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Abstract

We propose an analysis method for the behaviour of large scale components following their modular and hierarchical struc-
ture. The method mirrors the different verification tasks concerning the developer of a single component and the system
architect who puts components together. Our main results provide, first, criteria under which the deadlock freeness of hier-
archical components can be checked and, secondly, criteria which allow for checking the correctness of components w.r.t.
the observable behaviour at their explicit ports. For the static structure of components we use UML 2.0 notation and for the
description of behaviours we use I/O-transition systems.
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1 Introduction

Components, being based on the notion of strong encapsulation, foster a compositional
approach to behavioural verification. Port-based component models, as e.g. the ROOM
model [17], stress this encapsulation aspect by taking ports to form the exclusive and
explicit communication windows of components; additionally, ports clarify the different
views on a component and its possible uses. The behavioural properties of a component
should thus be governed only by the observable behaviour at the component ports. In
particular, when composing components hierarchically all sub-component implementation
details become hidden behind the port facade of the super-component.

The compositional analysis of component properties is, in fact, a long-standing topic
and several proposals have been provided regarding the analysis of different architectural
styles [4,1,2,5], global deadlock, liveness, and progress properties [10,11] and protocol cor-
rectness [19] — to mention just a few. However, the study of explicit ports in hierarchical
components has received little attention.

1 This research has been partially supported by the GLOWA-Danube project (01LW0303A) sponsored by the German
Federal Ministry of Education and Research.
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In our analysis approach we are interested in checking the deadlock-freeness and cor-
rectness of components. The basic idea is to proceed in a hierarchical way, starting from
the analysis of the (local) properties of simple components and their ports from which we
can then derive, by a compositionality result for particular acyclic topologies, properties of
composite components. Thus, following the hierarchical construction of components, we
finally obtain results for the behaviour of the global system. Our analysis process consists
of the following steps:

(i) For each simple component we analyse
• the behaviour specification of each of its ports,
• the behaviour specification of the component itself, and
• the relationships between the component behaviour and the behaviour specified for

each of its ports.

(ii) For each composite component we analyse
• the interaction behaviour of connected ports,
• the behaviour of the composite component which can be inferred from the be-

haviours of its constituent parts, and
• the relationships between the behaviour of the composite component and the be-

haviour of each of its relay ports.

The semantic basis of our study are labelled I/O-transition systems which are used to for-
mally represent the behaviour specifications of ports and components. The static structure
of components is specified in UML 2.0.

The remainder of this paper is structured as follows: In Sect. 2 we discuss related work.
Sect. 3 summarises the foundations of our formal model, Sect. 4 reviews our component
model by means of an example. In Sect. 5, we start with the analysis of simple components
and pursue our method in Sect. 6 with analysing composite components. Finally, Sect. 7
summarises our approach and outlines some future work.

2 Related Work

Most closely related to our study is the work of Bernardo et al. [4,1,2] which is also moti-
vated by the derivation of global properties from local ones, structured along architectural
types. Though [4,2] considers more general architectural topologies (including cyclic struc-
tures) the conditions for modular verification are significantly stronger requiring what we
would call “behaviour reflection” for all connections between architectural elements, i.e.
components. In contrast to [4,2] we are strongly in favour of using explicit port proto-
cols with a preferably simple presentation on which the system architect can rely when
connecting components.

In [14] the behaviour of components within hierarchical component architectures is
specified in terms of behaviour protocols [15]. The approach focuses on local analysis of
components under a particular (preferably small) environment which guarantees the func-
tioning of the component when plugged into the whole system. Instead of computing envi-
ronments for checking local components the use of explicit port protocols which define the
assumptions and guarantees w.r.t. any compatible environment looks beneficial.

Gössler et al. [10,11] analyse global deadlock-freedom, liveness and local progress
of component-based systems building on a theoretical framework for component-based
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modelling, called interaction systems [12]. Systems may be constructed in a hierarchical
way, but the individual components remain visible after composition. This is in contrast to
our approach with explicitly specified relay ports of composite components.

In [18] a general framework for the modelling and analysis of component-based sys-
tems is developed, specifically considering the problem of component substitutability. Prop-
erties such as deadlock-freedom are not discussed explicitly, but may carry over if the
parameterised formalism of component interaction automata is applied to our port-based
component model.

