1 Modelling the CoCoME with the
JAVA/A Component Model*

Alexander Knapp', Stephan Janisch', Rolf Hennicker', Allan Clark?,

Stephen Gilmore?, Florian Hacklinger®, Hubert Baumeister®, and Martin Wirsing®

! Institut fiir Informatik
Ludwig-Maximilians-Universitit Miinchen
{hacklinger, hennicker, janisch, knapp, wirsing}@ifi .1lmu.de
2 Laboratory for Foundations of Computer Science
University of Edinburgh
{a.d.clark, Stephen.Gilmore@ed.ac.uk}
3 Informatik og Matematisk Modellering
Danmarks Tekniske Universitet, Lyngby
hub@imm.dtu.dk

1.1 Introduction

The JAVA/A approach aims at semantically well-founded and coherent modelling and
programming concepts for components: based on sound theoretical foundations it en-
hances the widely used UML 2.0 component model by modular analysis and verifi-
cation techniques and a Java-based architectural programming language. Our JAVA/A
component model is inspired by ideas from “Real-Time Object Oriented Modeling”
(ROOM [1]): components are strongly encapsulated behaviours and any interaction of
components with their environment is regulated by ports. We took up the ROOM model
in its version integrated into the “Unified Modeling Language 2.0” (UML 2.0 [2]),
though in a simplified form which, however, keeps the main structuring mechanisms
and focuses on strong encapsulation as well as hierarchical composition. In [3], we de-
vised an algebraic semantic framework for this model; furthermore, we introduced an
“architectural programming” language, JAVA/A, which allows programmers to repre-
sent software architectures directly in the implementation language and thus helps to
prevent “architectural erosion” [4].

In contrast to interface-based component approaches (like COM, CORBA, Koala,
KobrA, SOFA; see [5] for an overview), the primary distinguishing feature of ROOM,
and hence of the JAVA/A component model, is the consistent use of ports as explicit
architectural modelling elements. Ports allow designers to segment the communication
interface of components and thus, in particular, the representation of different “faces”
to other components. Moreover, ports are equipped with behavioural protocols regulat-
ing message exchanges according to a particular viewpoint. Similar to JAVA/A, Arch-
Java [6] and Component] [7] are architectural programming languages which integrate

* This research has been partially supported by the EC 6th Framework project SENSORIA
“Software Engineering for Service-Oriented Overlay Computers” (IST 016004) and the
GLOWA-Danube project (01LW0303A) sponsored by the German Federal Ministry of Ed-
ucation and Research.

2 Knapp et al.

architectural concepts into Java. However, neither ArchJava nor Component] provide
means for port protocol or component behaviour specification (aside from source code).

Taking components to be strongly encapsulated behaviours communicating through
ports fosters modular verification, which is one of the aims of the JAVA/A approach.
Using our semantic foundations, we employ the model checking tools HUGO/RT and
LTSA to verify that components comply to their ports and that connected ports can
communicate successfully; by a compositionality theorem we can then lift these prop-
erties to hierarchical, composite components. For quantitative properties, we represent
the component semantics, though rather abstractly, in the PEPA process algebra [8]
and use continuous-time Markov chains for performance analysis with the IPC tool [9].
The second aim of the JAVA/A approach is the representation of software architecture
entities in a programming language. We use the code generation engine HUGO/RT to
translate the behaviour of components into Java code; the usage of the same tool for
verification and code generation helps in transferring design properties into the code.

The remainder of this chapter is structured as follows: After a short introduction to
the JAVA/A component model in Sect. 1.2 we present (selected parts of) our model of
the CoCoME trading system in Sect. 1.3 including the CashDeskLine and the Inventory.
In Sect. 1.4 we show how the formal algebraic basis of our model allows one to thor-
oughly analyse and verify important qualitative and quantitative properties. In partic-
ular, we show that the composite component CashDeskLine is correct and deadlock
free; as an example for performance analysis we study the use of express checkouts and
show that their advantage is surprisingly small. In Sect. 1.5 we briefly present the model
checking and architectural programming tools we used for the CoCoME and, finally, in
Sect. 1.6, we summarise our results and discuss further research issues. The complete
model of the CoCoME can be found at [10].

1.2 Component Model

In the JAVA/A component model, components are strongly encapsulated behaviours.
Only the exchange of messages with their environment according to provided and re-
quired operation interfaces can be observed. The component interfaces are bound to
ports which regulate the message exchange by port behaviour and ports can be linked by
connectors establishing a communication channel between their owning components.
Components can be hierarchical containing again components and connections.

In the following we briefly review JAVA/A’s component metamodel, see Fig. 1.
Although being based on corresponding concepts in the UML 2.0 and, in fact, easily
mappable, we at least strive to give a more independent definition which only relies on
well-known UML 2.0 concepts. In Fig. 1, UML concepts modified by the JAVA/A com-
ponent model are shown with a white background while unmodified UML concepts are
shown with grey background. We assume a working UML 2.0 knowledge [2] when ex-
plaining some of the specialities of our modelling notation and semantics. An algebraic
semantics framework for the JAVA/A component model can be found in [3].

Port. A port (see Fig. 1(a)) describes a view on a component (like particular function-
ality or communication), the operations offered and needed in the context of this view

Modelling the CoCoME with the JAVA/A Component Model 3

* \L operations

operations K
Interface *
0.1 Feature

properties
———=| Property
*
required
behavior
1

(a) Port

- properties ’—‘ Multiplicity
operations Simple Property Element
1 {subsets | Property 1

properties}

(b) Simple component

type
Component

Simple Composite | COMponents | component
Component Component + | Property
relayPorts

Port
* Property
Connector
Property

1 | type

ports
‘ Connector }—{ Port ‘
2

(c) Composite component

=

Property

connectors

*

Figure 1. JAVA/A component metamodel

and the mandatory sequencing of operation calls from the outside and from the inside.
The operations offered by a port are summarised in its provided interface; the opera-
tions needed in its required interface. The sequencing of operations being called from
and on a port is described in a port behaviour. Any auxiliary attributes and operations
in order to properly define the port behaviour are added as internal features.

As an example, consider the port C-CD (showing stereotype <port>) in Fig. 21
describing the coordinator’s view on a cash desk: Its provided and required interfaces
(attached to the port by using the ball and socket notation, respectively) declare only
asynchronous operations (i.e., on calling these operations the caller does not wait for the
callee to handle the call; for succinctness we use a stereotype <async> to express that
all operations of an interface are meant to be asynchronous); it also shows an internal
attribute for storing the identity of a cash desk. The behaviour of port C-CD is described
by the UML state machine in Fig. 21 (top right). Besides the UML state machine fea-
tures we use, on the one hand, a special completion trigger <tau> for modelling internal
choice (of the port’s owning component) which is enabled on state completion but, in
contrast to completion triggers (used for those transitions not showing a trigger), is not
prioritised over other events. On the other hand, we assume all state machines to behave

4 Knapp et al.

like UML 2.0’s protocol state machines in the sense that it is an error if an event occurs
in a state where it cannot be handled by one of the outgoing transitions.

Simple component. A simple component (see Fig. 1(b)) consists of port properties
(sometimes referred to as port declarations), internal attributes and operations, and a
behaviour linking and using these ingredients. Port properties (like all properties) are
equipped with a multiplicity, setting lower and upper bounds on how many port in-
stances of a particular type exist during runtime, permitting dynamic reconfiguration.

As an example, consider the simple component Coordinator (showing stereotype
<components) in Fig. 21. Besides an internal attribute and two internal operations it
declares a port property cds of type C-CD with unlimited multiplicity. The behaviour
of Coordinator is laid down in the state machine of Fig. 21 (bottom right). In fact, as
indicated by the stereotype <orthogonal> with tag { param = cd : cds }, this behaviour
description abbreviates a composite orthogonal state with as many orthogonal regions
(containing the given behaviour) as there are currently port instances in cds. Note also
that the internal operation updateSaleHistory is declared to be { sequential }, that is, all
calls to this operation are sequentialised.

Composite component. A composite component (see Fig. 1(c)) groups components,
simple as well as composite, by declaring component properties, and connectors be-
tween ports of contained components, by declaring connector properties. A connector
(which is always binary) describes the type of a connector property which links two port
properties such that the ports of the connector match the ports of the port properties.
Composite components do not show a behaviour of their own, their behaviour is deter-
mined by the interplay of the behaviours of their contained component instances and
the connections, i.e., connector instances. The ports offered by a composite component
are exclusively relay ports, i.e., the mirroring of ports from the contained components
which must not be declared to be connected by some connector property.

As an example, consider the composite component CashDeskLine (showing stereo-
type «<component>) in Fig. 6. It declares, via the component properties cashDesks and
coordinator, components CashDesk and Coordinator as sub-components where each in-
stance of CashDeskLine must show at least one instance of CashDesk. Port property co
of CashDesk is connected to port property cds of Coordinator meaning that at runtime
each port instance in co of a cash desk in cashDesks is connected to a port instance
in cds of coordinator. The port declarations i and b of CashDesk are relayed. However,
as in fact there may be several cash desks but there is to be only a single port in-
stance of CDA-Bank we would have to introduce an adapter component which declares
a port with multiplicity 1 to be relayed to the outside of CashDeskLine and a port with
multiplicity 1..* (matching the multiplicity of cashDesks) to be connected to the differ-
ent b instances of the different cashDesks. We abbreviate this by using the stereotype
<adapter> on connector declarations; in particular, as indicated by the tagged value
{kind = "seq” }, the adapter component sequentialises the different calls.

A sample runtime configuration of the composite component CashDeskLine is
given in Fig. 2. This configuration shows two instances of component CashDesk and a
single instance of component Coordinator. The CDA-C port instances of the cash desks
are connected to two different instances of the C-CD coordinator port. The CDA-Bank

Modelling the CoCoME with the JAVA/A Component Model 5

T ol
: CashDeskLine : CDA-Bank : CDA-I

L]
: A-CDA-Bank
L] L]
: Coordinator E
[]:c-cp :c-cp[|

Figure 2. Sample configuration of component CashDeskLine of Fig. 6

: CashDesk E : CashDesk

: CDA-I .

: CDA-Bank
- CDA-C

: CDA-Bank .

port instances of the cash desks are adapted to one relay port instance of the cash desk
line by the auxiliary adapter component A-CDA-Bank. Similarly, the CDA-I port instance
of the cash desk to the right (the other cash desk does not show a CDA-I port instance,
in accordance with the multiplicity of the port feature declaration i) is relayed.

1.3 Modelling the CoCoME

We started the design of the CoCoME from the use case descriptions and sequence
diagrams as given in [11]. After and during static structure modelling for simple (non-
composite) components we designed component and port behaviours hand in hand, in
case of the embedded system part accompanied by formal analysis. Finally, the sim-
ple components were applied for the design of the composite components, yielding a
first draft of the complete architecture. Within the next iterations, the alternative and
exceptional processes of the use case descriptions were taken into account to extend
and correct the initial design. In case of ambiguous or unclear requirements our design
followed the prototype implementation of the CoCoME. Since we fully agree with the
data model provided in [11], we omit specifications of data types, transfer objects for
data exchange and enumerations.

Our specifications comprise UML 2.0 class and composite structure diagrams to
specify the static structure of components, ports and interfaces; and UML 2.0 state ma-
chine diagrams to specify the behavioural view for ports and components. Familiarity
with terms, notions and functional requirements of the trading system [11] is assumed.

1.3.1 Architectural Deviations

Two of the essential features of our component model are, on the one hand, its strict
use of ports as first-class citizen to encapsulate (parts of) component behaviour and,
on the other hand, the distinction between component, port types respectively and their
instantiation. These features enabled us to model some aspects of the trading system in
a more convenient way. In the following we describe and justify structural deviations
from the original modelling along Fig. 3 showing, on the left-hand side, the component
hierarchy as described in [11] and, on the right-hand side, the corresponding modelling
within our approach. Behavioural deviations are discussed within dedicated paragraphs
of the particular component specifications described in sections 1.3.2 up to 1.3.4.

6 Knapp et al.

TradingSystem TradingSystem
CashDeskLine —————— Store::CashDeskLine

CashDesk CashDesk
CardReaderController CardReader
CashBoxController CashBox
CashDeskApplication CashDeskApplication
CashDeskGUI CashDeskGUI
LightDisplayController LightDisplay
PrinterController Printer
ScannerController Scanner

Coordinator Coordinator

EventBus Not modelled

Inventory ————Not explicitly; distinguished Enterprise/Store

Application Ditto due to distinct Enterprise/Store
Reporting Enterprise::Reporting
Store Store::Inventory

Data Data
Enterprise Data instantiated in Enterprice
Store Data instantiated in Store
Persistence integrated in ports of Data

GUI modelled as operator ports only
Reporting ports of Enterprise::Reporting
Store ports of Store::Inventory

DataBase DataBase

Figure 3. Component hierarchy of given (left) and modelled (right) architecture

As the most apparent structural difference in the embedded system part we did not
model the event bus, which is used in the CoCoME for the communication between the
subcomponents of the cash desk line on the one hand, and between those, the coordina-
tor and external components on the other hand. Instead of a functional component, our
approach provides explicit models of component communications and interactions us-
ing port and component behaviour specifications. For this reason, we consider the mod-
elling of an event bus to be an implementation decision whose manifestation should be
shown to be correct w.r.t. the behaviour specified in the design model.

The corresponding explicit modelling of the cash desk’s internal interaction struc-
ture directly constitutes the internal topology of our composite component CashDesk
(see Fig. 7) deviating from the cash desk’s inner structure as shown in [11, Fig. 1.6].
During the modelling of the subcomponent’s communication it soon became apparent
that, in our approach, the most appropriate topology for the CashDesk is the one spec-
ified in Fig. 7. The central functionality of handling sales almost always requires the
cash desk application to receive some signal or message respectively from an “input”
component such as the cash box and to send a corresponding notification to an “output”
component such as the cash desk GUI or the printer.

Furthermore we dropped the distinction of functional and controller components
within the cash desk component of the CoCoME. In our approach, controller compo-
nents such as the CashBoxController [11, e.g. Fig. 1.6, 1.6], linking the middleware and
the hardware devices, could be modelled with ports.

The main structural deviation from the CoCoME requirements of the informa-
tion system part concerns the layered approach to the modelling of the component
Inventory on the left-hand side of Fig. 3. The layers Application, Data and GUI
(represented by components) distinguish between an “enterprise part” and a “store
part”: within the component Data this distinction is manifested directly in the com-
ponents Enterprise and Store. Within the components Application and GUI the dis-

Modelling the CoCoME with the JAVA/A Component Model 7

tinction is between Reporting and Store. The former is, according to the deployment
of Inventory::Application::Reporting on the EnterpriseServer (see [11, Fig. 1.6]), not
only part of the enterprise context but also located at the store server (as part of
Inventory::Application). However, according to the use case descriptions and sequence
diagrams of [11], Reporting seems actually not to be used in the store context. In fact,
the functionality of this component is exclusively to generate reports for the enterprise
manager. Therefore we decided to model Store and Enterprise as functional components
on their own. An enterprise may contain a number of stores comprising an inventory and
a cash desk line. Reporting then is part of Enterprise but not of Store as this seems to
model the application domain of the required trading system more naturally. The Data
layer of the CoCoME is represented by the component Data with ports modelling the
enterprise and the store related data aspects. Notice that, as required in the CoCoME,
different instances of the Data component may share the same instance of a DataBase
component. This issue depends on a concrete system configuration only. Last, the GUI
layer is represented by the operator ports of the components Enterprise and Store.

