
Author-created version - DOI 10.1007/s00607-016-0528-3
Computing journal - Published online 20 December 2016
The final publication is available at http://link.springer.com

A taxonomy of cross-language linking mechanisms in
open source frameworks

Philip Mayer

Received: 4 December 2015 / Accepted: 30 November 2016

Abstract Non-trivial software systems are written using multiple program-
ming languages. While the logic of a system is encoded using one or several
general-purpose languages, more specialized parts of the systems are realized
using domain-specific languages for aspects such as the user interface, configu-
ration mechanisms, querying of databases, or support for internationalization.
To bind all of these different parts together, the artifacts in individual lan-
guages are connected by using cross-language links which address artifacts
across language boundaries. Many different ways for specifying and using such
links have been conceived, and developers have to adhere to the concrete rules
mandated by the runtime, framework or library which later performs the link
resolution. In this paper, we present a taxonomy of the mechanisms of en-
coding cross-language linking in well-known open source frameworks from a
developers perspective, which shows the choices that have been made and the
options available in practice. We describe the process we followed, which is
based in part on a survey of language combinations on GitHub and a survey
of professional developers, list the dimensions and characteristics of our tax-
onomy in full, show the classifications of 22 frameworks and mechanisms, and
discuss the impact of the choices on application developers.

Keywords multi-language development · cross-language linking · taxonomy ·
polyglot programming · software maintenance · classification · DSLs · GPLs ·
open-source software · frameworks

Philip Mayer
Programming & Software Engineering Group
Ludwig-Maximilians-Universität München
Munich, Germany Tel.: +49-89-2180-9376
E-mail: mayer@pst.ifi.lmu.de

http://link.springer.com


2 Philip Mayer

1 Introduction

Non-trivial software systems are written using multiple programming lan-
guages, which includes general-purpose (GPLs) and domain-specific languages
(DSLs). The artifacts written in the individual languages of a software system
do not stand alone; rather, they are linked to one another as required by the
programmer to achieve the system goals. For example, two GPLs may be con-
nected in order to execute code which is closer to the operating system in a
language such as C if the main system is written in Java. Another common
use case are links between GPLs and DSLs, for example when using a HTML
templating language like ASP in which values from a GPL such as C# are to
be displayed. Finally, the DSLs themselves may also be linked, for example by
using style classes declared in CSS in HTML.

Cross-language links are created by using shared names across language
borders, which are specified by developers according to the rules of a run-
time, library or framework which later perform their resolution at runtime.
An example of a simple cross-language link between JavaScript and HTML
by means of the jQuery library jQuery Foundation (2016) is shown in Fig-
ure 1. The identifier used is this case is friend plan list which is declared
in HTML as the ID of the div element, and used in JavaScript by means of
the jQuery framework to retrieve said element and change its style.

Listing 1 Defining a HTML div element
1 <div id=" friend_plan_list" style=" display:none;" />

Listing 2 Accessing a HTML element using jQuery
1 $(’#friend_plan_list ’).css(’display ’, ’block ’);

Fig. 1 A basic cross-language link between JavaScript and HTML, using jQuery

Being aware of exactly how cross-language links work in a system is key
to program understanding, program maintenance and implementation of new
features. However, when we look at the field of cross-language linking in prac-
tice we can see that there is a large number of runtimes, frameworks, and
libraries which specify many different ways to express cross-language links in
code, making it harder for developers to understand a system at hand.

It is thus the goal of this work to create a systematic taxonomy of cross-
language linking mechanisms, that is, of the underlying choices taken by the in-
dividual frameworks and libraries to the specification of cross-language linking
between languages via shared names. We are specifically interested in classi-
fying existing cross-language linking implementations and thus base our anal-
ysis on well-known frameworks from the open-source world, and on how their
mechanisms are intended to be used by application developers.

We use a standard taxonomy creating technique which will be discussed
in section 2. The taxonomy itself is developed in section 3 and discussed in
section 4. We compare with related work in section 5, and conclude in section 6.



A taxonomy of cross-language linking mechanisms in open source frameworks 3

2 Methods

Creating a taxonomy requires a systematic process which ensures — by con-
struction — certain desirable properties of the taxonomy such as conciseness,
robustness, comprehensibility, and explanatory nature. In this work, we have
followed the process for taxonomy development created by Nickerson et al
(2013), who suggest a 7-step iterative approach to taxonomy development.
We describe these individual steps as we have followed them in section 3.

Hevner et al (2004, pp. 88–89). Finally, our method adds
the important concept of meta-characteristic that Bailey
does not identify explicitly or implicitly.

Figure 1 shows the method that we propose. Steps in
this figure are numbered for later reference. A step-by-
step explanation follows the figure.

The first step is to identify the meta-characteristic,
which, as discussed previously, is based on the purpose of
the taxonomy and in turn based on the users and their
expected use of the taxonomy. Next, the conditions that
end the process need to be determined. As discussed
previously, there are both objective and subjective ending
conditions. The researcher has a number of objective
conditions that can be applied (Table 2). The subjective
ones are the most difficult to identify and to apply.
Table 3 provides initial guidance but the experience of
the researcher will have an impact on the selection of
subjective conditions. In the case of multiple researchers
developing a taxonomy, various collaborative techni-
ques, including the Delphi method, could be used to
determine these conditions.

After these steps the researcher can begin with either an
empirical approach or a conceptual approach. The choice
of which approach to use depends on the availability
of data about objects under study and the knowledge
of the researcher about the domain of interest. If little
data are available but the researcher has significant
understanding of the domain, then starting with the
conceptual-to-empirical approach would be advised. On

the other hand, if the researcher has little understanding
of the domain but significant data about the objects is
available, then starting with the empirical-to-conceptual
approach is appropriate. If the researcher has both
significant knowledge of the domain and significant data
available about the objects, then the researcher will have
to use individual judgment to decide which approach
is best. In the fourth case, where the researcher has
little knowledge of the domain and little data available,
the researcher should investigate the domain of interest
more before attempting to develop a taxonomy for it.
In subsequent iteration the researcher may choose to use
a different approach in order to view the taxonomy from
a different perspective and possibly gain new insight
about the taxonomy.

In the empirical-to-conceptual approach, the research-
er identifies a subset of objects that he/she wishes
to classify. These objects are likely to be the ones with
which the researcher is most familiar or that are most
easily accessible, possibly through a review of the lite-
rature. The subset could be a random sample, a syste-
matic sample, a convenience sample, or some other type
of sample. Next, the researcher identifies common cha-
racteristics of these objects. The characteristics must
be logical consequences of the meta-characteristic.
Thus, the researcher starts with the meta-characteristic
and identifies characteristics of the objects that follow
from the meta-characteristic. The characteristics must,
however, discriminate among the objects; a characteristic

PPL_EJIS_EJIS201226

1. Determine meta-characteristic

No

2. Determine ending conditions

End

3. Approach?

Yes

Empirical-to-conceptual Conceptual-to-empirical 

4c. Conceptualize (new)
characteristics and dimensions of objects

5c. Examine objects for these
characteristics and dimensions

6c. Create (revise) taxonomy

4e. Identify (new)
subset of objects  

5e. Identify common characteristics
and group objects  

 6e. Group characteristics into
dimensions to create (revise)

taxonomy  

7. Ending conditions met?

Start

Figure 1 The taxonomy development method.

A method for taxonomy development Robert C. Nickerson et al10

European Journal of Information Systems

Fig. 2 Steps for Creating a Taxonomy, from Nickerson et al (2013)

2.1 Preliminaries

Before we start, we define several terms for use in the remainder of this work.

Mechanism vs. Framework Most cross-language links are established at run-
time through a framework or library which is most often written in the GPL
involved. Examples of frameworks are Gettext (de Mauro, 1999), Hibernate
Red Hat (2016), or Wicket The Apache Project (2016). Each framework im-
plements a certain type of linking mechanism, which is a more general concept



4 Philip Mayer

and described the principle of linking. Our taxonomy will represent a classifi-
cation of mechanisms; each framework we investigate implements an instance
of a mechanism. The objects we place in the taxonomy are thus frameworks,
but the leaves of the taxonomy represent mechanisms.