Carrez et al. [5] define a notion of sound assemblies for which (external) deadlock-
freeness is shown. An assembly is a configuration of components and contracts. It is sound
if all components are correct w.r.t. to their interface specifications and all interconnections
are compatible. For sound assemblies deadlock-freeness is shown by checking a depen-
dency relation for cycles. The relation is constructed along the specified communications.
Aspects such as observational equivalence, minimisation or hierarchical system construc-
tion are not considered.

Tracta [9] defines a notion of composite components where the behaviour is, similar
to our approach, computed from the behaviour of the particular subcomponents, them-
selves represented by labelled transition systems. Hierarchical composition is efficiently
supported by employing transition systems after minimisation w.r.t. observational equiva-
lence. However, explicit (relay) ports are not considered, hence the correctness of compos-
ite components is not of concern. Furthermore, behaviours, be they specified or computed,
are checked against user-defined properties instead of deriving global properties from local
behaviours.

In Wright [3] the focus is on the formalisation and the analysis of local component
properties and connectors without drawing global conclusions like deadlock-freedom in
hierarchically constructed systems.

Yellin and Strom [19] define a notion of protocol compatibility between two commu-
nication partners based on so-called collaboration specifications, essentially defining the
legal ordering of interface messages by means of finite state machines. Concentrating on
single interactions, neither do they consider composite components, nor global properties
of composed systems.

3 Preliminaries: I/O-Transition Systems

In the following we summarise the basic definitions, operators and facts for I/O-transition
systems that will be needed hereafter for the behaviour specifications and behavioural anal-
ysis of components and ports. Our definitions are inspired by the interface automata ap-
proach of [8]. From the theoretical point of view it is not necessary to restrict here to
finitary transition systems but in the concrete cases we will only consider finitary transition
systems which allow for model checking.

An I/O-labelling (I,O, T ) consists of three mutually disjoint sets of input (or provided)
labels I , output (or required) labels O, and internal labels T . An I/O-transition system
A = (Q, q0,∆) over an I/O-labelling (I,O, T ) is given by a set of states Q, an initial state
q0 ∈ Q and a transition relation ∆ ⊆ Q×(I∪O∪T ∪{τ})×Q; the distinguished action τ

is called invisible (or silent) action. The set of labels of A is given by Label(A) = I∪O∪T ;
the set of actions of A is given by Action(A) = Label(A) ∪ {τ}. We define the τ -closure
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of ∆ as ∆̂ ⊆ Q× (I ∪O ∪ T ∪ {τ})×Q as follows: For an l ∈ Label(A), (q, l, q′) ∈ ∆̂,
if there are q = q0, q1, . . . , qm ∈ Q and q′0, . . . , q

′
n = q′ ∈ Q such that (qi, τ, qi+1) ∈ ∆

for 0 ≤ i < m, (qm, l, q′0) ∈ ∆, and (q′j , τ, q
′
j+1) ∈ ∆ for 0 ≤ j < n; and (q, τ, q′) ∈ ∆̂ if

there are q = q0, q1, . . . , qn = q′ ∈ Q such that (qi, τ, qi+1) ∈ ∆ for 0 ≤ i < n.
An I/O-transition system A = (Q, q0,∆) is deadlock-free, if for all states q ∈ Q

reachable from q0 by transitions of ∆ there exists a transition (q, l, q′) ∈ ∆̂ with l ∈
Label(A).

Two I/O-transition systems A = (QA, q0,A,∆A) and B = (QB, q0,B,∆B) over the
same I/O-labelling (I,O, T ) are observationally equivalent [13], denoted by A ≈ B, if
there exists a weak bisimulation relation R between A and B with (q0,A, q0,B) ∈ R.
A relation R ⊆ QA × QB is a weak bisimulation relation between A and B, if for all
(qA, qB) ∈ R and all l ∈ Action(A) the following holds:

(i) ∀q′A ∈ QA . (qA, l, q′A) ∈ ∆A ⊃ ∃q′B ∈ QB . (qB, l, q′B) ∈ ∆̂B ∧ (q′A, q′B) ∈ R ,

(ii) ∀q′B ∈ QB . (qB, l, q′B) ∈ ∆B ⊃ ∃q′A ∈ QA . (qA, l, q′A) ∈ ∆̂A ∧ (q′A, q′B) ∈ R .