Further structural deviations concern the original component Data::Persistence
which is in our approach not modelled explicitly but integrated with the port modelling
of the Data component instead. Also, the sequence diagram [11, Fig. 1.6] concerning
the product exchange among stores of the same enterprise (Use Case 8) shows a compo-
nent ProductDispatcher which is not mentioned in the structural view of the CoCoME.
We modelled this component as part of the enterprise component.

1.3.2 Trading System — Stores and Enterprises

This section describes the specifications for the root component TradingSystem and the
two fundamental components Store and Enterprise. All of these are composed from
further components which are described and specified in succeeding sections.

TradingSystem. The composite component TradingSystem in Fig. 4 provides flexi-
ble instantiation possibilities for different system configurations. As will be evident
from the specifications of the composite components Enterprise and Store described
hereafter, the former contains, among others, a number of stores and a Store in turn
contains further components such as the CashDeskLine. In fact a system configuration
following the hierarchy further down from one instance of Enterprise already suffices
to meet the original CoCoME requirements for a trading system with an enterprise and
a number of stores which belong to this enterprise. In this case the sets of simpleStores
and simpleStoresDB would be empty as these are used only in case of extended system
configurations with stores independent from any enterprise.

The bank component, required for card payment at the cash desks of a store, is
considered external to the trading system. Therefore the component TradingSystem de-
clares a relay port of type CDA-Bank to delegate incoming and outgoing communica-
tions between a bank and internal components, respectively. The port multiplicity with
alower bound of 1 indicates that for a proper instantiation of TradingSystem it is strictly
required to provide appropriate bank connections to the system.

Beyond, the component TradingSystem allows for several further system config-
urations. For example the system might be used with store components which are

8 Knapp et al.

[Component] TradingSystem] static structure]|
==Components== E
TradingSystem
enterprises : Enterprise [*] E
b CDA-Bank[1.4]
L] b coA-Bank [1.4]
independentStores : Store [*] E indepStoresDBs : DataBase [*] E
b CDA-Bark [1]
by : Datab 1 jobeClients : Client [*
pe: 1P [0.1] et !]

Figure 4. Static structure of the component TradingSystem

independent of any enterprise. On this account the TradingSystem contains a set of
stores (simpleStores), each of them connected to its own instance of a data base
(simpleStoresDB). Since the port feature pe:l-PD is required only for stores belonging
to an enterprise, the port must not be connected in this case.

Enterprise. An enterprise is modelled by the composite component Enterprise in
Fig. 5. It consists of a number of stores, of a component Reporting which provides
means to create several reports from the enterprise manager’s point of view, of a compo-
nent Data as an intermediate layer between Reporting and the concrete DataBase which
is also instantiated as part of an Enterprise and shared between Data and the stores, and
finally of a component ProductDispatcher to coordinate the product exchange among
the stores of the enterprise.

In order to provide connections for the bank ports b of the contained stores, the
component uses a relay port with multiplicity 1..* and instantiates one port for each
store. Hence, in contrast to the cash desks as part of the CashDeskLine (Fig. 6) the
different stores of an enterprise do not share the same bank connection.

Store. As depicted in Fig. 5 the component Store is a composition of a CashDeskLine,
an Inventory and an instance of the component Data. The inventory is connected to
the Data instance hiding the concrete data base from the application as required in the
CoCoME. In contrast to the enterprise context, the port e : Enterprise of Data is not
used, when instantiating the component as part of a Store. Also, the optional operator
ports of Inventory remain unconnected, as we did not model explicit GUI components.
These would be connected to the particular ports for testing purposes; in the deployed
system we may also connect actual operator interfaces.

The component Store uses mandatory relay ports to connect to a bank component
and a data base. Relaying the port I-PD of component Inventory is optional, in order to
take into account the requirements of the exceptional processes in Use Case 8 (enter-
prise server may be temporally not available). Optionality is also required for system
configurations with stores that are independent of any enterprise. In this case, there is
definitely no other store to exchange products with.

Modelling the CoCoME with the JAVA/A Component Model 9

Erterprise] static structure]|
b

==component== E
Enterprise
pd : ProductDispatcher [1] E stores : Store [*] E
*
= PD-5T[Y pe: PO [0.1] [0.4 :|
b CDA-Bank [1] T—t

r : Reporting [1] E d : Data [1] E dh : DataBase [1]

de : DataErterprise [1] e Erterprize [0..1] db : DataBase [1] E
dz : DataStore [1] = Store [0.1] jobcClients : Client [+
[,] m: Manager [0..1] db : DataBasze [1]

[Camponent] Stare] static structure]J

==component=»= E
Store

edl : CashDeskLine [1] E i Inventory [1] E d : Data [1] E

i CD&-[0.1] [5 -Salg [0.1] e Enterprize [0.1]

o MData [1] s store [0.1]

pe: -PD[0.1] dh : DataBasze [1]

b : CO&-Bank [1]

= |-StockManager [0..1] m: -hanager [0.1]

b CDA-Bank [1] pe: |-PD[0..1] db : DataBasze [1]
] ||]

Figure 5. Static structure of the components Enterprise and Store

1.3.3 Cash Desks — The Embedded System Part

Any store instantiated as part of the trading system comprises a cash desk line which in
turn represents a set of cash desks, monitored by a coordinator. Each cash desk consists
of several hardware devices managed by a cash desk PC. The specification of the cash
desk line models the embedded system part of the CoCoME with characteristic features
of reactive systems such as asynchronous message exchange or topologies with a dis-
tinguished controller component. The former is illustrated by the subsequent behaviour
specifications for ports and components, the latter is exemplified directly in the static
structure of the composite component CashDesk with the cash desk application playing
the role of the controlling component at the centre (Fig. 7). Due to this topology, most
of this section is devoted to the specification of the component CashDeskApplication.

CashDeskLine. A CashDeskLine (Fig. 6) consists of at least one cash desk connected
to a coordinator which decides on the express mode status of the cash desks. The com-
posite component CashDeskLine declares two relay ports delegating the communica-
tion between the cash desks, the inventory (i : CDA-I) and the bank (b : CDA-Bank).

10 Knapp et al.

CashDeskLine[[lgj static structure ||

==components:= gl
CashDeskLine

caghDesks : CaghDesk [1..%] E coordinator : Coordinator [1] E
co: COA-C[1] iz 1 C-CD Y]
it CDA0.1] T o AT T TCOATO AT
b CDA-Bank [1
i 1] <<adapters= find = "seq’} b CDA-Bank [1]

Figure 6. Static structure of the component CashDeskLine

The connector declarations in Fig. 6 are annotated with the stereotype adapter of
kind seq, meaning that the communication between the ports of the cash desks and the
relay ports i and b respectively, is implemented by a sequential adapter. In contrast, the
communication between the cash desks and the coordinator does not need to be adapted,
because each CashDesk instance is linked via its CDA-C port to its own instance of the
coordinator port C-CD. To share the bank connection among the desks of a cash desk
line follows the CoCoME requirement in [11, Fig. 1.6] which shows a multiplicity of 1
for the particular required Bank interface, port respectively.

CashDesk (CD). The CashDesk component specified in Fig. 7 is the most complex
composite of the trading system. The component consists of six components modelling
the hardware devices as described in the CoCoME and one component modelling the
cash desk application. A cash desk has three relay ports to allow for the communication
with a bank, inventory and coordinator component. The component and port multiplic-
ities of the static structure in Fig. 7 reflect the requirements of the CoCoME. Since an
exceptional process for Use Case 1 (Process Sale [11]) explicitly mentions that the in-
ventory might not be available, the relay port i may sometimes not be connected. The
optional ports of CashBox, Scanner and CardReader model the communication of an
operator with the particular hardware device. In case of a cash desk actually deployed,
these ports might be connected with some low-level interrupt handler.

CashDeskApplication (CDA). The cash desk application links all internal components
of a cash desk and communicates with components external to the cash desk such as a
bank, the inventory or the coordinator. In order to facilitate the particular communica-
tion, CashDeskApplication declares one port for each. Figure 8 (top) shows an overview
of the component with its private state as well as its ports and interfaces; the ports’ state
attributes and the interface details are given in the middle and lower region respectively.
As a naming convention, we have used component abbreviations such as CDA-CB for
the port types and the suffixes R (P) for interfaces required (provided) by a port.

Modelling the CoCoME with the JAVA/A Component Model 11

[Component] CashDesk] static structure]|

==COmponent=»= E
CashDesk

cb : CaghBox [1] E

S cdg : CashDeskGUI[1
ke CB-CDA [1] cda : CashDeskApplication [1] E 9 o E

cdla: COG-CDA [0.1]

p: Printer [1] gl
T | cda: pcoa]

Id : LightDisplay [1] g'

colar; LD-COA [0.1]

ca: CB-Caszhier [0..1]

ch: CDA-CE [1] ooy CDA-CDG [1]

< : Scanner [1] E

5 CDA-E[1] P CDA-P[1]
cola; S-CDA[1]
& S-Cashier [0..1]

cr: COA-CR[1] ldh: COA-LD[1]

: CardReader [1
eresan aer[]g' b:CDA-B’mI‘(H] i:CD.

=

-I[0.1] co: CDA-C[1]
1

cda - CR-CDA [1]
& CR-Cashier [0..1]
cu: CR-Customer [0..1]

B

b : CDA-Bank [1] i CDAH[0.1] co: CDA-C[1]
Lt

Figure 7. Static structure of the component CashDesk

In the following we briefly describe representative port behaviours of the CDA.
Thereafter, we discuss the specification of the component behaviour which interrelates
the constituent port behaviours within a single state machine.

CDA Port Behaviour. The state machine CDA-CB in Fig. 9 specifies the communica-
tion between the cash desk application and the cash box (CB). In general, the state
machine for a port receives events and signals named in the provided interface of that
port and sends out signals and events named in the required interface of that port. After
initially having received the signal saleStarted, defined in the port’s provided interface
CashBoxP in Fig. 8, the port may receive arbitrary many manually entered product
bar codes before moving to the next state due to the reception of saleFinished; manu-
ally entered product bar codes are part of an exceptional process in Use Case 1 of the
CoCoME. The next step within the sale process is the selection of card or cash pay-
ment as the payment procedure. If payment mode Cash was selected, the port waits for
messages concerning the cash amount received from the customer. It sends back infor-
mation concerning the change amount calculated (by sending changeAmountCalculated
defined in CDA-CB’s required interface CashBoxR in Fig. 8), assumes that the cash box
is subsequently opened and finally waits for the cash box to be closed again. If payment
mode CreditCard was chosen, the port changes to a state where the chosen mode may
be cancelled by switching to cash payment and, additionally, a T-transition may be trig-
gered internally, whereupon the cash box should be prepared to receive a saleSuccess
as a signal for the successful clearing of the sale process via card payment. In both cases
the port waits afterwards for the next saleStarted and until then allows to disable the
express mode the cash desk may have been switched into in the meantime.

In contrast to the “input” port behaviours of Fig. 9, Fig. 10 shows the “output” port
behaviours of the CDA. The behaviour of CDA-CDG, intended to connect to the cash

12 Knapp et al.

[Component] CashDeskapplication] static structure]‘

~harcode : long

~galeChi | SaleTo

~productinto ; ProduchithStockiemTo

~amountEntered | double
~firal - boolean

~productiame ; String
~price ; double

~tatal | double
~changeAmaourt : doubile

J\L-\i__ ==COmponent=»= E
CashBouR {1 cb: cDA-CE[1] CashDeskapplication (_
} GuiR.
CashBoxP -expresshode © boolean = false
-temCounter : int =0 cog : CDA-CDG [1]
-zaleHistory © SaleTO [*[{ordered}
—— | s:CDAS 1] P CDAPI]
ScannerP PrinterR
 Mer-coacrp) LCDAJIA] biCDABank[] co:cbacp) W CDALDIN
I I =] \
CardReaderP I)_I }L_J '
-~ ~ i b LightDisplayR
CardReaderR InventoryR BankR Cuurdin}aturR
CoordinatorP
==port=s ==port== ==port=s ==port== ==part==
CDA-S CDA-CR CDA-C CDA-Bank CDA-CDG
~cashDeskld | String ~transactionid : String ~productilame : String
<=port== ~products | ProductiiithStockitemTo [4] ~gardinto ; String ~price : double
CDA-CB ~payMode : PaymentMode ~pin : int ~total : double
~clehit : Debit ~amounit : double
~changeAmourt : double s ~final - boolsan
-appendl head : doukle, tail ; double) doukle CDA- ==ports>
CDA-P

==asynCEs

@]

ScannerP

<<AsYNcEE
CoordinatorR

O

productBarcodeScanned, barcode ; int)

saleRegistered(cashDeskld : String, p: ProductithStockitemTO [*], mode © Paymentiiode)

SLFSYNERE
CashBoxP

BankR

O O

==BEYNCES

CoordinatorP debitCard(transactionld : String 1 - Debit

cashBoxClosed()

paymenthiode mode ; Paymenthode)
expresshodeDisablzd()

cashAmourtErtered(amount : double, final : hoolean)

validateCard(cardinfo : String, pin : int) : String

expressModeEnabled] cashDeskld : String)

InventoryR

o

saleFinished) getProductvithStockitem(barcode © long) : ProductithStockbemTo
productBarcodeEntered] barcode : long) =2asyNc=accountSalel saleChj: SaleTo)
saleStarted()
==RSYNCEE O =LASYNCH> O =<LASYNCSS O
=SESYncrE O CardReaderP Car R Li i
CashBoxR
ashbiox creditCardScanned] cardinfo : String 1| |expressModeEnabled() expressModeEnabled()
changesmountCalculated! amount © double) pinEntered(pin :int) expresshodeDizabled) | |expresshodeDisabled()
saleSuccess() activater)
==asyncEs O ==asyncs= O
CDGuiR PrinterR
invvalidCreditCard() saleFinished()
expresshodeEnabled]) saleStarted)
runningTotalChanged(productiame @ String, price : doubls, total : double) cashBoxClosed()
saleStarted() cazhAmountEntered] amount : double, final : hoolean)
saleSuccess() running TotalChanged! productMame : String, price © double, total doubls)
cashAmourtErtered(amourt : doukle, fingl : boolean) changeAmountCalculsted] smount : doukle)
irvalicltem) saleSuccess)
expresshiodelisabled()

Figure 8. Static structure of the CDA component

desk’s GUI is very similar to the specification of CDA-P, connecting to the printer. Both
ports signal the status of the sale process such as saleStarted or saleFinished and both
show mostly internal choice transitions. The main difference is that only the GUI port
signals problems with the credit card (invalidCreditCard). Also, besides the light display
(CDA-LD in Fig. 10), only the GUI is notified of mode switches from or to express mode.