GPL and DSL We purposefully use very broad definitions of general-purpose
and domain-specific languages: We classify each language which can be used
and is regularly used to implement arbitrary application code as general-
purpose. This includes languages such as Java, C/C++, JavaScript, or PHP.
So-called internal DSLs, which actually use the syntax of the host language
and thus can use its complete tool support are seen as part of the GPL.

By contrast, domain-specific languages are those which have a very distinct
application area, either based on a technical or a business background, and
have their own syntax. In this group, we find languages such as HTML for UI
specification, Make or Maven for building the system, or querying languages
such as SQL. We also explicitly include languages which are not traditionally
seen as programming languages, that is configuration formats such as YAML,
JSON, and XML. These languages are very common in bigger open-source
projects, and almost always contain cross-language links. In the cases of these
generic languages we always talk about the concrete dialect used. For example,
the Google Android framework uses an XML-based format for UI specification.
It is this dialect — written later as XML/AndroidUI — that is of interest.

Cross-language links and identifiers A cross-language link is any place in the
system in which two languages are connected by identifiers which are used
across language borders; and these must not change if the link is to be in
working condition. We call such identifiers cross-language identifiers.

Note that we are are only interested in mechanisms here which establish
direct links between the artifacts in two languages, not places in the code
where such links merely exist by implication, which may happen, for example,
when referencing an environmental variable from two or more languages. While
consistency should be kept in those cases, there is no direct artifact link.

Declaration Side It is important to note that cross-language links themselves
— i.e. the connection — is almost never explicitly specified in cross-language
linking. Rather, what is specified are the end points of the links, that is, the
artifacts which are to be linked. In GPL/DSL links, this creates an interesting
question: Since one side of the link is a declaration and the other a reference,
which side is the declaration on? We regard the declaration side of the link as
the side on which the artifact may stand alone, that is exist without the link.
The other side is a reference, i.e. it refers to the stand-alone artifact in the
declaring language.

String vs. Element Specification Finally, we have found in previous research
that a specific concern arises if cross-language links are specified in strings
within GPLs, that is, concatenations of characters which can be arbitrarily



A taxonomy of cross-language linking mechanisms in open source frameworks 5

manipulated by the language — i.e. generated from scratch, mixed, dupli-
cated, passed around, and changed. This is a major difference to the use of
language elements, the latter being in general static and stored in a fixed
place. Thus, we will specifically address this distinction in the following. It is
only relevant on the GPL side: Very few DSLs include the typical GPL string-
manipulation capabilities, and we have not found an instance where they were
used to actually manipulate cross-language links.

2.2 Users, Meta-Characteristics, and Ending Conditions

As stated in the introduction, the goal of this work to create a systematic
taxonomy of cross-language linking mechanisms, that is, of ways of connecting
languages, both GPL and DSL, via shared names. Thus, the taxonomy should
be able to classify these ways, and by extension, also allow classification of
concrete implementations of such mechanisms, that is, language-connecting
implementations, which mostly come in the form of libraries or frameworks.

The first step of the taxonomy-building approach created by Nickerson
et al (2013) requires us to determine the meta-characteristic of the taxonomy,
which helps us determine the objects of interest. This in turn first necessitates
specifying the intended users and the purpose of the taxonomy.

In our development of the taxonomy, we use our experience report on the
creation of a cross-language linking tool Mayer and Schroeder (2014) and two
surveys which we previously performed in this area. These surveys are an
important input for choosing the users of the taxonomy.

The first survey is a mining study of GitHub projects in which we used
an automated process to determining language combinations in open source
projects Mayer and Bauer (2015). The study indicates that several languages
are used, in parallel, in open source software. The second is a survey of 139
professional software developers who were asked for the languages and cross-
language links that they see in their projects and for their opinions on multi-
language development and cross-language linking (Mayer et al (2015)). The
participants indicated that the existence cross-language linking is in many
cases preventing them from making necessary changes to the source code for
fear of side effects, and that they would appreciate more tool support. They
also indicate that the number of languages used per project is non-negligible,
a result which confirms our findings in the GitHub mining study and also (as
we shall see later) matches the results in this work.

We believe, based on the answers of application developers about their
problems with cross-language code and based on the large number of language
combinations and frameworks out there that a taxonomy of the mechanisms
will fill an existing knowledge gap. The main users of this taxonomy are thus
application developers, who will benefit from the taxonomy as follows:

First, the taxonomy creates an awareness of the different options in cross-
language linking in the first place, and the fact that many frameworks implic-
itly force these choices on application developers, even if they are not docu-



6 Philip Mayer

mented as such (for example, many frameworks do not even advertise the fact
that custom DSLs are introduced as part of the package).

Second, it enables developers to understand the characteristics of linking
mechanisms and in particular the pros and cons of each option which are dis-
cussed in section 4. For example, using string-based cross-language identifiers
require different handling by developers than element-based ones.

Third, the taxonomy helps developers to then select frameworks based on
this knowledge, identifying the framework which best fits their overall work-
flow. For example, a generative approach in cross-language linking may fit into
an existing pipeline of source code generation; it may also present a problem
if the build process is fully or partially manual up to now.

Two additional user groups can also be identified, which are framework
designers as well as researchers. These groups can use the taxonomy as a
base categorization scheme for further research, for example into usability
differences of certain choices or unexplored alternatives.

Having specified the users, we now come to the purpose of the taxonomy,
which is to distinguish the cross-language linking mechanisms which regard to
how they are used by developers, i.e., how they have to specify the links.

The meta-characteristic for the taxonomy development process is thus the
possible ways of specifying cross-language links for application developers.

The development of the taxonomy is iterative. In each step, we have the
choice of following an empirical-to-conceptual approach (meaning we look at
concrete examples and abstract from them), or an conceptual-to-empirical
approach (meaning we use our abstract knowledge of the domain to identify
new classifiers). Thus, we need an ending condition which tells us when to
stop. Nickerson et al (2013) list several ending conditions, both objective and
subjective. The method ends when all of them have been met. We discuss all
objective and subjective ending conditions at the end of the process; during
each iteration, we will restrict ourselves to checking a) that a reasonable subset
of objects, i.e. frameworks, have been investigated; and b) that the current
iteration has not produced any changes (e.g. additions) to the taxonomy.

3 Results

In this section, we trace the process we followed to creating our taxonomy
through five iterations.

3.1 Iteration 1

For our first iteration, we have to choose an approach (step 3) to follow in the
following three steps. In a previous publication Mayer and Schroeder (2014),
we have implemented an integrative solution to finding, tracking, and allowing
refactoring for cross-language links for three well-known frameworks from the
Java world — Hibernate, a database access layer Red Hat (2016), Spring, a



A taxonomy of cross-language linking mechanisms in open source frameworks 7

component configuration framework Johnson et al (2004), and Wicket, a UI
library The Apache Project (2016). We thus use an empirical-to-conceptual
approach for the first iteration, and select these three frameworks in step 4e.

All three frameworks make use of Java as the GPL; links are created be-
tween Java and the corresponding DSL. However, the frameworks differ in two
significant ways. Since these align, we create one dimension in our taxonomy
with two characteristics (Step 5e). In the first two frameworks — Spring and
Hibernate — the declaration side of the linked element is in the GPL. In both
cases, Java classes are referenced, by name, from XML/MVC (Spring) and
HQL (Hibernate). In both cases, the link end in the GPL is an actual part of
the language — a class name — not a string. An example is shown in Figure 3.