Observational equivalence is compatible with deadlock-freeness.
A relabelling λ : L → L′ from an I/O-labelling L = (I,O, T ) to an I/O-labelling

L′ = (I ′, O′, T ′) consists of three functions λI : I → I ′, λO : O → O′, and λT : T → T ′.
For simplicity, we write λ(l) instead of λI(l) if l ∈ I , and similarly if l ∈ O or l ∈ T . Let
A = (Q, q0,∆) be an I/O-transition system over L and let λ : L → L′ be a relabelling.
The relabelling of A w.r.t. λ is the I/O-transition system Aλ over L′ defined by Aλ =
(Q, q0,∆λ) where ∆λ = {(q, λ(l), q′) | (q, l, q′) ∈ ∆ ∧ l 6= τ} ∪ {(q, τ, q′) | (q, τ, q′) ∈
∆}. In various cases we will need a simple form of relabelling where the labels of A are
just prefixed by a given name, say n. Then we write n.A for the relabelling Aλn with
λn(l) = n.l for all l ∈ I , and similarly for l ∈ O or l ∈ T where λn is assumed to preserve
the kinds of the labels.

The hiding of an I/O-labelling L = (I, O, T ) w.r.t. a subset H ⊆ I ∪ O ∪ T is the
I/O-labelling L \ H = (I \ H,O \ H,T \ H). Let A = (Q, q0,∆) be an I/O-transition
system over L and let H ⊆ Label(A). The hiding of A w.r.t. H is the I/O-transition system
A\H over L\H defined by A\H = (Q, q0,∆\H) where ∆\H = {(q, τ, q′) | (q, l, q′) ∈
∆ ∧ l ∈ H} ∪ {(q, l, q′) | (q, l, q′) ∈ ∆ ∧ l /∈ H}.

Two I/O-labellings L1 = (I1, O1, T1) and L2 = (I2, O2, T2) are composable if I1 ∩
I2 = ∅, O1 ∩O2 = ∅, T1 ∩ (I2 ∪O2 ∪ T2) = ∅, and T2 ∩ (I1 ∪O1 ∪ T1) = ∅. The shared
labels of L1 and L2, written L1∩L2, are given by (I1∪O1∪T1)∩ (I2∪O2∪T2) which, if
L1 and L2 are composable, is just (I1 ∩O2) ∪ (O1 ∩ I2). The product of two composable
I/O-labellings L1 and L2 is the I/O-labelling L1⊗L2 = ((I1∪I2)\ (L1∩L2), (O1∪O2)\
(L1 ∩ L2), T1 ∪ T2 ∪ (L1 ∩ L2)). Let A1 = (Q1, q1,∆1) and A2 = (Q2, q2,∆2) be two
I/O-transition systems over composable I/O-labellings L1, L2, respectively. The product
of A1 and A2 is the I/O-transition system A1 ⊗ A2 = (Q, q0,∆) over L1 ⊗ L2 defined as
follows: 2

(i) Q = Q1 ×Q2;

(ii) q0 = (q1, q2);

(iii) ∆ = {((q1, q2), l, (q′1, q2)) | (q1, l, q
′
1) ∈ ∆1 ∧ l /∈ L1 ∩ L2 ∧ q2 ∈ Q2} ∪

2 Intuitively, the product of A1 and A2 describes the parallel composition of A1 and A2 where coinciding input and output
labels are synchronised and then become internal labels.
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{((q1, q2), l, (q1, q
′
2)) | (q2, l, q

′
2) ∈ ∆2 ∧ l /∈ L1 ∩ L2 ∧ q1 ∈ Q1} ∪

{((q1, q2), l, (q′1, q
′
2)) | (q1, l, q

′
1) ∈ ∆1 ∧ (q2, l, q

′
2) ∈ ∆2 ∧ l ∈ L1 ∩ L2}.

In several cases, for synchronisation of A1 and A2, some labels of A1 and of A2

must first be identified before the product operator is applied. For this purpose we use
the synchronised product defined in the following way: Let n1, n2 be two names. Then
A1 ⊗

(n1,n2)
A2 denotes the product A1λ1 ⊗ A2λ2 where the relabelling λ1 maps each label

of A1 of the form n1.l to the label (n1, n2).l and, similarly, λ2 maps each label of A2 of the
form n2.l to the label (n1, n2).l. Both relabellings are assumed to preserve the I/O nature
of the labels, i.e. their inclusion in I , O and T respectively.