Modelling the CoCoME with the JAVA/A Component Model 13

(Coa-cB

expresshiodeDisabled) saleStarted() productBarcodeEntered, (CDa-s[pnrt behaviour |
L —

barcode : long)

productBarcodeScanned]
saleFinished() H harcode it)

paymerthode] mode :

zaleStarted()

cashBoxClosed() =<tau==|

Paymenthiads) port hehaviour

PsymentMode) [mode=Cash)]

. ﬁ cashamourtEntered(amount ©

double, final : hoolean) [final]

paymentMode] mode l [mode=Cash] i ! expresshodeEnahled

cazh&mountErtered! amount :
chouble, final : boolean) [not final]

p
k!/‘ I changeAmourtCalculatedichangeAmaount)

productBarcodeErterad
([barcode : long)

paymeridacls] mode : ==taEu==
Paymeritods] credtCardScanried
[mode=Jash] cardinfo : String

saleFinished()

[EECTE
paymentoder rode <=talEs
Paymenthode EX eDisabled()

actaus=r expresshodelisabled(y r:%
. J saleStarted()

-
=
~ ! expressModelizablec()
H’ ! expresshodeEnabled [

(CDa-Pl [port behaviour |

FrunningTotalChanged

el (producthlame, price, total)

{ runningTotalChanged(producttlame, price, total)

[not final] £ J’\
cashiAmountErtered setauss Sateu []

alES 1 cashBoxClosed]

! saleStarted)

==ty]

1 saleFjnished

! saleSuccess() ta

=ctausx

(— .
clgg;g:nountEmerad L:] L]

amourt, final)

finvalidCreditCard() ¥ changesmourtCaloulated { cashAmountErtered

FzaleS

saleSupeess() changeAmount) (amourtErtered, final
— [final]

s =stau== 1 0
ot firal]
H tfina] nct final [Nt firsl]
FexpresstodeDispbled()
fexpressModeErabled() [w
l entry f cashAmountEnteredlamountEnterad, final) J
\ 5

Figure 10. Behaviour of the CDA ports CDG, LD and P

The communication with components external to the cash desk is prescribed by the
port behaviour specifications for the communiciation with the inventory (CDA-I), the
bank (CDA-Bank) and the cash desk’s coordinator (CDA-C) shown in Fig. 11. The com-
munication with the inventory and the bank demonstrates our modelling of synchronous

14 Knapp et al.

(co piort behaviaur)
Bt Lkt

ﬁ’péducﬂnfi =
gedl hSfockitemibarcode)

(Coa-C[[port betaviour | A
| e

rCDA-EIank[port behaviour]|

[transactionld = null]
! saleRegistered
|’ /transactionld = validateCard(__ | (cashDeskd,

! - 2 products,
cardinfa, pin} payhiode) | exprizssMode
[else] Enablect
JaccolrtSale salsCl
accoptseie(aleOb) bt = depilCarcy ransactionkd) el
| sctaes < taus
\ AN PN

Figure 11. Behaviour of the CDA ports |, C and Bank

communication, which usually assigns returned values to port attributes. In general, the
particular values are either used to evaluate succeeding guards in the port behaviour
specification or might be read by an implementation of the component which owns the
respective port. The port behaviours shown in Fig. 11 illustrate the former case. Finally,
the behaviour of CDA-C, specifically the application of 7, should be noticed. It is used
in Sect. 1.4.1, in combination with the behaviour specifications of the coordinator (see
Fig. 21), to illustrate our approach to the analysis of functional requirements.

CDA Component Behaviour. Figure 12 specifies the component behaviour of the cash
desk application. Using the port declarations of the static structure in Fig. 8 it shows the
dependencies and inter-linkages between the different ports of the CDA. For example
messages sent via ports p or cdg such as p.saleStarted and cdg.saleStarted are sequen-
tially arranged after the message cb.saleStarted was received at port cb. Furthermore
port attributes as well as component attributes such as itemCounter are assigned as an
effect, and afterwards used, for instance, as actual parameters in messages sent.

r P
[Component] CashDeskapplication] cnmponant behaviour l‘

ch salsStarted’) (‘ | . Gcanltems ‘
. wf entry £ entry §
y p.zaleStarted); coproducts = nesw List=ProductvithStockiemTo=();

oy aleStarted() temCounter = 0;
oy total = 0.0 oo

: SwitchMode

‘

! oo ssleRegistereficashDeskid,
co.products, co payhode)

l [: CashPayment ch paymenihade(made: : CardPayment
entry f cog.amount = 0.0; cdg final = false; Faymenthode) [mode = Cash| ==

choamourtEntered = 0.0;

ch.changefmourt = 0.0; o=

ch.saleStarted()

ch paymerthode
[mode: PaymertMocz) /
[made=Cash] [mode=CreditCard]

J eopayMods = Cash f co.payhiode = CreditCard

|’ : AccountSale

ertry § saleHistory adoinew SaleTO(C products))
o

! cog.saleSuccess()

Figure 12. Component behaviour of CashDeskApplication (for details see Fig. 13)

Modelling the CoCoME with the JAVA/A Component Model

15

p = .
CashPaymert] (55| submachine of CDA ll

(Scanitems] [B submachine of CDA |

. productBarcodeScanned

(harcoceint) [elze] long) [else]

ch productBarcodeEnter ed(bar code:

ch procuctBarcodeEntersdibar code: long)
[not expresshade or (expresshode and

temCouniter < 8]

s

ch.sslefFin|shed() ¢
p.zaleFinighecd()

= productBarcodeScanned
(harcoce:irt) [not expresshode
of (expresshiode and
itemCourter « 8] [i

[i=null] £ cdy invalidiem?)

| S

ch.cashAmourtEntered{amount:
chouble, final boolean)

[niot ceodgy final]

Entry §

chchangeamourt = append(ch changedmount, amourd);
oy amourt = amount; cdg.final = final;
p.cashAmourtErtered(cog amount, cdg.final);

cdg cashAmountEnteredicdg amourt, cdg final)

(ol final]
chicashBoxClozed()
p.cashBoxClosed(); I p changeAmountCalculated

(ch.changeAmourt); ch

£ changedmountCalculatedich. [
]&h_ﬂ_rﬂ—‘c GO]

T

]

®

o runningTotalChanged
(ceg producthiame, g
price, cdg total); ooy
runninaTotalChance
[[col productilame, B,

invalicttem()

Fiprocuctinto =i.
getProductiithStockitem(i.barcode)

[iproductinfo = null] f cdg.

(CardPaymert] = submachine of CDA& |

entry fibarcodes = barcode;

price, colg total)

ertry

cdg procucthame = resutt.name;

cdg productPrice = result purchasePrice;
cdg total = cog total + result purchasePrice;

& elze]
exit /

co products add(i productinfio);
temCourter = temCounter + 1;

.

cr.creditCardscanned

[not expresshiode] £
ot activate) [(cardinforString) £ bo.oardinfo
= cardinfa

C F—C

i pirind)

r pinEnter
Jh.pin = pin|

|'_

oo invalidCreditCard()

[hiransactionid ! biransactionld =
=null] bvalicdateCardib
cardinfo, bpin)

[elze] / b.dghit = bdebitCard(
transactionlp)

[b.debit = Debit OK] /-
b saleSucoesa(, o
saleSuccess();

I’ 1

[elze]

(s =
SwitchMode] 55 submachine of CDA, ll

co expresshiodeEnabled cashDeskid: String)

o

(BccourtSale] B submachine of CDA |

SaleTO g = new SaleTOlsaleHistory last()),
saleHistory removelast();

. - Elze]
[i == null and saleHistary- lipcoountSale(s)
=notEmpty ()]
entry !

[not expresshince]

entry
expresshioce = false;
cog expressiodeDisabled]),
Id expresshodeDisabled();

chexpresshodeDizabled()

[expresshode]

cr.expresshiodelisabled)

[expressiode] Nt expresshiode]

. ——
entry [

expresshiode = trus;

coy expresshodeEnabled(];
Id_expresshodeEnabled();
cr expresshindeEnabled()

ch expresshodeDisabled)

chexpresshodeDisabled()

—{__ }—®

Figure 13. Submachine specifications for the CDA component (see also Fig. 12)

Since the specification of the cash desk application’s behaviour is rather involved
we used submachines, shown in Fig. 13, to factor out the major steps of the en-
tire sale process: after saleStarted was received at the cash box port cb, the subma-
chine Scanltems repeatedly receives product bar codes and notifies the printer and
the GUI about product details such as name and price. Thereafter the payment mode
must be chosen, resulting in a transition to the corresponding submachine. Note that
the execution of CardPayment might be cancelled at any state by the reception of
cb.paymentMode(Cash) modelling the cashier’s ability to switch from card to cash pay-
ment, e.g., in case of problems with the credit card. Then, before the sale process is com-
pleted, the component tries to account the sale at the inventory within AccountSale. If it
is not available (which is an explicit requirement of the CoCoME), the sale information

16 Knapp et al.

is stored locally and delivered during the next sale processes. Finally, in SwitchMode
the component waits for a signal to switch into express mode, to disable a previous
express mode, or to start a new sale.

Deviation. Due to the design decision to model the cash desk component with the CDA
at the center, there are some minor deviations from behaviour of the CDA as given in
the CoCoME. First, within the main sale process [11, Fig. 1.6] the signals saleStarted
and saleFinished are sent by the cash box to the CDA only. The application notifies the
printer and the GUI subsequently, instead of a direct communication between the cash-
box and the other hardware devices. Similar, the signals cashBoxClosed [11, Fig. 1.6]
and expressModeDisabled [11, Fig. 1.6] are distributed by the cash desk application
instead of communicating along a direct linkage between the hardware components.
Furthermore, the signal activate was introduced with the port behaviour of CDA-CR to
cope with a deadlock possibility in the communication with the card reader and, finally
the signal invalidltem was added to the communication with the GUI, specified by the
port behaviour of CDA-CDG in order to signal problems during product scan or product
information retrieval from the inventory. The latter is due to an exceptional process of
Use Case 1 in the CoCoME.

CashBox (CB). The component CashBox, depicted in Fig. 14, declares two ports, an
optional operator port of type CB-Cashier and a mandatory port of type CB-CDA. The
former is a model of the possible cashier inputs, the latter specifies the behaviour w.r.t.
the cash desk application. The message productBarcodeEntered at the CB-Cashier port
is not mentioned in the sequence diagrams but in the standard process and also in an
exceptional process of Use Case 1 of the CoCoME. It allows the cashier to manually
enter a product bar code in case there are problems with the bar code scanner.Internal 7-
transitions are used in both behaviour specifications. In CB-Cashier, the transition spec-
ifies an internal decision which, once triggered, indicates that the signal cashPayment
is not processed any more, but the port expects the client to send disableExpressMode
or startNewSale instead. In the behaviour of CB-CDA the 7-transition is used to spec-
ify a precedence of successful card payment over the internal decision to switch from
card into cash payment mode. In this case, the 7-transition also shows the assignment
of the port attribute mode which is used as an actual parameter in the subsequent send
transition to the composite state.

The component behaviour of CashBox, shown in Fig. 15, essentially maps the
cashier’s input at the ca port directly to a corresponding notification at the cda port.

Deviation. We introduced the signal saleSuccess at the CB-CDA port in order to en-
able the cash box being notified of a successful completion of a card payment. Besides,
the sequence diagrams of the CoCoME show a signal openCashBox [11, Fig. 1.6] in
reaction to the reception of a message changeAmountCalculated, which does not occur
explicitely in our model, because we merged the given functional component CashBox
with the corresponding controller component CashBoxController. Hence the signal
openCashBox disappears from the specification. However, since the passed change
amount is not processed within the cash box component, this message might be re-

Modelling the CoCoME with the JAVA/A Component Model 17

[Componert] CazhBox] static structure ll

=<input-enahbled== gl <<input-enableds>» ==@sync=» @]
CashBox it CashierP
i i CB-Cashier
{methods="{m:Method | m in CashierP}"}
thads = * {m:Methad | m in CashieP} ") cardPaymert()
-keyToDoublel key : HeyStroke) : double cashPayment()
~barcode : long closeCashBox()
: dizableExpresstode)
cda : CBlﬁl?A [ca: CE-(llis|hler [0.1] nressDigit key | KeyStroke)

CDAppIR CDAppIP CaghierP

LI saleFinished()
/_‘ \\ ! = =tarthlewSaler)
- «<part==
,. O O 2 . O
CDAppIR CDAppIP

(CB-COAL [port bekaviour || ?
Einind . Lobsinied,

(CB-Cashier] (5] port hehaviour |

=staue= |/ Disabled() s saleStaltedo) pressDight key : KeyStroke) | entry f barcode = appendhey(key)
=edauss [key == Enter] 7
(-

pressDight key : KeyStroke)
1 saleStarted(! procuctBarcodeFriterad [key = Enter]
(barcade) ‘
saleFuccess()
[actauze
] g disableExpressitode pressDigit key : HeyStroke)
i 2 [key == Enter]
} cashBox(losed() 5 . 1
wataliz= [mode=CreditCard] / (starthlewSale() N
selefuccess() /modefCast paymertMode(mode) ¢ saleFfnished() 4 A J
|73 73 73 AR saleFinishedl)
I paymenithfods(mads) [mode=Cash] 1 (—__cardPayment) JeashPaymert()
paymenihode(mode) [1
salsfuccess()

cashPayment()

[firal] £ cashAmourtErtersdiamount final) .
. closeCashBox()
changeAmourtCalculated] amourt | double)
& L pressDigit key : KeyStroke) [key = Erter]
. F

[not final] f cashAmourdEntered(amaount, final)

pressDigitt key : KeyStroke) [key == Enter]

Figure 14. Static structure and port behaviour of CashBox

placed with an external signal openCashBox anyway. We refrained from doing so, in
order to keep the deviation from the CoCoME specification manageable.

CardReader (CR). Figure 16 shows the static structure as well as the behaviour spec-
ifications of the component CardReader. The component declares three ports, two of
them trivial operator ports (CR-Cashier and CR-Customer) which have been omitted
from Fig. 16, and one of them, CR-CDA, modelling the communication with the cash
desk application from the card reader’s point of view. There are two main functional re-
gions in the behaviour specification of CR-CDA. On the one hand, the card reader may
be deactivated by having received a message expressModeEnabled. On the other hand,
within the lower region reached by the reception of a signal activate, the port possibly
engages in sending credit card information. From any of the “active” states the card
reader may be again be deactivated by the message expressModeEnabled.

Deviation. We introduced the operator messages enterPin and pullCard with parameters
passing the particular data in analogy to pressDigit as used in the CoCoME in the con-
text of the cash box component. Additionally we extended the communication between
cash desk application and card reader with an explicit activate signal. The Cashier may

18 Knapp et al.

’[Component] CazhBox| cotmponent behaviour]|

ca disahleExpressModed) /
coa.gxpressModelisabled()

!