Listing 3 Bean declaration in Java
1 package net.xllsrc.transform;

2 public class FileGenerator { ... }

Listing 4 XML file defining a bean
1 <bean class ="net.xllsrc.transform.FileGenerator" />

Fig. 3 Java GPL element names used in the XML-based Spring DSL

The third framework is different: Wicket allows access to HTML elements
from Java. Thus, the declaration side is on the DSL side, and in fact access
in the GPL is provided through a string — the name of the HTML element.
This is similar to jQuery and thus the code shown in Figure 1.

Although it already seems that declaration side and the element/string
dichotomy might be different dimensions, they currently align, and so we only
create one dimension called declaring side with two characteristics in our newly
created taxonomy (step 6e). Table 1 shows the taxonomy so far, with the three
frameworks as representatives of the two mechanisms identified.

Table 1 Taxonomy after Step 1.

Framework Declaring Side

GPL DSL

Spring MVC X
Hibernate X
Wicket X

We now step out of the empirical-to-conceptual branch and go to step 7.
Since the taxonomy was changed and we have more frameworks to consider,
ending conditions are not met and we continue with another iteration.

3.2 Iteration 2

We are back to step 3. For our second iteration, we decided to use the empirical-
to-conceptual approach again. As input, we use another previous publication



8 Philip Mayer

Mayer and Bauer (2015) in which we analyzed languages and language com-
binations in a diverse set of 1150 open source projects. In particular, we have
identified five common use cases of GPL/DSL interaction in this work, which
are user interface, configuration, database access, shell scripting, and build
management. We have now investigated frameworks from each category.

We first look (again) at the user interface area, as we wondered whether
there might be cases in which the artifact declaration side and the artifact
type are not aligned, i.e. whether we could have a DSL-declared artifact which
is not accessed via string on the GPL side. In fact, such an example is present
in the Windows Presentation Foundation framework Microsoft (2016) which is
also a UI framework and which accesses XAML (an XML format) from .NET
languages such as C#. In this framework, the UI is declared in XAML, and
accessors are generated by the framework to be used in C# — in comparison
to the entirely manual approaches that we have seen so far.

We note here that first (step 5c), we really need to split artifact declaration
side and element/string based access into two new dimensions called Decla-
ration Side and GPL Artifact Type, and second, we need another dimension
which reflects the manual or generated nature of the mechanism, which we
call the Generation dimension.

For the configuration area, we selected the Gettext framework (de Mauro,
1999) which is used for internationalization in the C/C++ world (Figure 4).

Listing 5 C code accessing an i18n key
1 printf(_("My name is %s.\n"), my_name);

Listing 6 Definition of an i18n key with translation
1 #: src/name.c:36

2 msgid "My name is %s.\n"

3 msgstr "Je m’appelle %s.\n"

Fig. 4 Using Gettext for internationalization from C

This is an interesting mechanism as it uses string-based reference IDs in
the GPL which are generated into the DSL, the line-based Portable Object
(PO) format; thus, again, we have a generated-based approach. Secondly, a
new dimension comes into play here: Obviously, internationalization means
that the links created by the framework may change, i.e., they might be redi-
rected based on a configuration option (selection of a different language). The
framework explicitly allows for this feature, which we call Link Configurability.

This, in turn, led to an reexamination of our existing frameworks: Do they
allow configurability? In Gettext, the framework itself contains an explicit
mechanisms for switching link targets. Is this the case in the other examined
frameworks, that is Spring MVC, Hibernate, Wicket, or WPF? At first glance,
this doesn’t seem to be the case. However, in the case of Spring, it is possible
to use an entirely different XML/SpringMVC file which contains a different
configuration for the system, and inject that file via external means. Thus,



A taxonomy of cross-language linking mechanisms in open source frameworks 9

while the mechanism does not explicitly support configurability, it is possible
to configure it implicitly. We have chosen to set the implicit tag for all frame-
works in which complete files can be switched with relative ease to change link
targets; all others are marked manual as before. Thus, we add the dimension
of configurability with three characteristics.

In the database access area, we have already discussed Hibernate, but want
to extend our reach to other GPLs as well. We thus investigate the database
part (ActiveRecord) of Ruby on Rails Rappin (2008), a Ruby web framework.
Ruby on Rails uses a technique in which both Ruby and SQL are specified
separately and matched, by the framework, based on the names of the tables
and columns. However, it is similar to Hibernate within our taxonomy.

Finally, we come to the two areas which affect development work, which are
shell scripting and build management. For shell scripting, we look at the Scala
language Odersky et al (2004) and at the common use case of starting and
stopping Scala programs using a shell such as Bash or Batch (Burtch, 2004).
We find that Scala fully-qualified names are used from within the scripts,
that the artifact is declared in the GPL as an element, that specification is
manual and linking is non-configurable. An example is shown in Figure 5. The
technique falls within our existing taxonomy dimensions and characteristics.

Listing 7 Object declaration in Scala
1 package opennlp.textgrounder

2 object GeolocateDocumentTagApp { ... }

Listing 8 Using a qualified Scala name in a shell script
1 tag=‘run opennlp.textgrounder.GeolocateDocumentTagApp ’

2 run -nohup --full -id "tag" tg-geolocate "$@"

Fig. 5 Startup of a Scala app from a Shell script

For build management we look at Apache Maven, which is a well-known
build management and scripting tool and language based on XML. As in Scala,
fully-qualified class names are used within the XML/Maven format with the
same properties as above, and thus takes the same place in our taxonomy.

Thus, after going through the five common use cases of GPL/DSL inter-
actions from Mayer and Bauer (2015) in this iteration, we arrive in step 6c
at a new taxonomy which is shown in Table 2. We step out of the currently
chosen conceptual-to-empirical branch onto step 7 of the taxonomy building,
where we again have to decide whether the ending conditions are met. Since
we have added new elements to the taxonomy, they are not. We also have more
frameworks to classify, so we continue in step 3.

3.3 Iteration 3

In iteration 3, we used the results of our study of professional software devel-
opers (Mayer et al (2015)) who were asked for their experiences with multi-



10 Philip Mayer

language programming and cross-language links. One of the questions asked
was about language connections that developers have seen in their last projects.
Six combinations were listed by more than 30 people each. These are Java and
XML-based languages, Java and SQL, JavaScript and HTML, Java and the
.properties format, as well as HTML and CSS. We discuss now the last three,
which are new. This is again an empirical-to-conceptual iteration.

Table 2 Taxonomy after Step 2. El: Element; M: Manual; I: Implicit; E: Explicit

Framework Declaring Side GPL Artifact Generation Configurability

GPL DSL El String No Yes M I E

Spring MVC X X X X
Hibernate X X X X
Wicket UI X X X X
WPF X X X X
Gettext X X X X
ActiveRecord X X X X
Shell/Scala X X X X
Maven X X X X

Regarding JavaScript and HTML, jQuery is a well-known and used frame-
work for interacting with HTML (and CSS) from JavaScript. In particular, the
special function $() is used to access HTML elements, which are declared (by
ID) in HTML and can then be manipulated from JavaScript, making these ar-
tifacts DSL-declared and used via string from the GPL. We have already seen
a code example in Figure 1. There is no generation, and link configurability is
manual. We do not need to change the taxonomy for this framework.

The .properties format Oracle (2016) is a built-in Java mechanism for read-
ing configuration values from a file. The configuration values are declared
in key/value format in the DSL, and later accessed by name (DSL-declared,
string-based access). Specification is manual, and configurability is implicit
(by changing the file). No changes are needed to the taxonomy.

The last pair which was mentioned often by developers is HTML and CSS
Schafer (2005). This is a pair of DSLs, and thus the time has come make a
choice whether to keep the taxonomy as it currently is — namely, a taxonomy
not of cross-language interactions in general but of GPL/DSL interactions —
or whether to add a new dimension which shows the types of languages linked,
and which would then also need to include GPL/GPL links.