All the above operators on I/O-transition systems preserve observational equivalence.

4 Ports, Components and their Behaviours

Building upon ideas from [17], we consider components to be strongly encapsulated be-
haviours. Encapsulation is achieved by ports which regulate any interaction of components
with their environment. Within this section we illustrate our underlying component model
by an example. First, we consider the static and then the dynamic aspects of the system
architecture. The notation follows our component metamodel defined in [16].

4.1 Static Component Structure

The following example is an extension of the compressing proxy system presented in [4],
partly following the proposal to the design and implementation of a proxy server with
hybrid data compression facilities in [6]. An HTTP proxy server mediates connections
between a web server and clients, like web browsers, which are executing on different
machines within a local area network. In order to increase network bandwidth, the proxy
server may apply different compression techniques depending on the kind of information
transfered. In our example the proxy distinguishes textual (txt) from graphical data (gif)
and applies different compression tools before sending the data further downstream. We
model this scenario by a composite component CompressingProxy which is essentially a
composition of three simple (i.e. not further decomposed) components Adaptor, GZip and
GifToJpg. These components are connected via ports according to the given port declara-
tions as shown in the composite structure diagram in Fig. 1.

Figure 1. Static structure of a compression proxy server

Port declarations have the form p : P [m] where p is a port name, P a port type and
m the port multiplicity indicating how many instances of that port a component (instance)
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can have. Port names are locally unique in the component where they are declared. For
example, the component Adaptor declares four ports each of them to be instantiated exactly
once. These ports can be referred to by their names u, t, g and d. In case of composite
components only so-called relay ports are declared which mirror the non-connected ports
of subcomponents. The ports l and r, shown grey in Fig. 1, are relay ports of the composite
component CompressingProxy. Port types have a provided and a required interface which
are depicted in a condensed form, using the ball-and-socket notation of the UML, on the
right-hand side of Fig. 1. A provided interface declares a set of (provided) operations that
can be called by the user of a component; a required interface consists of a set of (required)
operations that are needed for the functioning of a component. In our example the interfaces
consist of the following operations: USP (openTxt, openGif, data, close), DSR (compressed),
TCR (txt, endTxt), TCP (bufFul,zip), GCR (gif) and finally GCP (jpg).

A composite component comprises of a set of component declarations, a set of (binary)
connectors, which connect ports of subcomponents, and a set of relay port declarations.
Component declarations have the form c : C[m] where c is a component name, C a com-
ponent type and m a multiplicity indicating how many instances of that component a com-
posite component (instance) can have. Component names are locally unique in the com-
posite component where they are declared. For instance, the component CompressingProxy
declares three subcomponents each of them to be instantiated exactly once. These compo-
nents can be referred to by their names adapt, gzip and gifToJpg.

Intuitively a proxy of type CompressingProxy receives stream-based data on its port l
which is relayed to the port u of the contained component adapt. The adaptor distinguishes
the compression of the formats txt and gif. In the former case adapt directly forwards
the stream to be compressed via t to gzip, whereas in the latter case the component waits
until it has received all upstream data, and only then it sends the complete image to be
compressed via g to gifToJpg. After having received the compression result, adapt sends the
data further downstream using port d which is relayed to the port r of the proxy.

4.2 Port and Component Behaviours

According to our metamodel (see [16]), for each port and for each simple component a
behaviour specification must be provided by the component developer. For the formal
representation of behaviours we use I/O-transition systems; cf. Sect. 3. The distinction be-
tween input, output and internal labels allows, amongst others, for (syntactical) consistency
checks during component composition. Due to the abstract nature of transition systems our
approach can be used for any concrete syntax of behaviour specifications, like e.g. process
algebras or UML state machines, as long as a semantic translation into I/O-transition sys-
tems is provided. The graphs, subsequently representing behaviours in our example have
been produced with the LTSA tool [13]. We indicate that a label i is an input label by the
visual representation i and, symmetrically, that a label o is an output label by the visual
representation o. 3 Furthermore, several transitions between the same two states are shown
as a single transition together with the corresponding set of labels.