]

entry § cabarcods = caappendieyikey)

capressDigt(key:
KeyStroke)[key == Enter]

)

cia salesSuccess0

ca.closeCashBox() f
cila cashBoxClosecd()

ca.starthlewSale

] coa.saleStarted() -

[cda.saleStarted

paymenthiodelcda. mods)

ca.cashPayment()

ca pressDigtkey:
KeyStroke) [key <= Enter]

ca pressDigit(key: KeyStroke) [key =

(cda.barcoc‘!e)

ca.galeFinished) f cda.saleFinished)

ca.cashPayment()

— (]
[—j | entry § coba amount = 0.0, cda.mode = Cazh;

cda.saleSuccess()

ertry f coa.amount = 0.0; cola mode = Cash;

entry f ook paymenthodecoia moce)
ca pressDigtkey: KeyStroke) [key = Erter] /! cda.final = true;

LL [rot coda.final |
|\ ertry /
ca pressOigt(key: KeyStroke) [key == Enter] f cda final = false;

coa.amourt = keyTolLonglkey);
r.j f_:da.changeAmourﬂCalcula{edgamoum:double] S o

coa cashamountErteredicda.amount, coa final);

[cda.tinal J

Figure 15. Component behaviour of CashBox

decide at any point in time to switch from payment mode CreditCard to Cash. There-
fore, if the particular cash desk is in normal mode, the card reader might be left in any
state. In order to reset the card reader to the correct state in consequence of a new sale
process the signal activate was introduced. Alternatively it might be better to introduce
messages such as saleStarted and saleFinished similar to the communications between
CDA and the other devices also for the card reader. This would have probably simplified
the port as well as the component behaviour specifications. Anyway, again we did not
want to deviate too much from the provided CoCoME specifications in [11] and leave
this issue as a side note.

Scanner (S). The bar code scanner is modelled by a rather simple component Scanner,
depicted in Fig. 17. We omitted the trivial behaviour specifications for both of the ports
showing only the specification of the component behaviour; a mere sequential combi-
nation of the port behaviours. This simple specification also illustrates the case of an
optional port behaviour (ca:S-Cashier) which must not be taken into account in the
component behaviour explicitly. If the port instance ca does not exist, this component
simply does nothing.

Printer (P). The Printer component declares only one port using the port type P-CDA
whose behaviour is specified alongside the static structure in Fig. 18. We omitted the
component behaviour specification, because it is a perfect match of the port behaviour
(modulo port identifier cda).

Modelling the CoCoME with the JAVA/A Component Model 19

[Component] CardReader| 8] static structure 1

c=ATYNC== O
CustomerP

==input-enableds== gl = .
CardReader o P erterPing pinint)
methods = "{m:Method | m in CustomerP + CashieP}'}

+coa - CR.CDA [1] ssasynes> ()

+oa 0 CR-Cashier [0..1] e CashierP
; parts=
+cu : CR-Customer [0.1] 9 -
CR-Cashier CashierP puUllCardl cardinfo : String)

==part== /O =<@syYNC=> <<ASYNC=>
o CDAppIP ¥ O Y O
CR-CDA CDAppIR CDAppIP
~cardinfo : String CDApPIR creditCardScanned(cardinfo : String) expresshiodeDizabled()
~pin int PP pinEntered(pin:int) expressModeEnabled()
activatel)

K[Cumponent] CardReader| component behaviour]|

ctim expresshiodeEnabled)

('CR-CDa[[B port behaviour ||

(cda expresshodeDisabled() f

\;‘rJ 1
Ciaexpr 1 cda activate()

colp activate() colaactivatel) cda.expresshadeEnabled()

expresshiodeDisabled() odeEnabled()

activate() expresshoceEnablg

H capulCardioardnta String) |
— fcoa cardinfo = cardinfo

I cda.crediCardScanned(cda cardinfo)

I pinErtered(pin)

cdla pinErtered(cda.pin)

(] cu enterPin(pircint) (]
ez pin = pin

JoredtCardScanned

activate() activale()

Figure 16. Static structure and behaviour specifications of CardReader

[componert] Scaner] |5 static structure | (Scanner] [B5] componert behavior |
=aomponent== E ==aSynCes O ._)l]
Scanner CDAppIR

) capcanProductBarcode
coa: S-CDA 1] ca: S-Cashier [0.1] productSarcodeScanned(barcode :irt) (hgrcode:int) cdabarcaode
= barcode

= SepT =EATYNCET (@] tcdaprodctBarcofieScanned
S-CDA CashierP (cda barcoge)

~barcode : int scanProductBarcocel barcods : int) |

CDAppIR CashierP

Figure 17. Static structure and behaviour of the Scanner component

[Component] Printer] [static structure ||

runningTotslChanged! productiame ; String, price
<=COomponents=: {l : double, total : double)
saleStarted|

Printer
cola : P-CDA 1]
CoApeiP saleSuccess() saleFinighed()

[PET— O cashBoxJosed()

CDAppIP
saleFinished() 7
2::%‘::?0%&0{] changeAmourtCalculsted cashfmountEntersdl amount
cashAmourtEntered] amount : double, final | boolean) smount - dhuble) touble, finsl . boclean)
running TatalChanged] productMame © String, price : double, total © double)
changesmourtCalculated, amaunt | double) —— [final] [not final]
saleSuccess() |

\. ¥,

Figure 18. Static structure and port behaviour of the Printer component

20 Knapp et al.

[iComponent] LightDisplay] @ static structure]|
7
==COmponent=»= SSASYNC=F O
LightDisplay CDAppIP
-showvBlack() expressiodelisabled)
-showyGreen() expressModeEnabled()
coa : LD-COa [0.1] [O
CDApplIP
(LD-cDA[5 port behaviour | ¥ i = = :
2 kL [Componert] LicttDisplay] component behaviour]|

expresshodeDizablad()

expresshiodeEnabled() Pt p |

I showBlack()]

coa.expresshiodeEnabled(

exprassiiodeDisabled() b
I showGresn()
—H ciba expresshodeDizabled
espressodeEnsbledl)
A\ A h 4

Figure 19. Static structure and behaviour of the LightDisplay component

LightDisplay (LD). Cash desks may be switched to an express mode which is signalled
at the cash desks LightDisplay. As depicted in Fig. 19, there is only one port declaration
whose port type shows essentially trivial behaviour. Both signals, expressModeEnabled
and expressModeDisabled, are always accepted. Initially only the former triggers a state
change, encoding the switch to express mode and hereafter only the latter triggers the
state change to normal mode back again. The component behaviour specifies internal
behaviour in form of private operations representing signals for the hardware device to
show green and black lights as required by the CoCoME respectively.

CashDeskGUI (CDG). The static structure of the component CashDeskGUI modelling
the graphical user interface of a cash desk is depicted in Fig. 20. We omitted any be-
haviour specification, since according to the reference implementation the GUI allows
its clients to send messages and signals in any order, i.e., without any behavioural re-
striction. Note that the signal invalidltem is due to the exceptional process in Use Case
1 of the CoCoME: signal an error in case there are problems with the product item
identifier entered by the cashier or scanned by the bar code scanner.

[Compnnent] CashDeskGUI [£] static structure 1
7

==Components= E ==ASYNCEE O
CashDeskGUI CDAppIP
cashamourtEntered(amount double, finalboolean)
. expressModeDisabled])
cda CDG,;%DA [0.1] expressModeEnabled))
|_'_| invalidCreditCard()
runningTotalChanged(productiame : String, price © double, total | double)
saleStarted()
CDAPpIP saleSuccess()
bR invvaliditeme)

Figure 20. Static structure of the CashDeskGui component

Modelling the CoCoME with the JAVA/A Component Model 21

The specification of the CashDeskGUI completes the presentation of our specifica-
tions for the parts of the composite component CashDesk (see Fig. 7). Next we com-
plete the specification of CashDeskLine, one level up in the hierarchy, with a brief
discussion of the Coordinator component.

Coordinator (C). The CashDeskLine (see Fig. 6) of a store consists of a number of cash
desks and an instance of Coordinator, specified in Fig. 21, which decides on the mode
of the cash desks (express or normal). The component declares its port of type C-CD

[Component] Coarelinator [&) static structure i [c-cof (55 port benaviour |
saleRegistered(cdld String, p: Productir rLm]

=LCOMponents= E
y saleRegistered(cdld © String, p
Coordinator ProducthStocktemTO [*], i : Paymertiode)
-enableExpress | Boolean = false
-gecideExpresshoder) | Boolean
-updateSaleHistory(procucts © ProduchithStocktem TO [*], mode : Paymenthocds) []
oz C-CO Y] \. J
™1
\ (1Component] Coordinator] (5] component kehaviour | <=arthogaonals>
has {param = cbods}
<<porte> o CashDeskR ==asynees O cdl saleRegistered(cashDeskld : String, p : ProductiithStocklemTO [7], mode : Paymenthode)
c-co o CashDeskR ‘ (
~eashDeskld - String expressModeEnabled(cdid - String) entry / | eachenetarne
cdl.cashDeskid = cashDesklc; TESTDESKA | String,
updateSaleHistory(p, mode; ProductisithStockitemT
enableExpress = decideExpresshiodel); O[], mode
=xasyno== %] L Paymerthiodg: J
CashDeskP —
[not enableExpress] |
saleRegistered(cdld : String, p @ ProductvithStockitemTO [*], m: Paymenttoce) ~ J
i cd expressh i

L

Figure 21. Static structure and behaviour specifications of Coordinator

with multiplicity * to allow to connect an arbitrary number of cash desks, which should
be monitored by this coordinator. Note that even if the coordinator decided to signal
expressModeEnabled, the port may receive yet another sale registration from the same
cash desk because the communication partners are executing concurrently. In this case
the sale registration has precedence over the coordinator’s decision: the port receives
the signal saleRegistered and recomputes its internal decision.

The component behaviour shown in Fig. 21 illustrates the reification of internal
actions which are hidden by 7 transitions in a port behaviour specification.* Here, the
component keeps track of the particular sale history for each cash desk and decides
upon this history to signal an express mode switch for this particular cash desk. The
update of the sale history is required to be synchronised (not shown in the diagram) due
to the concurrent execution of the port instances cd in cds.

1.3.4 Inventory — The Information System Part

The information system part is modelled with an inventory at the core. The inventory
plays a crucial role in the Use Cases 3, 4, 7 and 8 (see [11, Figs. 1.6,1.6,1.6,1.6]), which
describe how to order products, receive ordered products, change the price of a product
and how products might be exchanged among the stores of a enterprise. Therefore, we

* Of course, this has been illustrated with the specification of the CDA implementation already,
but there, without doubt, more difficult to comprehend due to the mere size of the specification.

22 Knapp et al.

[Component] Invertory| static structure !J

==component=> E ==part== ==port==
Inventory I-Data I-Manager
-storeld : long ~pche : PersistenceContesxt
~tctx : TransactionContest <<port==
m: I-Manager [0.1] pe: PO (0.1 d: 1 Dsta 1] ~id : long I-StockManager
sm: FStockhanager [0.1] =1 kSale [0.1] iiapE - Rebdbnns
1 1 1 D_ ~procuct : Product i
)—‘ 3 T T ~stockltem : Stackftem e
5 | ~store : StoreData I-PD
. ~barcode : long
ManagerP ProductEnchangeP SaleP i ~lowStockilems ; Collection=Stockitem=
StockManagerP ProductExchangeR DataR ~coe : Set=ComplexOrderEntry= ==ports=
|-Sale
ManagerP O
changePrice(s StocktemT) : ProductiithStockitemTo SaleP ()
derProcuct: - ComplexOrderTO) - ComplexCrderTO [*
SreerProductstos CompixrderT 9/ CompiexOrdetTO T getProducthAithStockitemi; barcode © long) @ ProduchAithStocktemTo
=zasignal==accountSale] = : SaleTO)
StockManagerP O
rolinReceivedOrder(o ComplexOrderTO) DataR O
getPersistenceContext() | PersistenceContext
ProductExchangeP O cueryOrderByld(id : long, © : PersistenceCortest) : ProductOrder
. ueryProductByid id : long, ¢ PersistenceContext) Product
orderedProducts Available(coe : Set=ComplexOrderErtry=) queryStockitem(storeld : long, barcode : long, c : PersistenceContext) : Stockitem
«asYnc»»markProduc‘tsForD?hvery[coe: Set=ComplexOrderEntry=) ueryStockitemByld] stordeld © long, ¢+ PersistenceContext) - Stockterm
==async>>triggerDatabasehrite() queryLowStockitems(stareld : long, C © PersistenceContesd) : Collection=Stockiem:s
cuery StoreByld] storeld : long, © @ PersistenceContext) : StoreData
tharkProductsincotming coe @ Set=ComplexOrderEntry=)
ProductEzchangeR O markProductsUnavailableinStock(coe : Set=ComplexOrderEntry=)
==async==orderAOther Stares(storeld | long, products Set=Product=) triggerDatabasevirite()

Figure 22. Static structure of the component Inventory

provide a similarly detailed discussion of its specification as we did with the cash desk
application in Sect. 1.3.3. The most prominent new modelling aspect with respect to be-
haviour specifications discussed above is the specification of synchronous message call
receptions. Afterwards, in order to complete our specifications of the static structure of
this part of the trading system, we briefly describe the static structure of the components
Data, Reporting, ProductDispatcher and DataBase. The particular port and component
behaviour specifications would essentially mirror the behaviour as specified in the be-
haviours of Inventory. Also, they do not illustrate new modelling features, hence we do
not provide explicit specifications thereof.

Inventory (I). The component Inventory’ is a model of the store’s portion of the ap-
plication layer of the CoCoME. As depicted in the static structure of Fig. 22, Inventory
provides two optional ports m : I-Manager and sm : I-StockManager to allow for man-
ager and stock manager requests. The behaviour specifications of these ports are trivial
and omitted here. The ports may be used for instance to connect simulation components
in order to test the developed system or, of course, to connect actual control interfaces in
the deployed system. The ports of type |-Data and |-Sale are used to connect to the data
layer of a store component and to the cash desks of the store, respectively. As the port
behaviour of I-Data in Fig. 23 exemplifies for two operations of the interface DataR,
any operation call on the data layer is transactional, i.e., is framed by an explicit trans-
action start (tctx.beginTransaction) and end (tctx.commit); the remaining operations of
DataR are applied analogously. Connections via |-Sale support the reception of mes-
sages required during the sale process at a cash desk. Finally, the component declares a

> Note that, as discussed in Sect. 1.3.1, Inventory models Inventory::Application::Store of [11].

Modelling the CoCoME with the JAVA/A Component Model 23

' ey = ™
1-PE[7] port behaviour]| L =) i
|-Dzta] port behaviour ll
! potx = getPersistenceCortext();
[] totx = petx.getTransactionContesd() . f
triguerDatabaseiniite) H‘_ §
Hg S productOrder = queryOrderByldd, poba)
I product = ProductByl(id, pot
Febe commir) frocL gueryProductByldlid, pot=)
markProducts oe ! |'_ 1 et beginTransaction()
SetzComplexCrderErtry=) <
,,,,,,,,,,,, L
Forder MCtherStores(storeld, products) p
|-Sale] B port betaviour |
i N
. N] |] accourtSale(5 SaleTo)

: D cetProductAithStockitem barcods |

long 3 : ProductithStocktemTo
orderedProductsSvailablel coe . 4 L
Set=ComplexOrderEntry=
S return product;
\

Figure 23. Port behaviour of the component Inventory (omitted trivial port behaviours)

port pe : I-PE in order to cope with product exchange among stores as described in Use
Case 8 of the CoCoME. The port behaviour specification in Fig. 23 uses an orthogonal
state with two regions to model the two distinct roles of an inventory: the port may
request to order some products at the other stores of the enterprise, i.e., play the active
role of initiating product exchange; on the other hand, it provides a trigger for a data
base update with possibly cached and not yet submitted data, as well as to mark prod-
ucts for delivery to other stores, i.e. playing the passive role of being asked for product
exchange. Both messages are eventually received during a connection with the com-
ponent ProductDispatcher (see Fig. 5) responsible to coordinate the product exchange
among the stores (see [11, Fig. 1.6]).