We have decided to add this new dimension, which we call Language
Types and which has (as of now) two characteristics, which are GPL/DSL
and DSL/DSL. We note that two of our existing dimensions — namely the
GPL artifact type and the declaration side — are specific to GPL/DSL links
and thus need to be moved; they are essentially subdimensions of GPL/DSL
links. For reasons of presentation however, we keep the existing table format,
and grey out the appropriate cells in case of non-GPL/DSL mechanisms.

Coming back to the case of HTML and CSS links: These are links which
are managed by the browser. Essentially, style classes are declared in CSS



A taxonomy of cross-language linking mechanisms in open source frameworks 11

Table 3 Taxonomy after Step 3. GPL El: GPL Element; Gen: Generation; Conf: Config-
urability; G/D: GPL/DSL; D/D: DSL/DSL; El: Element; Str: String; N: No; Y: Yes; M:
Manual; I: Implicit; E: Explicit

Framework Lang Types Declaring Side GPL Art. Gen. Conf.

G/D D/D GPL DSL El Str N Y M I E

Spring MVC X X X X X
Hibernate X X X X X
Wicket UI X X X X X
WPF X X X X X
Gettext X X X X X
ActiveRecord X X X X X
Shell/Scala X X X X X
Maven X X X X X
jQuery X X X X X
Java Prop. X X X X X
HTML Styles X X X

to be applied to HTML elements with the class tag, as shown in Figure 6.
No generation is involved; however, we have implicit configurability: A simple
exchange of the CSS file leads to a different display style.

Listing 9 Definition of a style class in CSS
1 .logoff { width: 100%; margin -top: 20px; }

Listing 10 Use of a CSS style class from HTML
1 <div class=" logoff" />

Fig. 6 A cross-language link between DSLs: CSS and HTML

We thus add one new dimension to the taxonomy (the language types)
with two characteristics (GPL/DSL and DSL/DSL), noting that we will have
to revisit this in the next iteration. The resulting taxonomy is shown in Table 3.

We note that we have both added a dimension and need to investigate
further frameworks and thus move to iteration 4.

3.4 Iteration 4

In iteration 3, we noted that we missed GPL/GPL interactions in our taxon-
omy. We thus want to add this area to the taxonomy. To make sure we do
not miss any important GPLs, we select at least one example from each of
the top 10 GPL languages that we found in Mayer and Bauer (2015), i.e. the
top 10 GPLs in our diverse set of open source projects from GitHub (except
PHP, which we will discuss in the next iteration), making this an empirical-
to-conceptual iteration.

In particular, we select our frameworks from three common areas of GPL/-
GPL interactions within this language set: Those on common language run-
times (such as the Java VM (Yellin and Lindholm, 1996) and the .NET CLR



12 Philip Mayer

(Box and Pattison, 2002)), those which directly link two languages with sepa-
rate runtimes, and generic frameworks which support arbitrary GPL interac-
tions through plug-ins or library add-ons.

We thus discuss six frameworks in total, two from each area. From the first
area, we look at interactions on the Java VM and on the Common Language
Runtime, as well as the (trivial) connections between C, C++, and Objective-
C. For the second area, we look at direct connections between languages on
the example of the Java Native Interface (JNI, (Gordon and Essential, 1998))
which connects Java and C/C++. For the third area, we discuss generic frame-
works with support for several GPL languages; the Thrift framework Slee et al
(2015), and the Swig framework SWIG Developers (2016) for connecting ar-
bitrary languages to C/C++ (where we look at Perl and Python).

The Java VM, the .NET CLR, and the C/C++/Objective-C infrastructure
are similar in their approaches to cross-language linking. Essentially, linking
is transparent: It is simply possible to use artifacts from another language by
importing them in the language-typical syntax. Thus, for example, a C# class
can be directly re-used in VB.NET, or a Scala class in Java. In Objective-C,
C and C++ it is even possible to directly mix syntax within files, and call
the declared elements by name. Thus, all three cases fall (obviously) into the
new characteristic GPL/GPL; we thus have to add this categorization to the
taxonomy. There is no generation involved, since both sides are implemented
manually, and there is no configurability.

Listing 11 Thrift declaration file
1 service Calculator extends shared.SharedService {

2 i32 add(1:i32 num1 , 2:i32 num2)

Listing 12 Java server implementation
1 public class Calculator {

2 public interface Iface extends SharedService.Iface {

3 public int add(int n1, int n2) throws TException;

Listing 13 Python client implementation
1 class Client(shared.SharedService.Client , IFace)

2 def add(self , num1 , num2):

3 self.send_add(num1 , num2)

4 return self.recv_add ()

Fig. 7 Declaration of GPL/GPL links in Thrift

In the second area, we look at the Java Native Interface which connects Java
and C. Here, we have a generation approach: Out of the native Java methods,
C (stub) code is generated. Again, however, there is no configurability.

Third, we look at generic frameworks which support multiple GPLs regard-
less of common runtime. The first is the well-known Swig framework which
supports, among other languages, Perl and Python and allows turning C/C++
declarations into scripting language interfaces. Swig requires an interface dec-



A taxonomy of cross-language linking mechanisms in open source frameworks 13

Table 4 Taxonomy after Step 4 (top) and 5 (including bottom part). L.Type: Language
Types; Side: Declaration Side; GPL A: GPL Artifact; Gen: Generation; Conf: Configurabil-
ity; GD: GPL/DSL; DD: DSL/DSL; GG: GPL/GPL; G: GPL; D: DSL; El: Element; Str:
String; N: No; P: Partial; F: Full; M: Manual; I: Implicit; E: Explicit

Framework L. Type Side GPL A. Gen. Conf.

GD DD GG G D El Str N P F M I E

Spring MVC X X X X X
Hibernate X X X X X
Wicket UI X X X X X
WPF X X X X X
Gettext X X X X X
ActiveRecord X X X X X
Shell/Scala X X X X X
Maven X X X X X
Android UI X X X X X
jQuery X X X X X
Java Prop. X X X X X
HTML Styles X X X
Java VM X X X
.NET CLR X X X
C/Obj/++ X X X
JNI X X X X
Swig X X X
Thrift X X X X

Android UI X X X X X
C++/.cfg X X X X X
Twig X X X X X
JEE (JSP) X X X X X
Maven Prop. X X X

laration, but generates the actual interface code, making it a generative ap-
proach. Again, there is no configurability, neither implicit nor explicit.

The final framework we look at is Thrift (Slee et al, 2015). Thrift is of
particular interest since it does not, as JNI or Swig, fix one or both languages
(Java and C in JNI; C/C++ in Swig) — instead, it generates code on both
sides of (relatively) arbitrary languages in a networked environment, i.e., it
generates a client and a server where the languages can be chosen from a non-
constrained list. This is something new: Up to now, all we had were generation
approaches which generated code on one side of the language gulf. Thrift,
however, uses a third artifact — an interface file declared in a custom DSL —
from which code in both GPLs is generated (example in Figure 7).

We thus change the generation dimension to three categorizations: No gen-
eration (manual), partial generation, and full generation; we place Thrift in
the latter category. As Thrift uses URLs to point to the other side which can
be easily changed, we have an implicit mechanism.

Thus, we add two new categorizations to our taxonomy: The GPL/GPL
category to the language types dimension, and the full generation category to
generation. The new taxonomy is shown in Table 4 (top part). We have added
two new categorizations to the taxonomy and are thus not done yet.



14 Philip Mayer

3.5 Iteration 5

In the fifth and, as it will turn out, final iteration, we used our own back-
ground in software engineering to determine whether there are any important
frameworks or language combinations we have missed. Thus, in this iteration
we use a conceptual-to-empirical approach.

The first framework we found comes from the mobile world, namely in the
Android framework (Burnette, 2009) which makes use of its own dialect of
XML for user interface description. In Android, screens or parts of screens are
written by hand in XML. Each element has an ID which is later referenced
from Java; in fact, a tool generates a Java file (the R file) which contains all
of these IDs as public field names. Thus, the link declaration side is on the
DSL side, and the GPL artifact type is an element. One interesting note here
is that Android allows different screen configurations, for example landscape
and portrait, with the same screens. In this case, two XML files can be placed
in different directories which are exchanged on demand; we thus have explicit
configurability. No new dimensions or characteristics need to be added.