First, we consider behaviour specifications of ports. As pointed out in Sect. 4.1 a port
has a provided and a required interface. Calls of operations of the provided interface of

3 The LTSA tool supports the process algebra FSP [13] and for the visual representation of the I/O-transition systems we
defined appropriate FSP processes. For the reasons explained above the concrete FSP processes are, however, irrelevant here.
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a port are represented by input labels; for sending an operation request according to the
required interface of a port we use output labels. 4 Since a port represents a window of
a component to the outside, a port has no internal labels. Note, however, that transi-
tions with the invisible action τ can still occur to model a possible internal choice (of
the port’s owner component) which is not visible at the port but may have an impact on
the future behaviour of the port. As a concrete example we consider the behaviour speci-
fication of the port TxtCompr of the component Adaptor; see Fig. 1. It is given by the I/O-
transition system shown in Fig. 2(b) over the I/O-labelling (I,O, T ) with I = {bufFul, zip},
O = {txt, endTxt} and T = ∅. After having sent an initial part of textual data using the ac-

(a) UpStream (b) TxtCompr (c) GifCompr

(d) DownStream (e) Zip (f) ToJpg

Figure 2. I/O-transition systems for the ports of the static structure in Fig. 1

tion txt, there is an internal choice between completion and continuation of the current
communication. In the former case the signal endTxt is sent as a notification about the
completed data stream. Thereafter, the port waits to receive zip to retrieve the particular
zip archive. If the internal decision was to continue data compression, the possibility of
a buffer overflow needs to be taken into account. In case the connected compression tool
signals bufFul, the port is forced to retrieve the current archive via zip. After that, in order to
continue the compression of the current data stream, the communication starts again with
the output action txt. Otherwise the communication continues directly with sending txt until
the data stream is finished or the buffer capacity has been reached.

Next, we consider behaviour specifications of simple components. Since a component
can only communicate with its environment via its ports, any input label of a component
has the form p.i where p is a port name and i is an input label of the port. Similarly, the
output labels of a component have the form p.o. 5 In contrast to ports, components can have
internal labels which model internal actions of the component. For instance, the behaviour
specification of the simple component Adaptor is given by the I/O-transition system shown
in Fig. 3. Its I/O-labelling (I,O, T ) consists of I = {u.openTxt, u.openGif, u.close, u.data,
t.zip, t.bufFul, g.jpg}, O = {d.compressed, t.txt, t.endTxt, g.gif} and T = {nojpg}.

4 In our examples the interface operations have no parameters and hence we can use their plain names as labels. In general,
for operations with parameters, we can again use their plain names if the actual arguments are not relevant for the behaviour.
In the other cases we must assume that the impact of the arguments can be expressed by an appropriate partition of the
argument types which then will be reflected by the chosen labels. Of course, for applying model checking techniques this
partition must be finitary [7].
5 For the definition of input and output labels of components we do not take into account here the multiplicities of ports.
This is possible if ports are declared with multiplicity 1 (as in our example) or if we assume that actions of different port
instances of the same port are independent from each other, i.e. can be arbitrarily interleaved.
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Figure 3. I/O-transition system for component Adaptor

The behaviour specification introduces an internal transition (11, noJpg, 2), refining the
τ -transition of the port behaviour in Fig. 2(c). Notice that the transition’s trigger is not
further specified here. One may think, for instance, of a loop in state 11 such that the
component waits only a fixed amount of time for the compression of gif data. If the
compression takes too long, the adaptor sends the original data further downstream instead
of waiting for the compression result. In this case the internal transition noJpg would be
fired. In fact, internal decisions like this are often forgotten to be specified in the external
behaviour of a component, yielding unexpected interaction behaviour of this component.
Our notion of component correctness together with an interaction analysis aims to reveal
erroneous situations of this kind.

For lack of space we do not show behaviour specifications of the simple components
GZip and GifToJpg; since these components are equipped with one port only, their behaviour
is not too much different from the behaviour of their ports (Fig. 2(e), 2(f)).

5 Analysis of Simple Components

In the first step of our model analysis we consider simple components which are the basic
building blocks of our system model. For each simple component we check the deadlock-
freeness of the behaviour specification of each of its ports and the deadlock-freeness of the
behaviour specification of the component itself. Obviously, this condition is satisfied for
all simple components and ports of our example.

A more subtle point concerns the relationships between the behaviour of a component
and the behaviour specified for each of its ports which must in some sense fit together. To
consider this issue more closely, let C be a component with associated behaviour repre-
sented by the I/O-transition system AC and let p : P be a port declaration 6 of C such that
the behaviour specification associated to P is represented by the I/O-transition system AP .
Intuitively, the component C is correct w.r.t. its port declaration p : P if the component
behaviour supports the behaviour specified for that port. Apparently this is the case if the
component observable at port p is observationally equivalent to the behaviour specification
of P (up to an appropriate relabelling).