The component behaviour specification of Inventory (Fig. 24) comprises of six or-
thogonal regions, essentially each of them modelling the interaction with one possible
communication partner along the ports of the component. Any communciation with
the data layer, i.e., with the port d is framed by an update of the transaction context
reference and the explicit transaction begin and commit. The entry actions in the sec-
ond state of the top-most orthogonal region exemplify the corresponding message calls.
For notational convenience we omitted these calls in the remaining states and regions
and assume that the respective component behaviour with respect to d always takes the
required framing into account the port behaviour of I-Data.

The first upper region specifies effects due to messages received at port s. We omit-
ted a detailed specification of the reaction to the asynchronous message accountSale.
An implementation would use the port d in order to account the sale information in
the data base. In contrast, for getProductWithStockltem we show the transaction-related
part of the implementation in between message reception and return in order to illus-
trate a kind of body specification for the implementation of synchronous message re-
ceptions. The second and third orthogonal state show the processing of the synchronous
operator commands of the ports |-Manager and |-StockManager, again without further
implementation details concerning the interaction with the data layer. The fourth and
fifth regions specify effects on port d due to messages received at port pe, more con-
cretely due to requests stemming from the product dispatcher in the course of executing

24 Knapp et al.

’\nverrtory[component behaviour ﬂ

=.accountSalels SaleTo)

| entry faccount s vis port o entry /
o potx = o getPersistenceContext();

dictx = d potx getTransactionCorte:st();
i s.return s product d tetx beginTransaction;

= product = d.guery...
s.getProductitithStockitem(barcode:lon d tetx commit

sm.rolinReceivedCrder(o: ComplexOrder TO'

f I =m return i entry [actually rolin order ...
H—J‘

m.orderProducts(o: ComplexCrderTo) ‘

((]

[J m.return m product]
H 1
l entry fm.product = ... J | entry § m.complexOrder = .. J
S bEturn mocomplexOrder J

[e markProductsForDelivery(coe: Set=ComplexOrderEntry=) <
H =
I o markProductsUnavailableinStockicoe)

) ot () [|

i entry f
i JoweStockiem-=isEm, dlowStockkems = d.queryLowStockitems(storeld potx); ‘

£d markProductsAsincomingicoe) [else] £ pe products = d lowStockitems getProdudts(), pe.

— orderAtCtherStores(storeld, pe products)
| [elze]
pe orderedProducts Svailablelcos:
[coe-=isEmpty()] [et=ComplexOrderErtrys] []

-

Figure 24. Component behaviour of the Inventory component

a product exchange among stores. Last, the lowermost orthogonal region specifies the
component’s behaviour with respect to the inventory’s check if the stock is getting low
for some products. The check occurs cyclical after a not further specified time period x.

Deviation. Besides the above mentioned deviation from the CoCoME’s static struc-
ture (Inventory::Application::Store of [11] vs Inventory within our architecture; see
Sect. 1.3.1), we used the persistence and transaction context in compliance with the

Modelling the CoCoME with the JAVA/A Component Model 25

[Component] Datal @ static structure]|

z=portss EnterpriseP &)
Store queryEnterpriseByld(id : long, ¢ : PersistenceCortext) : TradingEnterprise

getheanTimeToDeliveryl ps : ProductSupplier, t: TradingErterprize) @ long

~StoreP ==pott== getPersistenceContext() : PersistenceContext
Enterprise

==component== E
Data

5 Store [0.1]

e Enterprise [0.1]

dh: DateBase [1] StoreP O
H““.: getPersistenceContext() : PersistenceContext
JDBC gueryProductByld] id : long, ¢ PersistenceContext) Product
ueryStoreByldl id : long, © ; PersistenceContext) StoreData
==port== queryOrderByld(id : long, o : PersistenceContext) ProcuctCrder
DataBase gueryStockteml storeld : long, productBarcode : long, © : PersistenceContest) : Stockitem
gueryLowStocktems, storeld | long, ©© PersistenceContext) : Collection=Stockitems

guery SllStockems] storeld @ long, o PersistenceContesxt) : Collection=Stockitem:=
markProductsincomingl coe @ Set=ComplexOrderEntry=)
markProductsUnavailableinSiock coe : Set=ComplexCrderEntry= 1
trigerDatabaseiWite()

JoBC O

Figure 25. Static structure of the component Data

reference implementation of CoCoME. Note that this is in contrast to the sequence di-
agrams in [11, Figs. 1.6 — 1.6]. The latter do not show any use of PersistenceContext
but of TransactionContext only. Further minor deviations are some obvious renamings
of operations used in the sequence diagram [11, Fig. 1.6] modelling Use Case 8 as well
as the renaming of the data type Store of the CoCoME’s data model to StoreData in
order to avoid confusion with the component Store of our modelling.

Data (D). The approach to a three-layered architecture for the information system
part yields a component Data similar to the architecture in [11]. The component also
hides the concrete data base access from the application layer but in our case this layer
connects via two port declarations as specified in Fig. 25. Both ports are optional, and
indeed the component is used as part within the composite component Store (see Fig 5)
definitely without connecting the enterprise port e. In fact this port is relevant only in
“enterprise context” namely as part of the composite component Enterprise in Fig. 5.
Besides these distinct data views, the component declares a data base port db which
currently shows a JDBC interface without any further details only.

Reporting (R). From the trading system’s architect point of view CoCoME essentially
consists of two main domain concepts, store and enterprise which both have different
requirements concerning the application layer of the information system part. Whereas
Inventory was designed having the requirements of store components in mind, the com-
ponent Reporting (Fig. 26) was designed for the use cases specifying the enterprise
requirements to the system. The static structure shows the addition of an enterprise
data view to the “conventional” store view through the application of the port type
DataEnterprise. The declaration m:Manager again specifies an operator port. The latter
directly reflects the commands for report creation as required by Use Cases 5 and 6.

ProductDispatcher (PD). The component ProductDispatcher is the essential counter-
part of the inventory in the modelling of Use Case 8, product exchange among stores
of the same enterprise, of the CoCoME [11, Fig. 1.6]. Its responsibility is the imple-
mentation of heurestics and decisions concerning the processing of a store’s request to

26 Knapp et al.

[Component] Reporing] static structure]|

==component==
Reporting

s DataStore [1]

de : DataEnterprize [1]

m: Manager [0.1]

==port==
DataEnterprise

~id : long

~piCte : PersistenceContext
~Chx : TransactionContesxd
~theartime ; long

~te : TradingErterprise
~ps : ProductSupplisr

DataStoreR

o

gueryStoreByicdl id : long, o PersistenceContext) : StoreData
guerysllstocktems storeld @ long, © : PersistenceContesd 1 Collection=Stockitems=
yetPersistenceContext() : PersistenceContext

DataEnterpriseR

O

DataEnterpriseR

cuetryErterprizeByldl id : long, ¢ : PersistenceContesxt) TradingErterprize
getheanTimeToDelivery(ps . ProductSupplier, t © TradingEnterprise) : long
getPersistenceContext() . PersistenceContext

ManagerP

==part==
DataStore

==pott==
Manager

~ztore | StoreData

~idd : long
~pCtx : PersistenceContesxt
~tChx TransactionContesxt

~ztocktems | Collection=Stockitems

ManagerP

o

getMeanTimeToDeliveryReport(e : EnterprizeT0) RepotTO
getStockReport s : StoreTC) ReportTo

Figure 26. Static structure of the component Reporting

order products at other stores belonging to the same enterprise. The diagram in Fig. 27
shows a corresponding static structure specification. The port interfaces directly mirror
the interfaces of the respective port of the Inventory component. The unbounded port
multiplicity reflects the possibility to provide as many instances of the port as store
components exist to allow the binary connection with the port pe (see Fig. 5.)

[Component] ProductDispatcher| s‘taﬁc structure]‘

==component== ProductExchangeR

ProductDispatcher

==ggync==markProductsForDelivery(cos | Set=ComplexOrderEntry=)
orderedProductzAvailablel coe © Set=ComplexOrderErtry=)
==azync==triggerDatabaseiirite)

5 PD-ST 4]

ProductExchangeP

==pot== ProductExchangeP

PD-5T

O

==async==orderAtCther Stores(storeld © long, products ;| Set=Product=

~storeld : long{reacdCnly }
~markedProducts | Set=ComplexOrderErtry=
~gvallableProcducts | Set=ComplexOrderErtry=

Figure 27. Static structure of the ProductDispatcher component

DataBase (DB). Since the component DataBase hides the concrete data base according
to a classical three-layered architecture for information systems, there remains not to
much to specify for this component, hence we omitted its explicit specification from
this chapter. The static structure comprises besides a multitude of delegate functionality
a port jdbcClients with an unbounded multiplicity which allows to connect as many data
layer of stores and enterprises via JDBC as required (see Fig. 5).

With the component Database, the specifications of all components applied as part
of the composite components Enterprise and Store (see Fig. 5), and specifically of the

Modelling the CoCoME with the JAVA/A Component Model 27

root composite component TradingSystem (see Fig. 4), have been discussed, providing
the basis for the formal analysis of our architecture as described in the next section.

1.4 Analysis

1.4.1 Analysis of Functional Requirements

For the analysis of the functional requirements we focus on the semantical properties
of our CoCoME model specified by the behaviour specifications of ports and compo-
nents in Section 1.3. We cosider the asynchronous part of our model for the CoCoME
and we will check deadlock-freeness and component correctness. For the synchronous,
information-oriented part we believe that the behavioural aspects concerning message
exchange and parallel execution, which are in the center of our interest here, are not so
relevant.

The basic idea of our approach is to proceed hierarchically, starting from the analy-
sis of (local) properties of simple components and their ports from which we can then
derive, by a compositionality theorem, properties of composite components. Thus, fol-
lowing the hierarchical construction of components, we obtain results for the behaviour
of the global system. Our analysis process consists of the following steps:

1. For each simple component we analyse
— the behaviour specification of each of its ports,
— the behaviour specification of the component itself, and
— the relationships between the component behaviour and the behaviour specified
for each of its ports.
2. For each composite component we analyse
— the interaction behaviour of connected ports,
— the behaviour of the composite component which can be inferred from the
behaviours of its constituent parts, and
— the relationships between the behaviour of the composite component and the
behaviour of each of its relay ports.

The semantic basis of our study are the given UML state machines used for the
behaviour specifications of ports and components. In order to treat them in a formal
way, we represent them by labelled I/O-transition systems.

Preliminaries. We first summarise the needed definitions for I/O-transition systems
which are inspired by the interface automata approach of Alfaro and Henzinger [12].

I/O-transition systems. An 1/O-labelling (I,0,T) consists of three mutually disjoint
sets of input (or provided) labels I, output (or required) labels O, and internal labels
T'. Additionally, we assume that there is a special invisible (or silent) action 7.5 An I/O-
transition system A = (Q, qo, A) over an I/O-labelling (I, O,T) is given by a set of
states Q, an initial state qo € Q) and a transition relation A C Q x (IUOUTU{7})x Q.

% Internal actions are not invisible; to construct particular component views, they can, however,
be hidden.

28 Knapp et al.

The set of labels of A is given by Label(A) = I U O U T; the set of actions of A
is given by Action(A) = Label(A) U {r}. We define the 7-closure of A as A C
Qx (IUOUTU{r}) x Q as follows: For an | € Label(A), (¢,1,q") € A, if there
are ¢ = qo,q1,---,qm € Q@ and qp,...,q, = ¢ € Q such that (¢;,7,¢iy1) € A for
0<i<m,(qml q) € A, and (¢}, 7,qj,,) € Afor0 <j <mnjand (¢,7,¢) € Aif
there are ¢ = qo, q1, ..., qn = ¢' € Q such that (¢;, 7, q;11) € Afor0 <i < n.

An I/O-transition system A = (Q, qo, AQ) is deadlock-free, if for all states ¢ € Q
reachable from gg by transitions of A there exists a transition (g, [,q’) € Awith [€
Label(A).

Two I/O-transition systems A = (Q 4, qo,4, Aa) and B = (@B, qo.5, Ap) over the
same 1/O-labelling (I,0,T) are observationally equivalent [13], denoted by A ~ B,
if there exists a weak bisimulation relation R between A and B with (o 4,40,8) € R.
A relation R C Q4 X Qg is a weak bisimulation relation between A and B, if for all
(ga,qp) € Randalll € Action(A) the following holds:

1. Vg, € Qa-(aa,1,d4) € Aa D 3dp € Qr . (aB,1,dp) € Ap A (¢, dp) € R
2. Yqp € Qp-(qB,1,qp) € Ap D 34 € Qa-(qa,1,q4) € AaN(dy,qp) ER

Observational equivalence is compatible with deadlock-freeness.

Operators on I/O-transition systems. A relabelling A : L — L’ from an I/O-labelling
L = (I,0,T) to an I/O-labelling L' = (I’,0’,T") consists of three functions Ay :
I - I' A :0O — O,and A\r : T — T’. For simplicity, we write \(l) instead
of A\;(1) if I € I, and similarly if] € O orl € T. Let A = (Q, qo,4) be an I/O-
transition system over L and let A : L. — L’ be a relabelling. The relabelling of A
w.r.t. A is the I/O-transition system A\ over L’ defined by A\ = (Q, qo, A\) where
AN ={(¢: A1),) | (¢,1.¢') € ANT# 7} U{(q,7,¢) | (¢,7,¢') € A}. In various
cases we will need a simple form of relabelling where the labels of A are just prefixed
by a given name, say n. Then we write n.A for the relabelling A\, with A\, (1) = n.l
for all [€ I, and similarly for [€ O orl € T where)\, is assumed to preserve the
kinds of the labels.

The hiding of an I/O-labelling L = (I,0,T') w.r.t. asubset H C T UO U T is the
I/O-labelling L\ H = (I\ H,O\ H,T \ H). Let A = (Q, qo, Q) be an I/O-transition
system over L and let H C Label(A). The hiding of A w.r.t. H is the I/O-transition
system A\ H over L\ H defined by A\ H = (Q, qo, A\ H) where A\ H = {(q,7,¢) |
(¢,1,¢) e Anle HYU{(q,1,4') | (¢,1,¢') € AN ¢ H}.

Two I/O-labellings L; = (I1,01,T1) and Ly = (I2,02,T>) are composable if
LN =0,0:N04 = 0, T1N(12U0UTy) = (), and ToN(I;UO1UTY) = 0. The shared
labels of Ly and Lo, written L1 N Lo, are given by (I; UO1UT})N(I2UO2UTy) which, if
Ly and Ly are composable, is just (I; NO2)U(O1N1I3). The product of two composable
I/O-labellings L; and Ly is the I/O-labelling Ly ® Lo = ((I; U I3) \ (L1 N L), (O1 U
O2)\ (L1 NLy), T1 UTo U (L1 N Ly)). Let Ay = (Q1,q1,41) and Ay = (Q2, g2, A2)
be two I/O-transition systems over composable I/O-labellings L1, Lo, respectively. The
product of Ay and A, is the I/O-transition system 41 ® As = (Q, o, A) over L1 ® Lo
defined as follows:’

7 Intuitively, the product of A; and A, describes the parallel composition of A; and Az where
coinciding input and output labels are synchronised and then become internal labels.