Listing 14 Defining a value for a template in PHP
1 return $this ->render(’ElemRefEtu.html.twig ’, array(

2 ’modules ’ => $moduleElements , ...));

Listing 15 Using a value in a Twig template
1 {% if modules is empty %}

2 <div class=" alert alert -danger" ..." />

3 {% else %}

Fig. 8 Twig DSL code accessing declarations in PHP code

Secondly, we have so far only looked at configuration approaches in the Java
world; however, other GPLs also make use of configuration files, such as the
common .cfg files in the C++ world. However, as expected, the mechanisms
are entirely similar: We have a GPL/DSL link with the declaring side in the
DSL, the use of a string to access it, no generation, and implicit configurability.

One GPL language which was missing in our discussion so far, and is part of
the top 10 GPLs from Mayer and Bauer (2015), is PHP. Thus, we looked at the
Twig framework Potencier et al (2015) which allows the use of HTML-based
templates from PHP. Twig is an interesting framework in that elements to be
used in the template are declared as strings in PHP and then used in the DSL:
The declaration side is thus the GPL, but the declaration is in strings, which
is a new combination. The code is shown in Figure 8. Compare, for example,
the JEE framework and the use of JSPs from Java man Chung (2013): Here,
the the JSP template uses elements from the GPL, not strings. We add both
frameworks to the table; no new elements are required.

Finally, we have only one example yet of a DSL/DSL link, namely be-
tween HTML and CSS. Another example is the use of .property declarations
in Maven. Here, key/value pairs are declared as usual in the property file and



A taxonomy of cross-language linking mechanisms in open source frameworks 15

then imported and used by name in XML/Maven. No generation is involved,
and as the file can be easily replaced, we have implicit configurability.

We have not added any new dimensions or categories in this iteration, and
we have no new language combinations or frameworks to look at. We also
believe that we have met the other ending conditions (discussed below) and
thus move to the end of the steps in Figure 2. The final set of frameworks
identified in the taxonomy is shown in Table 4 (top and bottom).

3.6 Ending Conditions

Nickerson et al (2013), as part of their taxonomy process, list eight objective
and five subjective ending conditions. Some were already discussed above; i.e.
we have not added, merged, or split any new dimensions in the last iteration. At
least one object is classified under every characteristics of every dimension, and
every dimension, characteristic, and cell is unique (i.e. there is no duplication).

The final objective ending condition requires that all, or a representative
set of objects be examined. Obviously, the domain we investigated is huge and
unknown in its extent. We have therefore taken care to investigate, by design,
frameworks and mechanisms which are well-known and used in the open-source
world. This process has been shown above. In short, we have examined a set
of 22 frameworks and mechanisms from the open source world. We started out
with a set of frameworks which were thoroughly investigated to provide tool
support. We haven then extended this set with a conceptual sample, namely
the five top DSL use cases from our EASE study. Then, we have reached out
to the industrial community for their top language combinations. Finally, we
came back to the EASE study to look at the top 10 languages to be sure
we did not miss anything important. We thus believe that we have created a
taxonomy which mirrors the existing dimensions and characteristics for those
languages and language combinations in use in the open-source world.

The subjective ending conditions listed by Nickerson et al (2013) are con-
ciseness, robustness, comprehensiveness, extensibility, and explanatory nature.
We have created a taxonomy with five dimensions total, each with two to three
characteristics, which we believe to be meaningful without being unwieldy or
overwhelming and thus concise. It is robust and comprehensive in that it pro-
vides meaningful differentiation between the objects as we have seen in the
above discussions, and gives us the ability to talk about all identified charac-
teristics of the frameworks involved which are important for their users.

Furthermore, the individual dimensions and characteristics explain how the
mechanism is to be used by developers, i.e. which language combinations must
be used, where the declaring side is placed, how the referencing mechanism
works, whether the approach is generative and whether it can be configured.
Thus, the taxonomy does not describe the objects in complete detail but rather
provide useful explanations of the nature of the objects both existing and for
future classification. Finally, we believe that the taxonomy is open for extension
as we have a fairly flat hierarchy.



16 Philip Mayer

3.7 Final Taxonomy

The final taxonomy is shown in feature diagram notation Batory (2005) in fig-
ure 9. Each cross-language linking mechanism can be categorized according to
five different dimensions (in grey); for each, one of multiple mutually exclusive
characteristics must be chosen. The two lower features can only be selected if
the GPL/DSL characteristics was chosen in the Language Types dimension.

Declaration SideGPL Artifact Type

Generation

Element String

DSL/DSL

GPL/DSL

GPL/GPL

Language Types

Cross-Language Linking Mechanisms

Partial 
Generation

Full 
Generation

Manual

Link 
Configurability

Implicit

Explicit

None

GPL DSL

Fig. 9 The taxonomy in feature diagram notation (see Batory (2005))

A short textural summary can be given as follows:

– Language Types Which language types are involved in the link? Does the
link exist between general-purpose languages (GPL/GPL), domain-specific
languages (DSL/DSL), or a combination of the two (GPL/DSL)?

– GPL Artifact Type (only for GPL/GPL combinations) Is the artifact on
the GPL side a program element, or is it a string?

– Declaration Side (only for GPL/GPL combinations) A cross-language link
has a declaring and a referencing side. On which side is the declaration
placed? On the GPL side, or on the DSL side?

– Generation Are both sides of the link specified manually by a program-
mer? Is one side generated? Or are both sides generated from an external
specification?

– Link Configurability Is the linking mechanism based on hardcoded links?
Or can it be configured, that is, are multiple linking targets possible? Is
this indirection implicit or explicit?

We discuss the impact of choosing each characteristics on the user in the
following section.



A taxonomy of cross-language linking mechanisms in open source frameworks 17

4 Discussion

4.1 Discussion of the Taxonomy Dimensions

We will now discuss the individual dimensions of the taxonomy and their
impact on the intended users of the taxonomy, i.e. application developers.
Where appropriate, we will also discuss the impact on our secondary users,
that is framework developers and researchers.

4.1.1 Language Types

A rather general dimension of a cross-language linking mechanism is the types
of languages that are linked. In many cases, a decision about the types cannot
be made independently but is a consequence of other choices. For example,
the requirement to use several GPLs in a project may stem from the available
execution environments; consider the use of JavaScript in web application
clients where there isn’t a lot a choice.

Similarly, domain-specific languages are often introduced to a project by
a framework — that is, the choice is made to use a certain framework due to
organization issues or customer requirements, and it is the framework which
requires the use of a certain DSL (for example, the Maven XML dialect, or
the use of a certain HTML templating language). In general, the question of
which language is best suited for a particular purpose — in particular, when
using DSLs — is hard to answer and out of scope for this taxonomy.

As our taxonomy focuses on linking between language types, we however
want to add a word of caution: Not only maintenance and tool support for the
DSLs must be considered. Additionally, the interaction between any DSL and
the main GPL of a project are an additional maintenance and evolution issue
(and even more so than between GPLs). Thus, it is important for application
developers to be aware of the concrete languages introduced when choosing a
framework. Furthermore, for researchers, the linking mechanisms between the
languages should be included as a factor in future experiments on language
comprehensibility.

4.1.2 GPL Artifact Type

The selection of the GPL artifact type has key consequences for the use of a
cross-language linking mechanism. In particular, the use of strings opens up a
whole range of link manipulation options which are not available if program
elements are employed as link end points. As they can be placed in variables,
strings may be passed around in the program and thus, the same place in
the code may be linked differently depending on the data flow. While cross-
language artifact names can be placed in constants and are thus immutable,
there is also the option to assemble link identifiers at runtime, including the
use of user input to determine the linked elements.