Formally, the observable behaviour of C at port p, denoted by obsp(C), can be con-
structed by hiding all labels of AC which do not refer to p. Using the hiding operator (see
Sect. 3), obsp(C) = AC \H where H is the set of internal labels of AC together with all

6 As explained in Sect. 4.2 we disregard port multiplicities here.
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input or output labels q.op of AC such that q 6= p. Since the transition system obsp(C)
has no internal labels and, up to the prefix p, the same input and output labels as AP we
can now require that it is observationally equivalent to p.AP (which is the copy of AP , see
Sect. 3). These considerations lead to the following definition of component correctness.

Definition 5.1 Let C be a component and AC the I/O-transition system representing the
behaviour of C. Let p : P be a port declaration of C and AP the I/O-transition system
representing the behaviour specification of P . The component C is correct w.r.t. its port
declaration p : P if obsp(C) ≈ p.AP . The component C is correct, if it is correct w.r.t. all
its port declarations.

Let us illustrate how we can check the correctness of the component Adaptor w.r.t. its
port t : TxtCompr. First we consider the observable behaviour obs t(Adaptor) of the Adaptor
at port t, which is just the transition system shown in Fig. 3 where all labels which are not
prefixed by t are replaced by τ . If we minimise this transition system w.r.t. observational
equivalence then we obtain (up to the prefix t) the transition system in Fig. 2(b) which
represents the behaviour of the port type TxtCompr. This shows the correctness of the
Adaptor component w.r.t. its port t : TxtCompr. In fact, using for instance the LTSA tool one
can check that the component Adaptor is correct w.r.t. all of its ports.

The definition of the observable behaviour of a component at a particular port can be
generalised in a straightforward way to arbitrary subsets of the port declarations of a com-
ponent. Given a component C and some port declarations p1 : P1, . . . , pk : Pk of C, the
observable behaviour of C at ports p1, . . . , pk is denoted by obsp1,...,pk

(C). In the special
case where p1 : P1, . . . , pk : Pk consists of all port declarations of C, obsp1,...,pk

(C) is
called the observable behaviour of C and simply denoted by obs(C). Obviously, observ-
able behaviours of components at particular ports can be constructed by successively re-
ducing the observed ports, e.g., obsp(C) ≈ obsp(obs(C)). This can be particularly useful
for verification, since after each reduction step a minimisation of the resulting observable
behaviour can be computed which may drastically reduce the state space. In particular,
for proving the correctness of a component at some port it may be more efficient to prove
obsp(obs(C)) ≈ p.AP (with AP as in Def. 5.1).

Note that the above definitions of correctness and observable behaviour apply not only
to simple components but also to composite components considered in the next section.

6 Analysis of Composite Components

The analysis of composite components is related to the task of a system architect who puts
components together to build larger ones. A crucial aspect of our method is that before
analysing the behaviour of a composite component we first examine the connections that
have been established between the ports of their subcomponents.

6.1 Analysis of Connectors

For the analysis of connectors one has first to check whether the connections between the
ports of components are syntactically well-defined. After that we can analyse the interac-
tion behaviour of two connected ports.

In the following let us consider a connection between two port declarations p1 : P1 and
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p2 : P2 occurring in components C1 and C2 resp. The connection is syntactically well-
defined, if the operations of the required interface of P1 coincide with the operations of
the provided interface of P2 and conversely. 7 To study the interaction behaviour of the two
ports, let AP1 be the I/O-transition system over the I/O-labelling (I1, O1, ∅) representing the
behaviour of P1 and let AP2 be the I/O-transition system over the I/O-labelling (I2, O2, ∅)
representing the behaviour of P2. According to the syntactic well-formedness condition,
O1 = I2 and O2 = I1. Any communication between the connected ports is expressed by
synchronising output labels of one port with the corresponding input label of the other port
according to the possible transitions of AP1 and AP2 . Hence, the interaction behaviour of
AP1 and AP2 can be formally represented by the port product AP1 ⊗AP2 where “⊗” is the
product operator defined in Sect. 3. Note that the transitions of the port product are marked
only by internal labels (representing interactions) or by the invisible τ -action.