Modelling the CoCoME with the JAVA/A Component Model 29

. Q=Q1 x Qg

2. q0 = (q1,92);

3. A={((q1,92):1:(q1:42)) | (q1.1,q1) € Ay Nl ¢ LiNLaAgo € Qa} U
{((q1,92), 1, (q1,43)) | (a2,1,q5) € Ag ANl LiNLaAgr € Q1} U
{((Q17q2)7l’ (qivqé)) ‘ ((h,l,QD €A N (QQ,Z,Qé) S AQ ANleLin L2}'

In several cases, for synchronisation of A; and As, some labels of A; and of As
must first be identified before the product operator is applied. For this purpose we use
the synchronised product defined in the following way: Let n1, no be two names. Then
Ay ® As denotes the product A1\ ® Ao\, where the relabelling A\; maps each

(n1,m2)
label of A; of the form n,.l to the label (n1, n2).l and, similarly, A, maps each label of
As of the form ns.l to the label (n1,ns).l. Both relabellings are assumed to preserve
the I/0 nature of the labels, i.e. their inclusion in I, O and T respectively.

All operators on I/O-transition systems considered above preserve observational
equivalence.

I/O-transition systems for behaviour specifications of ports and components. In
our component model behaviour specifications in the form of UML state machines are
attached to ports and to simple components. In order to represent them by I/O-transition
systems we assume that the state machines are flattened, i.e. that any hierachical struc-
ture is resolved, which can be achieved by standard techniques. We further assume that
any pseudo-states used for describing alternatives are also resolved in the standard way
by attaching two outgoing transitions, one for each alternative, to the original source
state.

Let us first consider how behaviour specifications of ports are represented by 1/O-
transition systems. As pointed out in Sect. 1.2 a port has a provided and a required
interface. For calls of operations of the provided interface we use input labels; for send-
ing an operation request according to the required interface of a port we use output
labels. In most cases the label is just the name of an interface operation where we have
abstracted from operation parameters and results which is possible if the transitions in
the original state machine do not depend on the arguments and results of the operation.
In the other cases we must assume, for the purpose of model checking later on, that the
impact of arguments and/or results and/or guards occurring on UML transitions can be
resolved by a finitary case distinction which is encoded by appropriate labels. Note, that
transitions with the invisible action 7 can occur in the behaviour specification of a port
in order to model a possible internal choice (of the port’s owner component) which is
not visible at the port but may have an impact on the future behaviour of the port.

As a concrete example we consider the component Coordinator and the behaviour
specification of its port C-CD; see Fig. 21. The corresponding I/O-transition system,
shown in Fig. 28, is directly inferred from the behaviour specification. ® According to
the given behaviour specification of the port, the silent action 7 represents a non-visible
choice whether an express mode should be enabled or not.

8 For the representation of the transition systems we have used the LTSA tool (cf. Sect. 1.5)
which does not support the slash symbol “/” used in the UML state machines. In order to

30 Knapp et al.

saleRegistered tan

m saleRegistered
— e L

_expressModeEnabled

Figure 28. I/O-transition system for port C-CD

Let us now look to the behaviour specifications of simple components and their
representation by I/O-transition systems. A simple component contains a set of port
declarations of the form p : P[mult] where p is a port name, P its port type and mult
specifies the port multiplicity indicating how many instances of that port a component
(instance) can have. Since a component can only communicate with its environment via
its ports, any input label of a component has the form p.i where p is a port name and ¢ is
an input label of the port. Similarly, the output labels of a component have the form p.o.
For the definition of input and output labels of components we do not take into account
here the multiplicities of ports. This is possible if we assume that actions of different
port instances of the same port declaration are independent from each other which is
indeed the case in our example. In the following we will always omit multiplicities in
port declarations. In contrast to ports, components can have internal labels which are
just given by some name representing an internal action of the component. Again, for
the purpose of model checking, we assume that arguments, results and/or guards of
internal operations are encoded into appropriate labels.

As an example we consider the behaviour specification of the Coordinator com-
ponent (see Fig. 21). The behaviour specification uses an entry action and a pseudo-
state for a guarded alternative which both have to be resolved in the corresponding
transition system. For representing the entry action we introduce the (internal) label
entry and for representing the two guarded alternatives we introduce two internal labels
enableExpress, describing the decision that the express mode should be enabled, and
notEnableExpress, expressing the converse case. Operation calls have now the prefix
cds of the port on which the operation is received or sent. The whole transition system
representing the behaviour of the Coordinator component is shown in Fig. 29.

cd.saleRegistered_ entry cnableExpress

cd.saleRegistered_

notEnableExpress

_cd expressModeEnabled

Figure 29. I/O-transition system for component Coordinator

indicate that a label 7 is an input label we use the visual representation i and, symmetrically,
to indicate that a label o is an output label we use the visual representation _o.

Modelling the CoCoME with the JAVA/A Component Model 31
1.4.2 Analysis of Simple Components

In the first step of our model analysis we consider simple components which are the
basic building blocks of our system model. For each simple component we check the
deadlock-freeness of the behaviour specification of each of its ports and the deadlock-
freeness of the behaviour specification of the component itself. Obviously, this condi-
tion is satisfied for all simple components and ports of our example.

A more subtle point concerns the relationships between the behaviour of a com-
ponent and the behaviour specified for each of its ports which must in some sense fit
together. To consider this issue more closely, let C be a component with associated be-
haviour represented by the I/O-transition system A and let p : P be a port declaration
of C' such that the behaviour specification associated to P is represented by the 1/O-
transition system A p. Intuitively, the component C' is correct w.r.t. its port declaration
p : P if the component behaviour supports the behaviour specified for that port. Appar-
ently this is the case if the component observable at port p is observationally equivalent
to the behaviour specification of P (up to an appropriate relabelling).

Formally, the observable behaviour of C at port p, denoted by obsp(C), can be
constructed by hiding all labels of A which do not refer to p. Using the hiding operator
defined in Sect. 1.4.1, 0bs,(C) = Ac \ H where H is the set of internal labels of A¢
together with all input or output labels q.op of A¢ such that ¢ # p. Since the transition
system obs,(C') has no internal labels and, up to the prefix p, the same input and output
labels as Ap we can now require that it is observationally equivalent to p.Ap (which
is the copy of Ap as defined in Sect. 1.4.1). These considerations lead to the following
definition of component correctness.

Definition 1. Let C be a component and Ac the I/O-transition system representing the
behaviour of C. Let p : P be a port declaration of C and Ap the I/O-transition system
representing the behaviour specification of P. The component C'is correct w.r.t. its port
declaration p : P if 0bs,(C) = p.Ap. The component C'is correct, if it is correct w.r.t.
all its port declarations.

Let us illustrate how we can check the correctness of the component Coordinator
w.r.t. its port cds : C-CD. First we consider the observable behaviour of the Coordinator
at port cds : C-CD which is just the transition system shown in Fig. 21 where all labels
which are not prefixed by cds are replaced by 7. If we minimise this transtion system
w.r.t. observational equivalence then we obtain (up to the prefix cds) the transition sys-
tem in Fig. 28 which represents the behaviour of the port type C-CD. This shows the
correctness of the Coordinator component. Indeed we have checked with the LTSA tool
(cf. Sect. 1.5) that all simple components occurring in the CashDesk and CashDeskLine
composite components (cf. Sect. 1.2) are correct.

The definition of the observable behaviour of a component at a particular port can
be generalized in a straightforward way to arbitrary subsets of the port declarations of
a component and, in particular, to the case where all ports of a component are simulta-
neously considered to be observable. For a component C, the latter is called the (fully)
observable behaviour of C and denoted by 0bs(C).

32 Knapp et al.

Obviously, the above definitions of correctness and observable behaviour apply not
only to simple components but also to composite components considered in the next
step.

Analysis of composite components. The analysis of composite components is related
to the task of a system architect who puts components together to build larger ones.
Before we can analyse the behaviour of a composite component it is crucial first to
consider the connections that have been established between the ports of their subcom-
ponents.

Analysis of connectors. For the analysis of connectors one has first to check whether
the connections between the ports of components are syntactically well-defined. After
that we can analyse the interaction behaviour of two connected ports.

In the following let us consider a connection between two port declarations p; : P
and p, : P, occurring in components C; and C, resp. The connection is syntactically
well-defined, if the operations of the required interface of P coincide with the op-
erations of the provided interface of P, and conversely.” To study the interaction be-
haviour of the two ports, let Ap be the I/O-transition system over the I/O-labelling
(11,01, 0) representing the behaviour of P and let Ap be the I/O-transition system
over the I/O-labelling (I, O,, () representing the behaviour of P,. According to the
syntactic well-formedness condition, O; = I, and O, = I;. Any communication be-
tween the connected ports is expressed by synchronising output labels of one port with
the correponding input label of the other port according to the possible transitions of
Ap, and Ap,. Hence, the interaction behaviour of Ap, and Ap, can be formally rep-
resented by the port product Ap, @ Ap, where “®” is the product operator defined in
Sect. 1.4.1. Note that the transitions of the port product are marked only by internal
labels (representing interactions) or by the invisible 7-action.

A first semantic condition which should be required for a port connection is that any
two port instances can communicate with each other without the possibility to run into
a deadlock. Since the interaction behaviour of two ports is represented by the transition
system of the port product Ap, ® A p, this condition can be formalised as follows leading
to the notion of behavioural port compatibility.

Definition 2. Two ports P, and P, with behaviours represented by the I/O-transition
systems Ap,, Ap, resp. are behaviourally compatible if Ap ® Ap, is deadlock-free.

Let us, for instance, consider the composite component CashDeskLine (cf. Fig. 6)
which has one connector between the port CDA-C of the CashDesk component and the
port C-CD of the Coordinator. The transition system representing the behaviour of the
port CDA-C (cf. Fig. 11) is shown in Fig. 30 (top) and the transition system representing
the behaviour of the port C-CD was shown in Fig. 28. Hence, the interaction behaviour
of the two ports is represented by the transition system of their port product which is
shown in Fig. 30 (bottom). Obviously, the port product has no deadlock and therefore
the two ports are behaviourally compatible.

° In general, one could use a more flexible condition such that the required operations of one
port are included in the provided operations of the other one. However, it is technically more
convenient and also sufficient for the example to use the more restrictive condition from above.

Modelling the CoCoME with the JAVA/A Component Model 33

_saleRegistered

e

{expressModeEnabled_, tau}

expressModeEnabled

tau

Figure 30. Port product of CDA-C and C-CD

In general, the potential capabilities for interaction of a port will not be used when
the port is connected to another port. In this case the behaviour specified for that port
is restricted by the interaction with another port. It is, however, often the case that this
restriction applies only to one side of a connection while the behaviour of the port on
the other side is not restricted and hence fully reflected by the interaction. It turns out
that this property plays an essential role for the compositionality of behaviours that will
be studied below to analyse behaviours of composite components. It can be formalised
in the following way.

Definition 3. Let Ap, ® Ap, be the port product representing the interaction behaviour
of two ports Py and P, (whose single behaviours are represented by the I/O-transition
systems Ap,, Ap, resp.). The interaction behaviour of P, and P, reflects the behaviour
of P, if Ap = Ap ® Ap, where Ap, on the lefthand-side is considered as an I/O-
transition system with all labels being internal (in order to fit to the labelling of the port
product).

An obvious consequence of this definition is that if the interaction behaviour of P,
and P, reflects the behaviour of P, (P, resp.) and if the behaviour of the port P, (F;
resp.) is deadlock-free, then P and P, are behaviourally compatible.

For instance, let us consider again the port product of CDA-C and C-CD in Fig. 30
(bottom). After minimalisation of the transition system w.r.t. observational equivalence
with the LTSA tool we obtain just the transition system of the port CDA-C; cf. Fig. 30
(top). Hence, the interaction behaviour of CDA-C and C-CD even reflects the behaviour
of the port CDA-C.

Analysis of the behaviour of composite components. In contrast to simple components
the behaviour of a composite component is not explicitly specified by the developer but
can be derived from the behaviours of the single parts of the composite component.
For that purpose we construct the product of the transition systems representing the ob-
servable behaviours of all subcomponents declared in a composite component whereby
the single behaviours of the subcomponents observed at their ports are synchronised
according to the shared labels determined by the connectors. That is, we focus on the
interactions between the subcomponents (via their connected ports) and on the actions

34 Knapp et al.

on the relay ports of the composite component while the internal behaviour of the sub-
components is not relevant. How this construction is technically performed for the case
of a composite component with two connected subcomponents and with one relay port
is discussed in the following. The construction can be generalised in a straightforward
way to arbitrary many subcomponents, connectors and relay ports.

Let C'C be a composite component which contains two component declarations
a : C) and ¢, : C;. As for ports we omit multiplicities of component declarations and
therefore assume that subcomponents are either declared with multiplicity 1 (as in our
example) or the actions of different component instances of the same component decla-
ration are independent from each other. 10° Assume that C) contains two port declarations
r: R, p : P, and C contains one port declaration p, : P, such that p; : P, and p, : P,
are connected and the connection is syntactically well-defined (i.e. the output labels of
P correspond to input labels of P, and vice versa). Moreover, assume that C'C has one
relay port declaration rp : RP which refers to the port declaration r : R of C). We
assume that the relay port reference is syntactically well-defined, i.e. that the port type
RP has the same provided and required interfaces as the port type R.

Let 0bs(C)) and 0bs(C;) be the I/O-transition systems representing the observ-
able behaviours of C} and C; resp.; cf. Sect. 1.4.2. We will construct an I/O-transition
system Agc representing the behaviour of the composite component C'C. First, let
c1.0bs(C1) be a copy of obs(C)) obtained by prefixing each label of obs(C)) with ¢
(cf. Sect. 1.4.1) and, similarly, let ¢,.0bs(C;) be a copy of 0bs(C;) using prefix c;.
Obviously, since component names are locally unique, the labels of ¢;.0bs(Cy) and
¢;.0bs(Cy) are disjoint. To construct Ao we have to synchronise the given transition
systems according to the connection of their ports which is easily achieved by using
the construct for synchronised products (cf. Sect. 1.4.1) such that, for any label op of
the port P, (and hence of F,), the labels c¢;.p;.op and c;.p,.op are identified via the
shared label (c;.pi, ¢;.py).op. Finally, the labels expressing actions of ¢; on the non-
connected port r must be renamed to actions on the relay port using the relabelling
Ar(e1.m.0p) = rp.op for all labels op of R (and hence of RP). The I/O-transition sys-
tem Acc representing the behaviour of the composite component C'C is then given by
Acc = (a.0bs(Ch) ® ¢r.0bs(Cy)) Ar.

(c1.p1,¢r-Pr)

Of course, one may again construct the observable behaviour of a composite com-
ponent which then could be used for further analysis but also for the construction of the
behaviour of another composite component on the next hierarchy level. When climbing
up the hierarchy of composite components one can always first perform a minimali-
sation of the observable behaviour of the subcomponents before the behaviour of the
composite component on the next level is constructed. This technique can indeed be
very efficient to reduce the state space of nested components because, depending on
the application, many (or even all) 7-transitions may be removed.'! In fact, our ex-
perience shows that in this way there is often not even an increment of the size of the

10 If they would be dependent they could be simulated by introducing as many additional com-
ponent declarations of the same type as instances of the original declaration are involved,
provided that no reconfiguration occurs.