18 Philip Mayer

Note that most frameworks do not encourage the use of string manipula-
tion; however, the fact that it is possible usually means that it will be used.
As an example, consider the JTrac project (see Mayer and Schroeder (2014)
for a detailed discussion) which uses Hibernate for database access. As part
of a search feature, the column names to be selected are based on user input.
While this approach is flexible and generic, it is also very difficult to follow
and maintain such code, not to mention the security issues involved.

Besides issues of understandability and maintainability, the use of string
identifier manipulation is also a problem for the creation of design-time tool
support for cross-language linking, a topic which has been investigated in
detail in Pfeiffer and Wasowski (2015). For such support, it must be possible
to determine statically where linking occurs, for which the linked identifiers on
both sides of the language gulf must be determined. In the presence of string
manipulations, full-blown data flow analysis may be required to determine the
actual value of a linked identifier. In Mayer and Schroeder (2014), the authors
describe the problems involved in finding such identifiers in Java code using
the Hibernate and Wicket frameworks.

However, the use of strings makes one thing clear to application developers,
namely that the identifier used are definitely not part of the current language
and thus must be treated carefully when renaming. In other words, their special
status and cross-language semantics may be more visible, which in turn, may
not be the case with program element names. For example, the fact that a
class or method name is referenced from a DSL is usually not apparent in the
code, and thus developers may not even be aware of its cross-language nature.

This is a problem since they may rename such identifiers without realizing
that this breaks a link. The fact that the implementations of automated rename
refactorings suggest that all references are taken care of (which is usually not
the case across language borders) is not helpful in this situation either.

4.1.3 Declaration Side

The declaring side of the artifact in a cross-language link determines how
application developers think about their systems, and have an impact on the
development workflow, including which parts of the system are designed, or
coded, first.

It is interesting to see that there is great variance in this dimension across
the frameworks we have examined, even if the frameworks share the same pur-
pose. For example, classic (non-web) UI frameworks tend to define all cross-
language link artifacts on the DSL side (consider the Android framework),
while web frameworks which use HTML may also use GPL-declared artifacts
for output (using templates, such as in the Twig framework). In system config-
uration, we also see both directions: Dependency injection containers such as
Spring reference GPL-declared classes, while other approaches retrieve DSL-
declared keys to determine a certain configuration value.

In some cases, the declaring side is a result of technical constraints, for
example the need to use HTML in web applications or the history of desktop



A taxonomy of cross-language linking mechanisms in open source frameworks 19

or mobile user interfaces which is widget-based. However, we believe it is also
interesting to ask whether a certain direction is ultimately easier to work
with, understand, and maintain by developers. The answer to this question
may obviously be different depending on the domain area; determining the
properties of this distinction is important future work for researchers.

If the current trend towards the creation of domain-specific languages con-
tinues — for example, by a continued interest in language workbenches (Völter
and Visser, 2010) and project-specific, small languages — being able to give
advice on benefits and problems of the declaring side of artifacts will be useful,
in particular to framework developers.

4.1.4 Generation

Similar to the artifact declaration side, the availability of generation has im-
plications on how application developers think about approaching the issue
of cross-language linking. In fact, the ability to generate code adds an addi-
tional abstraction layer which has the specific aim of disguising the intricacies
of cross-language resolution. For example, the .NET approach of UI access
allows the use of normal C# classes and fields instead of having to deal with
an XML UI specification.

Code generation tools have the major advantage that the generated code
makes a framework convenient to use. Mostly, GPL code will be generated
which eases access to DSL code by encapsulating the technicalities of DSL
parsing and allow the use of program elements instead of strings. Code gener-
ation also guarantees that the link itself is correct — as long as the regeneration
is always run after a change to the specification.

However, it is important to note that code generation — even in the full
generation case — only ever generates handles which are later used manu-
ally; for example, the C# field mentioned above will be referenced in other,
manually written C# classes which contain the actual logic of the program,
i.e. what to do with the values provided in the UI (or setting them). This is
important since it means that not only a change in the original name (without
regeneration) will break a link, but also that a regeneration after changing a
name is not enough, but all references to the name need to be changed as well,
which is often not supported by the generation tools.

Using a mechanism which includes code generation introduces additional
tools into the tool chain, which must be kept updated as well. In long-lived
projects, this may be a problem if changes must be made to generated code
and the original tool chain is no longer functioning.

It is important to note here that using code generation does not mean that
the links themselves are already established at design time. Code generation is
merely used as a development tool — ease of workflow — while the actual link
is still established at runtime by the framework. If code is changed partially
and without regeneration, the application will thus still fail at runtime.



20 Philip Mayer

4.1.5 Link Configurability

The final dimension of the taxonomy is whether and how configurability is
natively supported by a mechanism. Explicit link configurability extends cross-
language linking by another dimension — not only is there a cross-language
link, but it is also a point of divergence for system behavior.

In some cases, it is natural to expect and provide for such divergence.
Consider, for example, the Ruby on Rails database configuration approach,
which explicitly support multiple environments. Such explicit support means
that basic design decisions of a mechanism reflect the retargetability of links
and thus program understandability does not suffer.

This may not be the case in mechanisms in which implicit configurability
is possible. Link retargeting in this case may be performed on multiple levels:
By swapping out entire groups of links (as can e.g. be done by loading different
DSL files) or by adapting individual links. The latter is for example always
possible if the GPL artifact type is string-based.

We believe that implicit configurability may thus be a problem for program
understanding and maintenance and thus for application developers. In case
link redirection is an intended feature, it should be supported explicitly by
the mechanisms. Whether this is always possible is another question, as is the
actual severity of its impact on system maintenance.

In general, researchers as well as framework developers should investigate
whether the point where languages are crossed could not be made more ex-
plicit, thus creating real interfaces instead of the rather implicit links that are
currently in place.

4.2 Threats to Validity

The creation of a taxonomy is based on the analysis of a selected set of objects
(open-source frameworks, in our case), which are categorized by a process such
as the one we have followed in Section 2 based on a certain viewpoint, which in
our case was that of the eventual application developer. Naturally, this process
includes a subjective viewpoint and can raise concerns and objections if the
viewpoint of readers is different.

A first threat to validity may arise from the selection of the objects used
for creating the taxonomy, i.e., the selection of relevant frameworks (empirical
basis). As shown above, we have investigated a total number of 22 open source
framework from a variety of domains. We have based our selection on two em-
pirical sources: First, our previous investigation in language co-occurrence on
GitHub Mayer and Bauer (2015), from which we have taken the most impor-
tant DSL domains as well as the top 10 GPLs found. The GitHub project
selection was based on a diverse approach which ensured that the projects
selected represent a full spread across the spectrum based on attributes such
as size, main language, commit history etc. Mining GitHub is not without its
problems Kalliamvakou et al (2016); however, our study focused on very con-



A taxonomy of cross-language linking mechanisms in open source frameworks 21

crete data (programming language use) which can, as attested in Kalliamvakou
et al (2016), be viewed as solid information. We also believe that our diverse
selection approach and follow-up statistical analysis which takes the meta-data
into consideration yields valid and useful information which is, in particular,
adequate as the basis for the current paper.

The second source was our survey of 139 professional software developers
Mayer et al (2015). Various questions were posed to developers, of which two
are relevant here. The first is that developers were asked to list the languages
they see linked in practice; we have then made sure to include frameworks
which cover these languages as well. In each selection case, we have attempted
to use well-known and stable frameworks from the open source domain as in-
put, as they will be most relevant to the intended target audience (application
developers). The number of developers surveyed is 139, which is not a large
sample; however, we believe that the inclusion of this data as a further basis
for framework selection and thus using a mix of open source mining and de-
veloper feedback strengthens our claim that the frameworks used for building
the taxonomy represent a diverse and comprehensive selection.