A first semantic condition which should be required for a port connection is that any
two port instances can communicate with each other without the possibility to run into
a deadlock. Since the interaction behaviour of two ports is represented by the transition
system of the port product AP1 ⊗ AP2 this condition can be formalised as follows leading
to the notion of behavioural port compatibility.

Definition 6.1 Two ports P1 and P2 with behaviours represented by the I/O-transition sys-
tems AP1 , AP2 resp. are behaviourally compatible if AP1 ⊗AP2 is deadlock-free.

Figure 4 shows the port product of the ports TxtCompr and Zip which does not deadlock.
Hence both ports are behaviourally compatible.

Figure 4. Port product of TxtCompr and Zip

In general, the potential capabilities for interaction of a port will not be used when
the port is connected to another port. In this case the behaviour specified for that port
is restricted by the interaction with another port. It is, however, often the case that this
restriction applies only to one side of a connection while the behaviour of the port on the
other side is not restricted and hence fully reflected by the interaction. This property plays
an essential role for the compositionality of behaviours that will be studied below to analyse
behaviours of composite components. It can be formalised in the following way.

Definition 6.2 Let AP1 ⊗ AP2 be the port product representing the interaction behaviour
of two ports P1 and P2 (whose single behaviours are represented by the I/O-transition
systems AP1 , AP2 resp.). The interaction behaviour of P1 and P2 reflects the behaviour of
P1, if AP1 ≈ AP1 ⊗AP2 where AP1 on the lefthand-side is considered as an I/O-transition
system with all labels being internal (in order to fit to the labelling of the port product).

7 In general, one could use a more flexible condition such that the required operations of one port are included in the
provided operations of the other one. However, it is technically more convenient and also sufficient for the example to use
the more restrictive condition from above.
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Considering our example, we have verified, using LTSA, that the interaction behaviour
of the two ports GifCompr and ToJpg reflects the behaviour of GifCompr. Obviously, this is
not the case for the ports TxtCompr and Zip.

6.2 Behaviour of Composite Components

In contrast to simple components the behaviour of a composite component is not explic-
itly specified by the developer but is derived from the behaviours of the single parts of the
composite component. For the behaviour of a composite component we construct the prod-
uct of the observable behaviours of all of its subcomponents which must be synchronised
according to the given port connectors. That is, we focus on the interactions between the
subcomponents (via their connected ports) and on the actions on the relay ports. The in-
ternal behaviour of the subcomponents is not relevant. How this construction is technically
performed for the case of a composite component with two connected subcomponents and
with one relay port is discussed in the following. The construction can be generalised in a
straightforward way to arbitrary many subcomponents, connectors and relay ports.

Let CC be a composite component which contains two component declarations c1 : C1

and c2 : C2. As for ports we omit multiplicities of component declarations and therefore
assume that subcomponents are either declared with multiplicity 1 (as in our example)
or the actions of different component instances of the same component declaration are
independent from each other. 8 Assume that C1 contains two port declarations r : R, p1 :
P1 and C2 contains one port declaration p2 : P2 such that p1 : P1 and p2 : P2 are connected
and the connection is syntactically well-defined (i.e. the output labels of P1 correspond to
input labels of P2 and vice versa). Moreover, assume that CC has one relay port declaration
rp : RP which refers to the port declaration r : R of C1. We assume that the relay port
reference is syntactically well-defined, i.e. that the port type RP has the same provided
and required interfaces as the port type R. Note, however, that in general RP and R may
have different behaviour specifications as discussed when we analyse the correctness of
composite components below.

Let obs(C1) and obs(C2) be the I/O-transition systems representing the observable
behaviours of C1 and C2 resp.; cf. Sect. 4.2. We will construct an I/O-transition system
ACC representing the behaviour of the composite component CC. First, let c1.obs(C1) be
a copy of obs(C1) obtained by prefixing each label of obs(C1) with c1 (cf. Sect. 3) and,
similarly, let c2.obs(C2) be a copy of obs(C2) using prefix c2. Obviously, since component
names are locally unique, the labels of c1.obs(C1) and c2.obs(C2) are disjoint. To construct
ACC we have to synchronise the given transition systems according to the connection of
their ports which is easily achieved by using the construct for synchronised products (cf.
Sect. 3) such that, for any label op of the port P1 (and hence of P2), the labels c1.p1.op and
c2.p2.op are identified via the shared label (c1.p1, c2.p2).op. Finally, the labels expressing
actions of c1 on the non-connected port r must be renamed to actions on the relay port
using the relabelling λrelay(c1.r.op) = rp.op for all labels op of R (and hence of RP ). The
I/O-transition system ACC representing the behaviour of the composite component CC is
then given by ACC = (c1.obs(C1) ⊗

(c1.p1,c2.p2)
c2.obs(C2))λr.