' Only 7-transitions occrring in an alternative may not be removable according to the well-
known fact that alternatives are i.g. not compatible with the observational equivalence.

Modelling the CoCoME with the JAVA/A Component Model 35

state space. For instance, the I/O-transition system of the CashDesk component has 346
states and 613 transitions while its observable behaviour has, after minimalisation, only
36 states and 66 transitions. Moving up the hierarchy, the I/O-transition system of the
CashDeskLine component has, assuming one cash desk, 106 states and 252 transitions
while its minimalised observable behaviour has only 8 states and 12 transitions.

In the following we focus on checking the deadlock-freeness of the behaviour of a
composite component. It is well-known that, in general, the deadlock-freeness of sub-
components does not guarantee the deadlock-freeness of a global system (as nicely
illustrated by Dijkstra’s philosophers example). Indeed this is unfortunately still the
case if all components are correct w.r.t. their ports (in the sense from above) and if
all ports are connected in a behaviourally compatible way, as soon as more than two
subcomponents are involved. Hence, we are looking for particular topologies of com-
ponent structures where deadlock-freeness is preserved. An appropriate candidate are
(acyclic) star topologies as shown in Fig. 31 containing one central component C' with
n ports such that each port is connected to the port of one of the components C; for
1=1,...,n.

==COMponent==
e]

et P pic P [

ci+1 : Ci+l gl

ol+1 Qv :| pi+1 © Pi+ pn: P [

Rl .. MRk

Figure 31. Star topology of composite component

We assume that all single subcomponents, C' and C;, are correct w.r.t. their ports
and that their local behaviours are deadlock-free. Then, if all connected ports are be-
haviourally compatible, the composite component C'C can only deadlock if at least two
ports p, : Po, pg : Ps of the central component C' are connected to ports go : Qq,
qs : Qp of components C,, and Cg resp. such that the behaviours specified for both
port types (), and ()3 properly restrict the behaviour of P, and of Pg in an incompat-
ible way.'? This may happen, if C introduces a dependency between P, and Pj that is

12 Note that it is sufficient to consider the behaviours of the ports of Co and Cpg instead of
considering the observable behaviour of the components C, and Cjs since both components
are assumed to be correct w.r.t. their respective ports.

36 Knapp et al.

incompatible with the simultaneous restrictions imposed by the connections with @,
and (g on both sides of C. An example for such a situation is provided in [14]. If,
however, at most the behaviour of one port of C' is restricted by the connection and the
interaction behaviours of all other connections reflect the behaviour of all other ports
of C' then deadlock-freeness is preserved by the component composition. This fact is
expressed by the following theorem (for the proof see [14]) which shows that indeed
for the global deadlock check it is enough if the subcomponents are locally checked
for deadlock-freeness and correctness and if the architect of the composite component
checks each single port connection on the basis of the interaction behaviour of the con-
nected ports.

Theorem 1 (Deadlock-freeness of composite components). Let CC' be a composite
component with component structure as shown in Fig. 31. Let the following hold:

1. The components C1,...,C, are correct w.rt. their ports q1 : Q1,...,qn : Qn
resp., and C'is correct w.r.t. to each of its ports p1 : Py,...,pn : Pp.

2. All I/O-transition systems representing the behaviours of C1,...,Cy and C are
deadlock-free.

3. Foralli € {1,...,n — 1} the interaction behaviour of P; and Q; reflects the
behaviour of P;.

4. The ports P,, and Q,, are behaviourally compatible.

Then the I/O-transition system representing the behaviour of CC' is deadlock-free.

This theorem is related to a result of Bernardo et al. [15] which is also motivated by
the derivation of global properties from local ones, not using an explicit port concept,
however. In [15] a significantly stronger condition is used requiring what we call “be-
haviour reflection” for all connections between components with no exception where
behavioural compatibility is sufficient as in the above theorem. A further generalisation
of the theorem to arbitrary many non behaviour reflecting but behavioural compatible
connections is given in [14] which, however, needs further assumptions.

We can directly apply Thm. 1 to analyse the behaviour of the composite compo-
nent CashDesk (cf. Fig. 7) where CashDeskApplication plays the role of the central
component C'. As pointed out above all subcomponents of CashDesk are correct w.r.t.
their respective ports and their behaviour is deadlock-free. We also have analysed (with
HUGO/RT and the LTSA tool, see Sect. 1.5.1) the given connectors between the ports
of CashDeskApplication and the ports of the other subcomponents of CashDesk. It
turns out that the port CDA-CB of CashDeskApplication is behaviourally compatible
with the port CB-CDA of the CashBox component and that for all other connected
ports the interaction behaviour even reflects the behaviour of the corresponding port
of CashDeskApplication. Hence, Thm. 1 shows that the component CashDesk does not
deadlock.

Let us now focus on the correctness of the CashDesk component w.r.t. its three
relay ports which refer to ports of the CashDeskApplication with type CDA-Bank,
CDA-I, and CDA-C resp. Obviously, we cannot directly conclude that the correctness
of CashDeskApplication w.r.t. these ports implies the correctness of CashDesk w.r.t. the

Modelling the CoCoME with the JAVA/A Component Model 37

relay ports of the same type since the behaviour of CashDeskApplication is properly re-
stricted through the connection to the CashBox component.'? Hence, we have to check
explicitly that the connection between the ports of CashDeskApplication and CashBox
has no impact on the behaviour of the ports CDA-Bank, CDA-I, and CDA-C. Since this
is indeed the case the relay ports of CashDesk exhibit indeed the behaviour as it is
specified for CDA-Bank, CDA-I, and CDA-C.

Following our analysis method we now go one step up in the component hierar-
chy and consider the composite component CashDeskLine (cf. Fig. 6) which has con-
nected subcomponents of type CashDesk and Coordinator. Obviously, the structure of
CashDeskLine fits again to the component structure assumed in Thm. 1. Hence, we
can directly apply Thm. 1 since we know that CashDesk is correct and deadlock-free,
Coordinator is correct and deadlock-free (see paragraph on the analysis of simple com-
ponents), and that the connection between the ports (of type) CDA-C and C-CD reflects
the behaviour of CDA-C (see paragraph on the analysis of connectors). Thus component
CashDeskLine does not deadlock and, according to the reflection of the appropriate port
behaviour, it is also correct w.r.t. its relay ports.

Note again that we did not take into account here multiplicities of component decla-
rations which means in this example, that we have disregarded the number of CashDesk
instances that are connected to one Coordinator instance. This abstraction works be-
cause, first, the Coordinator instance has as many port instances of type C-CD as there
are cash desks connected, and, more importantly, the interactions of the coordinator
with the single cash desks are independent. More formally, this means that if there are
n cash desks connected to the coordinator then arbitrary interleaving is allowed and
thus deadlock-freeness of the cash desk line does not depend on n.

Let us now come back to the original proposal of the CashDeskLine structure which
has used an event bus for communication [11]. We have refrained from using the event
bus in the design model, as we believe that the introduction of an event bus is an imple-
mentation decision to be taken after the design model has been established and analysed.
Indeed we could introduce right now an implementation model which implements the
communication between the components of the CashDesk and CashDeskLine in terms
of an event bus, provided that the bus follows the first-in first-out principle. Then, ob-
viously, the order of communications between the single components specified in our
design model would be preserved by the implementation model and hence the deadlock-
freeness of the design model would also hold for the event bus based implementation.

This concludes the behavioural analysis of the asynchronous part of our model for
the CoCoME which was in the centre of our interest. For the synchronous, information-
oriented part we suggest to apply pre-/post-condition techniques which have been lifted
to the level of components in our previous [16] and recent [17] work.

1.4.3 Non-Functional Requirements

We perform quantitative analysis of the Process Sale Use Case 1 by modelling the ex-
ample in the process algebra PEPA [8] and mapping it onto a Continuous-Time Markov

13 Their connected ports are only behaviourally compatible but the connection does not reflect
the behaviour of the CashDeskApplication port CDA-CB.

38 Knapp et al.

Chain (CTMC) for performance analysis. The analysis shows that the advantage of ex-
press checkout is not as great as might be expected. Currently, however, this analysis
has to be performed manually; a closer integration could be achieved by decorating
UML state machines and sequence diagrams with rate information using the UML per-
formance profile as in the Choreographer design platform [18], allowing a PEPA model
to be extracted from the UML diagrams.

Model. Markovian models associate an exponentially distributed random variable with
each transition from state to state. The random variable expresses quantitative infor-
mation about the rate at which the transition can be performed. Formally, a random
variable is said to have an exponential distribution with parameter A (where A > 0) if it
has the probability distribution function

_ Az
F(x):{l e M forz >0

0 forz <0

The mean, pu, of this exponential distribution is pu = fooo rAe *dx = 1/\. Thus if
we know the mean value of the duration associated with an activity then we can easily
calculate from this the rate parameter of the exponential distribution: A = 1/p.

1-8 9-15 16-25 26-50 51-75 76-100

Figure 32. Probability mass function for the number of goods per customer

In the case where we only know the mean value (a case which often arises in prac-
tice) then the exponential distribution is the correct distribution to use because any other
distribution would need to make additional assumptions about the shape of the expected
distribution. However, what about the cases where we do know more about the expected
distribution of times or other quantities? An example of this is the distribution of the
number of goods per customer which varies according to the histogram shown in Fig-
ure 32. We assign weights to an immediate probabilistic choice in order to first choose
the right range of the number of goods.

Customer 2 (7,0.3 : immediate). CustomerIto8
+ (7,0.1 : immediate). Customer9to15
+ (7,0.15 : immediate). Customerl6to25

Modelling the CoCoME with the JAVA/A Component Model 39

+ (7,0.15 : immediate). Customer16to25
+ (7,0.2 : immediate). Customer51to75
+ (7,0.1 : immediate). Customer76to100

The 7 activity represents an individual choice of this component: other components
cannot influence this. Within ranges we assume that the values are uniformly distributed
and so we need only choose one of them, as in the example below. We write 7 as a
shorthand for (7,1 : immediate), making all of the choices equally weighted.

Customerito8 2 1.Customer, + 7.Customers + T. Customers
+ 7.Customery + 1. Customers + 1.Customerg

+ 7.Customery + 7.Customers

The Customer,, component is parameterised by the number of goods to be purchased
and so this parameter decreases after every item is presented for purchase, until it
reaches zero. Items either have their identifier entered manually or their barcode is
scanned. The rate at which items are entered or scanned is determined by the cashier,
not by the customer. The customer only passively witnesses these events (rate T).

Customer, 11 2 (scanltem, T).Customer, + (enterItem, T).Customer,

When all of their items have been presented for purchase the customer moves on to
payment by cash or credit card. These are equally likely.

def
Customerg = 7. Customer payByCash + T-CustomerpayByCard

Probabilistic transitions are used to select between discrete quantities in the way shown
above for the number of items which the customer wishes to buy. Continuously-varying
quantities such as durations are treated differently. For example, in the case of waiting
for credit card validation the extra-functional properties state that we have a histogram
representing the distribution over the expected durations stating that with probability 0.9
validation will take between 4 and 5 seconds and with probability 0.1 it will take be-
tween 5 and 20 seconds. We encode distributions such as these as an immediate prob-
abilistic choice followed by a validation occurring at expected rate (4.5 is mid-way
between 4 and 5 and 12.5 is mid-way between 5 and 20 so we use these as our means).

(7,0.9 : immediate).(validate, 1/4.5) . ..
+ (7,0.1 : immediate).(validate,1/12.5) . ..

Whichever branch is taken, the next activity is validation; the only difference is the
rate at which the validation happens. In Figure 33 we show how 700000 values from
a uniformly-distributed interpretation of the histogram for credit card validation would
differ from the exponentially-distributed interpretation. We used the well-known loga-
rithm method to sample from the exponential distribution [19] and computed the mean
value of 700000 groups of samples of size 30.

In our experience, a distribution such as that shown in Figure 33 (left) is unlikely to
occur in practice. For example, it has the surprising property that delays of four seconds

40 Knapp et al.

350000 ————————"—T——"——"—"—T—T—T————— 350000

300000 9 300000

250000 q 250000

200000 1 200000

150000 1 150000

100000 1 100000

50000 1 50000

S L 0
12345678 91011121314151617181920 12345678 91011121314151617181920

Figure 33. Specified (left) and sampled (right) distributions for credit card validation

are very likely but delays of three seconds are impossible. Also, there is a very marked
difference between the number of delays of five seconds and delays of six, which also
seems surprising. In contrast, distributions as seen from our sample in Figure 33 (right)
occur frequently because they are a convolution of two heavy-tailed distributions. Credit
card validation requires network use where variations in network load add additional
delays, leading to heavy-tailed distributions. The area under the curve is 700000 in both
cases.

Other histogram-specified continuous distributions are treated similarly. We first
make a weighted probabilistic choice and then delay for a exponentially-distributed
time.

Analysis. From our process algebra model we obtain a finite-state continuous-time
Markov chain represented as a matrix, (), to be analysed to find the probability of being
in each of the states of the model. At equilibrium the probability flow into every state is
exactly balanced by the probability flow out so the equilibrium probability distribution
can be found by solving the global balance equation 7@ = 0 subject to the normal-
isation condition), w(z;) = 1. From this probability distribution can be calculated
performance measures of the system such as throughput and utilisation.

An alternative is to find the transient state probability row vector w(t) =
[mo(t), ..., mpn—1(t)] where m;(t) denotes the probability that the CTMC is in state i
at time ¢. Transient and passage-time analysis of CTMCs proceeds by uniformisa-
tion [20,21]. The generator matrix, @, is “uniformized” with: P = @/q + I where
q > max; |Q;;]. This process transforms a CTMC into one in which all states have the
same mean holding time 1/q.

From this information we can assess a service-level agreement for the system. A
service-level agreement typically incorporates a time bound and a probability bound on
paths through the system behaviour. In this case we can attempt to answer questions
of the form “Will at least 50% of all sales go from startNewSale to handoutReceipt
within 40 seconds?” which has as a probability bound “at least 50%”, as a time bound
“within 40 seconds”, and as the paths through the system behaviour all paths starting
with startNewSale and ending with handoutReceipt.

Modelling the CoCoME with the JAVA/A Component Model 41

We investigated how the likelihood of having completed sales varied over time,
looking at periods of 10, 30, 50 and 80 seconds. Within this we looked at the passage
of time from the beginning of a sale to having scanned all of the items (Figure 34 has
these results). We found that in 50% of cases scanning would be completed within 30
seconds (see Figure 34(b)).

We considered how the completion of sales varies as a function of time (Figure 35
has these results). Having scanned all of the items is a necessary pre-requisite to com-
pleting the transaction by giving the receipt so the probability of completing the entire
sale is, at any point in time, lower than the probability of having scanned all of the
items. For example, we found that only 32% of sales would be completed within 30
seconds (see Fig. 35(b)) and that it would take at least 44 seconds to complete 50% of
sales (see Fig. 35(c)).

