-
atic use of interfaces in Java programming. Proceedings of
2nd Int. Conf. on the Principles and Practice of Program-
ming in Java (Kilkenny, 2003) 13–17.

[3] Mayer, P. Analyzing the Use of Interfaces in Large OO
Projects. Proceedings of OOPSLA 2003, Anaheim, USA.

[4] Henderson-Sellers, B. Object-Oriented Metrics: Measures
of Complexity, Prentice Hall, 1996.

[5] JavaTM 2 SDK, Standard Edition Documentation Version
1.4.1 http://java.sun.com/j2se/1.4.1/docs/index.html.

[6] Flanagan, D. Java in a Nutshell. O´Reilly & Associates,
Inc., 1997.

[7] Steimann, F., Mayer, P. Patterns of interface-based pro-
gramming. submitted to ICSE 2004.

[8] Steimann, F. The family pattern. Journal of Object-
Oriented Programming 13:10 (2001) 28–31.

[9] ORBIX 2000 Programmers Reference C++, IONA Tech-
nologies PLC, 2000.

[10] Patenaude, J.-F., Merlo, E., et al.. Extending Software
Quality Assessment Techniques to Java Systems. Seventh
International Workshop On Program Comprehension, Pitts-
burgh, Pennsylvania, 1999.

[11] Basili, V.R., Caldiera, G., et al. The Goal Question Metric
Approach. Encyclopedia of Software Engineering, John
Wiley & Sons, 1984.

[12] Mayer, P. Eine Metrik-Suite zur Analyse des Einsatzes von
Interfaces in Java. Bachelor’s thesis. Hannover, 2003.

[13] JetBrains IntelliJ IDEA. http://www.intellij.com/idea

APPENDIX
A The collections interfaces of the JDK
java.util.Collection, java.util.Comparator,
java.util.Enumeration, java.util.Iterator,
java.util.List, java.util.ListIterator,
java.util.Map, java.util.Map.Entry,
java.util.RandomAccess, java.util.Set,
java.util.SortedMap, java.util.SortedSet

B Correspondence of methods
java.util.Vector java.util.List
public Object elementAt(int
index)

public Object get(int
index)

public void setElementAt(
Object obj, int index)

public Object set(int
index, Object element)

public void
removeElementAt(int index)

public Object
remove(int index)

public void insertElementAt(
Object obj, int index)

public void add(int
index, Object element)

public void
addElement(Object obj)

public boolean
add(Object o)

public boolean
removeElement(Object obj)

public boolean
remove(Object o)

public void
removeAllElements()

public void clear()

1315