Obviously, the framework list is not complete — there are more frameworks
out there. On the other hand, we have seen no indications of additional dimen-
sions or categories to be discussed in the last iteration, and we have chosen
this as the point to stop given the multitude of languages and frameworks out
there. Nevertheless, it might be possible that a different taxonomy emerges
with another sample. We look forward to other researchers attempting classi-
fications in this area. If their taxonomies do not agree with ours, we have to
investigate the differences and attempt to merge the schemata appropriately.

A second threat arises from the taxonomy itself (construct validity) — the
chosen dimensions and characterizations — i.e. whether those are appropriate
to the domain, whether all relevant dimensions and characteristics have been
found, and whether each of them represents an independent concept (relevance
in dimensions, mutual exclusiveness in the characteristics). As we have shown
in Section 2, we have followed a careful and incremental approach to building
the dimensions and characteristics of this taxonomy, always having the goal
(usefulness to developers) in mind. In the creation of a taxonomy, one must
strive for a compromise between too general concepts and too specific “cells”
of classification. We believe that the dimensions and characteristics we have
identified follow quite naturally from the selected objects, and based on our
own experiences as software developers and users of many of these frameworks
that they are relevant and useful to the users of such frameworks. However,
as has been discussed before, the real usefulness of a taxonomy can only be
determined by whether it is actually used by others.

A slightly different concern is the generalizability of the taxonomy (exter-
nal validity). Obviously this is a consequence of the two discussion above, i.e.
whether a valid set of inputs has been used and whether the dimensions and
characteristics chosen are appropriate. During the development of the tax-
onomy we have found many instances of frameworks which already fit into
the taxonomy, particularly (and obviously) in the last step. We also believe



22 Philip Mayer

that since we have included frameworks from very diverse domains (use cases,
such as UI, Build, Scripting, etc.) across many GPLs and DSLs, we have a
solid basis for future classifications. Nevertheless, the future classification of
frameworks may show that there are indeed other mechanisms in use, and the
taxonomy may need to be changed in response.

Finally, there is also the threat that we have misclassified the frameworks
during our creation of the taxonomy, i.e. they do not actually fall within the
selected dimensions or characterizations. To confront this problem, we have
investigated both the description of each framework through documentation
material (i.e., available help web sites, books, and tutorials) as well as their
actual use in open-source projects. Most of the snippets shown in the previ-
ous sections come from independent open source projects — i.e., projects not
associated with the framework developers. This cross-check serves to establish
more trust in the classifications we have made.

5 Related Work

There are several works in the literature already which deal with cross-language
linking; some are furthermore related in the sense that they deal with multiple
languages in general without a focus on linking. As we shall see, none of them
addresses the area we have outlined above.

First, there are two taxonomies in the general area of our work which
are relevant. The closest is Tomassetti et al (2013), who identified language
interactions by analyzing the commits of the open source project Hadoop, and
use six categories to classify each individual link. The major differences lies
in the fact that we want to classify complete mechanisms, while their focus
is on the individual interaction. In a similar direction, Pfeiffer and Wasowski
(2015) have investigated and classified features of design-time tool support for
cross-language linking. Thus, their taxonomy is focused on how to find and
relate links programmatically to aid visualization, navigation, refactoring, and
static checking. This taxonomy is complementary to the one we are proposing
here, which is focused on the linking mechanism specifications themselves.

Second, several authors discuss and/or quantify the extent of multi-language
programming in general, that is the occurrence of many languages without a
specific focus on their connections. Three recent data mining studies on open
source software (Mayer and Bauer, 2015)(Tomassetti and Torchiano, 2014)(De-
lorey et al, 2007) have investigated this area, focussing on co-occurence of
languages. In the first two studies, GitHub was used as the provider; in the
third, SourceForge. All studies find multi-language programming to be com-
mon in practice and including a mixture of GPLs and DSLs. Another recent
study Ray et al (2014) compared code quality in different GPL languages on
GitHub, also without addressing their connections specifically. A key finding
was that defect proneness does depend on certain factors such as the lan-
guage type (functional, procedural), typing (static vs. dynamic) and memory
management (managed, unmanaged). These studies all consistently reinforce



A taxonomy of cross-language linking mechanisms in open source frameworks 23

the need for further research into multi-language programming based on the
extent of its use in practise.

Third, several authors have suggested new and better ways of designing
language interactions. Favre et al (2012) and Lämmel and Varanovich (2014)
have investigated the question of the linguistic architecture of projects with a
specific focus on modeling, that is, design-time support. Such support may help
alleviate problems of understandability in such systems. Then, several works
have focussed on the technicalities of GPL/GPL interactions. Ekman et al
(2007) have investigated language interoperability on the Java VM, looking at
technical realizations of calls between Smalltalk, Java, and BETA, with the aim
of making them transparent to use. Gybels et al (2006) discuss inter-language
reflection, where again the aim is to be able to use reflection in a transparent
way across languages (in this case Agora/Java and SOUL/Smalltalk). Zdun
(2004) discusses split objects which are conceptual entities that reside in two
languages at once, thus building a bridge which can be used for interoperabil-
ity. Due to the overhead involved, the authors only recommend this approach
for maintenance and reengineering tasks. Lastly, Zdun (2006) discusses five
pattern of component and language integration, which are focused on compo-
nent interactions between GPL, or GPL-like languages. These patterns are to
be used in the technical implementation of frameworks which allow the use of
multiple languages for a certain purpose.

On a meta level, we have used the approach by Nickerson et al. Nickerson
et al (2013) as the basis for building our taxonomy. This approach is a recent
addition to the taxonomy development literature which is in itself a hybrid of
previous methods, including those imported from other disciplines (in partic-
ular, the social sciences). We believe that this integrative method represents
the state of the art. The existing taxonomies linked above have used either a
custom method defined in the publication itself (Tomassetti et al (2013)) or
have not explicitly stated a method (Pfeiffer and Wasowski (2015)). Another
option would have been the creation of a pattern language Alexander et al
(1977) instead of a taxonomy. However, we believe that such a language is
better suited for encoding best practices, while our taxonomy is an attempt
at describing the existing state of the art.

6 Conclusion

This work has investigated the area of cross-language linking mechanisms
across general-purpose and domain-specific languages.

Our contribution is a taxonomy of cross-language linking mechanisms with
five dimensions, which are language types, GPL artifact type, declaration side,
generation, and link configurability. Each dimension has 2-3 mutually exclusive
characteristics. Our taxonomy has been carefully constructed using a 7-step
approach based on an investigation of 22 well-known open-source frameworks,
and focuses on the application developers perspective, which shows the choices
that have been made and the options available to such developers in practice.



24 Philip Mayer

We have shown each characteristic of the taxonomy with examples from
open-source frameworks, and have furthermore discussed the impact of each
characteristic on application developers, which serves to raise awareness of the
choices available and hopefully leads to a better appreciation of the benefits
and problems. Where appropriate, we have pointed out the usefulness of the
taxonomy to framework developers and researchers, too.

We believe that this taxonomy presents novel insights and a new viewpoint
in the area of cross-language linking in practice by shedding light on how open-
source frameworks differ in their linking specifications and the impact this
has on application developers. We hope that this taxonomy will be used for
further classifications in the future, thus adding more data to either confirm
the taxonomies dimensions and characteristics, or extend them.