Finally, we considered the advantage to be gained by using the express checkout
where customers in the queue have no more than 8 items to purchase. As would be ex-
pected, the sale is always likely to be completed more quickly at the express checkout
but the advantage is not as great as might be expected. At the express checkout 50%
of sales are completed within 40 seconds as opposed to the 44 seconds spent at a nor-
mal checkout (see Figure 36(c)). In our model we included the possibility of customers
with 8 items or fewer choosing to go to a normal checkout instead of the express check-

Probability of completion of the scanning of the items Probability of completion of the scanning of the items

0.25 0.55
o
e
e 05
// A
0.2 " 0.45 e
-~ o
- 04| //
2 015 // 2 035 L
5 . 5 -
B] 0.3
o [
o 0.1 a 025r
02
0.05 1 0.15
0.1
0 0.05
0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30
Time Time
(a) (b)
Probability of completion of the scanning of the items Probability of completion of the scanning of the items
0.7 T 0.85
. 0.8 _—
06 | o _—
e ///
05 - / -
z 2 -
3 5
2 o04f £
2 <}
o a
03
02}
01
0 5 10 15 20 25 30 35 40 45 50 50 60 70 80

Figure 34. Graphs showing how the probability of completing scanning (from beginning the sale

Time

©

Time

(@)

to scanning the last item) varies over (a) 10, (b) 30, (c) 50 and (d) 80 seconds

42 Knapp et al.
Probability of completion of the entire sale Probability of completion of the entire sale
0.05 T T 0.35
0.045 -
03
0.04 1
0.035 - 4 0.25
2 003r o 1 2 L
£ - £ o2
z 0.025 - /] 3
& o002} iy & 01
o
0.015 - P P q 01l P
0.01 [q e
0.05 -~
0.005 / — L
0 0
0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30
Time Time
(a) (b)
Probability of completion of the entire sale Probability of completion of the entire sale
0.6 T 0.8
e
05 P o7y
~ —
06 | ~
04| —
> > ~
%‘ % 05 - e
g g
£ g 0.4
0.2
03
01t P] |
L 0.2
ol—= . M . . M . 01
0 5 10 15 20 25 30 35 40 45 50 20 30 40 50 60 70 80
Time Time
() (@

Figure 35. Graphs showing how the probability of completing a sale (from beginning to giving
the receipt) varies over (a) 10, (b) 30, (c) 50 and (d) 80 seconds

out, because we have seen this happening in practice. This goes some way to explaining
why the difference in the results is not larger.

1.5 Tools

1.5.1 Qualitative and Quantitative Analysis

HUGO/RT. HUGO/RT [22] is a UML model translator for model checking, theorem
proving, and code generation: A UML model containing active classes with state ma-
chines, collaborations, interactions, and OCL constraints can be translated into the sys-
tem languages of the real-time model checker UPPAAL, the on-the-fly model checker
SPIN, the system language of the theorem prover KIV, and into Java and SystemC code.
The input can either be directly be given as an XMI (1.0, 1.1) file or in a textual format
called UTE (for an example see Fig. 38).

In the CoCoME, we use HUGO/RT for two purposes: On the one hand, we check
the deadlock-freedom of connectors by translation into a model checker; however, as
currently HUGO/RT’s model checking support is limited to finite-state systems, ab-
straction has to be applied (manually) to infinite parameter domains. On the other hand,
we use code generation into Java for component behaviours (see Sect. 1.5.2).

Modelling the CoCoME with the JAVA/A Component Model 43

Differences between the express checkout and a normal checkout Differences between the express checkout and a normal checkout
0.08 T T T T 0.4 T T
express checkout express checkout —+—
0.07 normal checkout B 035 L normal checkout
0.06 - 03
o
-
-
> 0.05 /"/ > 0.25
= " =
3 3
5 004 // g o2
< o o
a o a
0.03 o 0.15
0.02 0.1
i
0.01 0.05 o
0 0
0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30
Time Time
(a) (b)
Differences between the express checkout and a normal checkout Differences between the express checkout and a normal checkout
0.6 T T T T 0.8 T T
express checkout ——" express checkout ———
normal checkout -+~ 07 normal checl =
05 e 4 .7 | L
// —
S 0.6 - - —
04| 1 -
> >
£ £ o5 -
E L E
- g
£ g 0.4
0.2
03
01| P R [
L 0.2
0 ’ 01
0 5 10 15 20 25 30 35 40 45 50 20 30 40 50 60 70 80
Time Time
() (@

Figure 36. Graphs showing how the advantage of using the express checkout (8 items or fewer)
over using a normal checkout (100 items or fewer) varies over (a) 10, (b) 30, (c) 50 and (d) 80
seconds

LTSA. For producing the graphs of the I/O-transition systems used in the behavioural
analysis of our model and for the analysis of component correctness and behaviour
reflection of ports we have used the Labelled Transition System Analyser (LTSA [13]).
The LTSA tool supports the process algebra FSP [13] and, indeed, we have defined
appropriate FSP processes for most of the transitions systems used in our model for
the CoCoME. In this way we have expressed port products by parallel composition
with synchronisation on shared labels and we have proved observational equivalence
of transition systems by exploiting the minimisation procedure of LTSA. The concrete
form of the used FSP processes is not shown here but can be examined in [10].

PEPA. PEPA (Performance Evaluation Process Algebra [8]) is a process algebra that
allows for quantitative analysis of the CoCoME using Continuous-Time Markov Chains
(CTMO). For the quantitative analysis of Sect. 1.4.3 we used the IPC tool [9].

1.5.2 Architectural Programming

JAVA/A [3,23] is a Java-based architectural programming language which features syn-
tactical constructs to express JAVA/A component model elements (see Sect. 1.2) directly
in source code. Thus, the implementation of a component-based system using JAVA/A

44 Knapp et al.

is straightforward. Additionally, JAVA/A programs gain robustness with respect to ar-
chitectural erosion: it is obvious to software maintainers which parts of the code belong
to the architecture and therefore need special attention during maintenance.

We implemented a subset of the CoCoME, consisting of one component CashDesk
including all of its sub-components and a simplified component Inventory to highlight
JAVA/A as implementation language for component-based systems. Fig. 37 shows the
source code of the top level composite component SimplifiedStore which contains the
CashDesk and the Inventory. The assembly (1. 2-3) declares the sets of component and
connector types which may be used in the configuration of the composite component.
The initial configuration, consisting of one cash desk connected to one inventory, is
established in the constructor of the composite component (1. 4-11). Components which
are declared with the additional keyword act ive will be started after the initialisation
process (which basically consists of initialising and connecting the components).

composite component SimplifiedStore {
2 assembly { components { Inventory, CashDesk }

connectors { Inventory.Sale, CashDesk.CDAI; } }
4 constructor Store() {
initial configuration {
6 active component Inventory inv = new Inventory();
active component CashDesk cd = new CashDesk();
8 connector Connector con = new Connector();

con.connect (inv.Sale, cd.CDAI);

Figure 37. JAVA/A composite component SimplifiedStore

In Fig. 38 we give a very brief overview of the JAVA/A implementation of the com-
ponent CashDeskApplication.'* In lines 3-20 the port CDACB' is declared (see Fig. 9).
Provided operations annotated with the keyword async instead of a return type are
asynchronous. The port protocol (lines 10-19) is specified using the language UTE. In
order to verify the absence of deadlocks of the connection of two ports, the JAVA/A
compiler is closely integrated with HUGO/RT (see Sect. 1.5.1).

The operations declared in a port’s provided interface must have a realisation
in the respective port’s component. The implementation of the provided operation
saleStarted of the port CDACB is shown in lines 21-24. In the body of the private
helper method processSaleStarted (lines 25-31) required port operations are in-
voked. These invocations leave the component’s boundaries and therefore the checked
exception ConnectionException has to be handled.

We have used HUGO/RT to generate Java-based implementations of the state ma-
chines to realise the components’ behaviour. Thus the components’ behaviour adheres
strictly to the specifications given in the previous sections. However, to use the spec-
ified state machines for code generation, a few minor adoptions have been necessary:
i.e., calls to required port operations are delegated to internal helper operations (e.g.

4 Of course, most of the component’s body is omitted here. However, the complete implemen-
tation is available online [10].

15 In contrast to Sect. 1.3, in the JAVA/A implementation port names are written without hyphens
due to Java naming conventions.

Modelling the CoCoME with the JAVA/A Component Model 45

simple component CashDeskApplication {

2 int itemCounter = 0;
port CDACB {
4 provided { async saleStarted();
async productBarCodeEntered (int barcode);
6 async saleFinished();
async paymentModeCash(); ... }
8 required { void changeAmountCalculated(double amount) ;
void saleSuccess(); }
10 protocol <! behaviour {
states { initial init;
12 simple a; simple b; simple e; ... simple h; }
transitions { init -> a;
14 a —-> b { trigger saleStarted; }
b -> b { trigger productBarCodeEntered; }
16 .
e —> h { effect out.saleSuccess(); }
18 h -> b { trigger saleStarted; }
Pyt

20 }o...
void saleStarted() implements CDACB.saleStarted() {
2 Event event = Event.signal ("send saleStarted", new Object[]{});
this.eventQueue.insert (event);
24 oL
void processSaleStarted() {

26 try {
CDAP.saleStarted();
28 CDACDG.saleStarted();
}
30 catch (ConnectionException e) { e.printStackTrace(); }

}
Figure 38. The JAVA/A simple component CashDeskApplication

processSaleStarted in Fig. 38, lines 25sqq.) and parameter values of incoming
operation calls are stored in helper variables. The complete JAVA/A implementation of
the simplified CoCoME is available online [10].

1.6 Summary

Our approach to modelling the CoCoME has been based on a practical component
model with a strong focus on implementability and modular (component-wise) veri-
fication. In fact our UML based component model was originally introduced for the
architectural programming language JAVA/A supporting encapsulation of components
by ports. Based on the semantic foundations, we have that our strategy for modular
verification of properties of hierarchically constructed components works for the archi-
tectural patterns used in the CoCoME. The semantic basis of our functional analysis was
given in terms of I/O-transition systems to which we could apply standard operators,
for instance for information hiding, thus focusing only on the observable behaviour of
components on particular ports. For non-functional properties, we used continuous-time
Markov chains to quantify performance.

Currently we are developing support for modelling runtime reconfigurations of
component networks. This will be necessary if the CoCoME requirements would be
extended, e.g., to use cases for opening and closing cash desks. Also, the current com-
ponent model does not directly integrate means for specifying non-functional proper-
ties. Our component model assumes that all connectors are binary which, due to the

46 Knapp et al.

possibility to define ports with an arbitrary multiplicity, is no proper restriction. How-
ever, our analysis method actually supports multiplicities greater than one only if the
actions of parallel executing instances of the same port or component declaration can
be arbitrarily interleaved, which was indeed the case in the example. In the centre of our
behavioural analysis was the interaction behaviour of components with asynchronous
message exchange via their ports. For synchronous, data-oriented behaviours we still
should add assertion-based techniques (e.g., in terms of pre- and post-conditions) whose
integration in a concurrent environment, however, needs further investigation.

Acknowledgement. We would like to thank the organisers for the detailed preparation
of the common component modelling example. We gratefully acknowledge many very
useful and detailed comments made by the referees of a previous version of this study.
We also would like to thank Mila Majster-Cederbaum for many fruitful discussions on
the topic of interacting systems and their verification.

1. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John Wiley &
Sons, New York (1994)

2. Object Management Group: Unified Modeling Language: Superstructure, Version 2.0. Tech-
nical report, OMG (2005)

3. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A Component Model
for Architectural Programming. In Barbosa, L., Liu, Z., eds.: Proc. 2nd Int. Wsh. Formal
Aspects of Component Software (FACS’05). Volume 160 of Elect. Notes Theo. Comp. Sci.
(2006) 75-96

4. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM SIGSOFT
Softw. Eng. Notes 17(4) (1992) 40-52

5. Lau, K.K., Wang, Z.: A Survey of Software Component Models (Second Edition). Technical
Report CSPP-38, School of Computer Science, The University of Manchester (2006)

6. Aldrich, J.: ArchJava. http://www.archjava. org(05/17/07).

7. Seco, J., Caires, L.: A Basic Model of Typed Components. In Bertino, E., ed.: Proc. 14™ Eu-
rop. Conf. Object-Oriented Programming (ECOOP’00). Volume 1850 of Lect. Notes Comp.
Sci., Springer, Berlin (2000) 108-128

8. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press (1996)

9. Bradley, J., Clark, A., Gilmore, S.: User manual for 1PC: The Imperial PEPA Compiler.
http://www.doc.ic.ac. uk/ipc<05/02/07).

10. Baumeister, H., Clark, A., Gilmore, S., Hacklinger, F., Hennicker, R., Janisch, S., Knapp,
A., Wirsing, M.: Modelling the CoCoME with the JAVA/A Component Model. http:
//www.pst.ifi.lmu. de/Research/current—projects/cocome/(%/m/m).

11. Reussner, R., Krogmann, K., Koziolek, H., Rausch, A., Herold, S., Klus, H., Welsch, Y.,
Hummel, B., Meisinger, M., Pfaller, C., Mirandola, R.: Chapter 3, CoCoME — The Common
Component Modelling Example. In: CoCoME Book. (2007)

12. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: Proc. 9" Ann. Symp. Foundations
of Software Engineering (FSE’01), Wien, ACM Press (2001) 109-120

13. Magee, J., Kramer, J.: Concurrency — State Models and Java Programs. John Wiley & Sons
(1999)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modelling the CoCoME with the JAVA/A Component Model 47

Hennicker, R., Janisch, S., Knapp, A.: On the Compositional Analysis of Hierarchical
Components with Explicit Ports (2007) Submitted. http://www.pst.ifi.lmu.de/
Research/current—projects/cocome/(06/22/07>.

Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting Families of Software Systems with
Process Algebras. ACM Trans. Softw. Eng. Methodol. 11(4) (2002) 386426

Hennicker, R., Baumeister, H., Knapp, A., Wirsing, M.: Specifying Component Invariants
with OCL. In Bauknecht, K., Brauer, W., Miick, T., eds.: Proc. GI/OCG-Jahrestagung. Vol-
ume 157/I of books@ocg.at., OGI (Austrian Computer Society) (2001) 600-607

Bidoit, M., Hennicker, R.: A Model-theoretic Foundation for Contract-based Software
Components (2007) Submitted. http://www.pst.ifi.lmu.de/people/staff/
hennicker/.

Buchholtz, M., Gilmore, S., Haenel, V., Montangero, C.: End-to-End Integrated Security and
Performance Analysis on the DEGAS Choreographer Platform. In Fitzgerald, J.S., Hayes,
LJ., Tarlecki, A., eds.: Proc. Int. Symp. Formal Methods Europe (FM’05). Volume 3582 of
Lect. Notes Comp. Sci., Springer, Berlin (2005) 286301

Ahrens, J., Deiter, U.: Computer methods for sampling from the exponential and normal
distributions. Communications of the ACM 15(10) (October 1972) 873882

Grassmann, W.: Transient solutions in Markovian queueing systems. Computers and Oper-
ations Research 4 (1977) 47-53

Gross, D., Miller, D.: The randomization technique as a modelling tool and solution proce-
dure for transient Markov processes. Operations Research 32 (1984) 343-361

Knapp, A.: HUGO/RT Web page. http://www.pst.ifi.lmu.de/projekte/
hugo(05/02/07)

Hacklinger, F.: JAVA/A — Taking Components into Java. In: Proc. 13" ISCA Int. Conf.
Intelligent and Adaptive Systems and Software Engineering (IASSE’04), ISCA, Cary, NC
(2004) 163-169