References

Alexander C, Ishikawa S, Silverstein M (1977) A Pattern Language: Towns, Buildings, Con-
struction. Center for Environmental Structure Berkeley, Calif: Center for Environmental
Structure series, OUP USA

Batory D (2005) Feature models, grammars, and propositional formulas. In: Proceedings
of the 9th International Conference on Software Product Lines, Springer-Verlag, Berlin,
Heidelberg, SPLC’05, pp 7–20, DOI 10.1007/11554844 3

Box D, Pattison T (2002) Essential .NET: The Common Language Runtime. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA

Burnette E (2009) Hello, Android: Introducing Google’s Mobile Development Platform, 2nd
edn. Pragmatic Bookshelf

Burtch K (2004) Linux Shell Scripting with Bash. Pearson Higher Education
man Chung K (2013) Java Server Pages Specification, Maintenance Release v2.3. URL

http://www.oracle.com/technetwork/java/javaee/jsp/index.html

Delorey DP, Knutson CD, Giraud-Carrier C (2007) Programming language trends in open
source development: An evaluation using data from all production phase sourceforge
projects. In: WoPDaSD 2007, Springer, pp 1–5

Ekman T, Mechlenborg P, Schultz UP (2007) Flexible language interoperability. Journal of
Object Technology 6(8):95–116, DOI 10.5381/jot.2007.6.8.a2

Favre J, Lämmel R, Varanovich A (2012) Modeling the linguistic architecture of software
products. In: France RB, Kazmeier J, Breu R, Atkinson C (eds) Model Driven Engineer-
ing Languages and Systems - 15th International Conference, MODELS 2012, Innsbruck,
Austria, September 30-October 5, 2012. Proceedings, Springer, Lecture Notes in Com-
puter Science, vol 7590, pp 151–167, DOI 10.1007/978-3-642-33666-9 11

jQuery Foundation T (2016) jQuery API Documentation. URL http://api.jquery.com/

Gordon R, Essential J (1998) Java native interface. Prentince Hall PTR
Gybels K, Wuyts R, Ducasse S, D’Hondt M (2006) Inter-language reflection: A conceptual

model and its implementation. Computer Languages, Systems & Structures 32(2-3):109–
124, DOI 10.1016/j.cl.2005.10.003

Johnson R, Hoeller J, Donald K, Sampaleanu C, Harrop R, Risberg T, Arendsen A, Davison
D, Kopylenko D, Pollack M, et al (2004) The spring framework, reference documentation.
URL http://static.springframework.org/spring/docs/2.5x/reference

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2016) An in-
depth study of the promises and perils of mining github. Empirical Software Engineering
21(5):2035–2071, DOI 10.1007/s10664-015-9393-5

Lämmel R, Varanovich A (2014) Interpretation of linguistic architecture. In: Cabot J, Rubin
J (eds) Modelling Foundations and Applications - 10th European Conference, ECMFA
2014, York, UK, July 21-25, 2014. Proceedings, Springer, Lecture Notes in Computer
Science, vol 8569, pp 67–82, DOI 10.1007/978-3-319-09195-2 5

http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://api.jquery.com/
http://static.springframework.org/spring/docs/2.5x/reference


A taxonomy of cross-language linking mechanisms in open source frameworks 25

de Mauro P (1999) Internationalizing messages in linux programs. Linux J 1999(59es)
Mayer P, Bauer A (2015) An empirical analysis of the utilization of multiple programming

languages in open source projects. In: Lv J, Zhang HJ, Babar MA (eds) Proceedings
of EASE 2015, Nanjing, China, April 27-29, 2015, ACM, pp 4:1–4:10, DOI doi:10.1145/
2745802.2745805

Mayer P, Schroeder A (2014) Automated multi-language artifact binding and rename refac-
toring between java and dsls used by java frameworks. In: Jones R (ed) ECOOP 2014,
Uppsala, Sweden, July 28 - August 1, 2014, Springer, Lecture Notes in Computer Science,
vol 8586, pp 437–462, DOI doi:10.1007/978-3-662-44202-9 18

Mayer P, Kirsch M, Le MA (2015) On multi-language software development, cross-language
links and accompanying tools: A survey of professional software developers. Tech. Rep.
TR-2015-09-00, Institute for Informatics, Ludwig-Maximilians-Universität München, Oet-
tingenstr 67, 80538 München, Germany, URL http://www.pst.ifi.lmu.de/~mayer/

papers/TR-2015-09-00.pdf

Microsoft (2016) Windows Presentation Foundation. URL https://msdn.microsoft.com/

en-us/library/ms754130%28v=vs.110%29.aspx

Nickerson RC, Varshney U, Muntermann J (2013) A method for taxonomy development and
its application in information systems. EJIS 22(3):336–359, DOI 10.1057/ejis.2012.26

Odersky M, Altherr P, Cremet V, Emir B, Micheloud S, Mihaylov N, Schinz M, Stenman
E, Zenger M (2004) The scala language specification

Oracle (2016) The Java Properties Format. URL https://docs.oracle.com/javase/

tutorial/essential/environment/properties.html

Pfeiffer R, Wasowski A (2015) The design space of multi-language development environ-
ments. Software and System Modeling 14(1):383–411, DOI 10.1007/s10270-013-0376-y

Potencier F, Hason M, Blanc AL, Schultze T (2015) The twig template engine for php. URL
http://twig.sensiolabs.org/

Rappin N (2008) Professional Ruby on Rails. Wrox Press Ltd., Birmingham, UK, UK
Ray B, Posnett D, Filkov V, Devanbu PT (2014) A large scale study of programming

languages and code quality in github. In: Cheung S, Orso A, Storey MD (eds) Proceedings
of the FSE-22, Hong Kong, China, November 16 - 22, 2014, ACM, pp 155–165, DOI
10.1145/2635868.2635922

Red Hat (2016) Hibernate Object-Relational Mapper. URL http://hibernate.org/orm/

Schafer S (2005) Web Standards Programmer’s Reference: HTML, CSS, JavaScript, Perl,
Python, and PHP. Wrox Press Ltd., Birmingham, UK, UK

Slee M, Reiss D, Agarwal A, Kwiatkowski M, Wang J, Piro C, Maurer B, Clark K, Luciani
J, Duxbury B, Fernandez E, Lipcon T, McGeachie A, Molinaro A, Meier R, Farrell J,
Geyer J, Yeksigian C, Abernethy R, Grochowski K (2015) The Apache Thrift Framework.
URL https://thrift.apache.org/

SWIG Developers (2016) Simplified Wrapper and Interface Generator. URL http://www.

swig.org/

The Apache Project (2016) Apache Wicket. URL http://wicket.apache.org/

Tomassetti F, Torchiano M (2014) An empirical assessment of polyglot-ism in github. In:
Shepperd MJ, Hall T, Myrtveit I (eds) 18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, London, England, United Kingdom, May
13-14, 2014, ACM, pp 17:1–17:4, DOI 10.1145/2601248.2601269

Tomassetti F, Torchiano M, Vetro A (2013) Classification of language interactions. In: Em-
pirical Software Engineering and Measurement, 2013 ACM / IEEE International Sympo-
sium on, pp 287–290

Völter M, Visser E (2010) Language extension and composition with language workbenches.
In: Proceedings of OOPSLA 2010, ACM, New York, NY, USA, OOPSLA ’10, pp 301–304

Yellin F, Lindholm T (1996) The java virtual machine specification. Addison-W esley
Zdun U (2004) Using split objects for maintenance and reengineering tasks. In: 8th Eu-

ropean Conference on Software Maintenance and Reengineering (CSMR 2004), 24-26
March 2004, Tampere, Finland, Proceedings, IEEE Computer Society, pp 105–114, DOI
10.1109/CSMR.2004.1281411

Zdun U (2006) Patterns of component and language integration. In: Manolescu D, Voelter
M, Noble J (eds) Pattern Languages of Program Design 5, Addison-Wesley Professional,
pp 357–397

http://www.pst.ifi.lmu.de/~mayer/papers/TR-2015-09-00.pdf
http://www.pst.ifi.lmu.de/~mayer/papers/TR-2015-09-00.pdf
https://msdn.microsoft.com/en-us/library/ms754130%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms754130%28v=vs.110%29.aspx
https://docs.oracle.com/javase/tutorial/essential/environment/properties.html
https://docs.oracle.com/javase/tutorial/essential/environment/properties.html
http://twig.sensiolabs.org/
http://hibernate.org/orm/
https://thrift.apache.org/
http://www.swig.org/
http://www.swig.org/
http://wicket.apache.org/

	Introduction
	Methods
	Results
	Discussion
	Related Work
	Conclusion