8 If they would be dependent they could be simulated by introducing as many additional component declarations of the
same type as instances of the original declaration are involved, provided that no reconfiguration occurs.
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Of course, one may again construct the observable behaviour obs(ACC) of a com-
posite component which then could be used for analysis, on the one hand, and for the
construction of the behaviour of another composite component on the next hierarchy level
on the other hand. Considering our example, the I/O-transition system representing the
behaviour of the composite component CompressingProxy has 14 states and 21 transitions
which are not shown here. As Fig. 5 illustrates, constructing the observable behaviour of
CompressingProxy allows for an efficient minimisation w.r.t observational equivalence.

Figure 5. Observable behaviour of CompressingProxy

In the following we focus on checking the deadlock-freeness of the behaviour of a
composite component. It is well-known that, in general, the deadlock-freeness of subcom-
ponents does not guarantee the deadlock-freeness of a global system (as nicely illustrated
by Dijkstra’s philosophers example). Indeed this is unfortunately still the case if all com-
ponents are correct w.r.t. their ports (in the sense from above) and if all ports are connected
in a behaviourally compatible way, as soon as more than two subcomponents are involved.
Hence, we are looking for particular topologies of component structures where deadlock-
freeness is preserved. An appropriate candidate are (acyclic) star topologies as shown in
Fig. 6 containing one central component C with n ports such that each port is connected to
the port of one of the components Ci for i = 1, . . . , n.

Figure 6. Star topology of composite component

We assume that all subcomponents are correct (w.r.t. their ports) and that their local
behaviours are deadlock-free. Then, if all connected ports are behaviourally compatible,
the composite component CC can only deadlock if at least two ports pα : Pα, pβ : Pβ

of the central component C are connected to ports qα : Qα, qβ : Qβ of components
Cα and Cβ resp. such that the behaviour specifications of both port types Qα and Qβ

properly restrict the behaviours specified for Pα, Pβ in a way which is incompatible with
the behaviour of C. 9 This may happen, if C introduces a dependency between Pα and Pβ

9 Note that it is sufficient to consider the behaviours of the ports of Cα and Cβ instead of considering the observable
behaviour of the full components Cα and Cβ since both components are assumed to be correct w.r.t. their respective ports.
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that is incompatible with the simultaneous restrictions imposed by the connections with Qα

and Qβ on both sides of C. The following example illustrates this situation.

Example 6.3 We consider the component structure of Fig. 6 for the case n = 2, i.e. there
are subcomponents C, C1 and C2. The behaviour specifications of C and of the port types
P1, P2, Q1 and Q2 are shown in Fig. 7.

(a) Q1 (b) P1 (c) C (d) P2 (e) Q1

Figure 7. Behaviour specifications for component C with ports P1, P2, Q1 and Q2.

Obviously, all components are correct and all behaviours are deadlock-free. To study
the interaction behaviour of the two ports P1 and Q1 we assume that Q1 has the input label
a and the output label x though there is never a transition with x. Then their interaction
behaviour is represented by the port product P1⊗Q1 which properly restricts the behaviour
of P1 but still performs the infinite sequence of “τ a” actions and hence does not deadlock.
Similarly, the interaction behaviour of the ports P2 and Q2 properly restricts the behaviour
of P2 but still performs the infinite sequence of “τ b” actions and hence does also not
deadlock. However, the behaviour of the central component C intertwines the actions of
its ports P1 and P2 in such a way that after the connection to Q1 and Q2 a deadlock occurs
immediately (since Q1 never sends x and Q2 never sends y).

In order to exclude situations as illustrated by the example, we assume that for at most
one port of the central component C it may happen that its behaviour specification is re-
stricted by the actual connection (but the port interaction is still deadlock-free), and that
for all other ports of C their behaviour specifications are reflected by the actual connec-
tion. Then local deadlock-freeness is preserved by the component composition. This fact
is expressed by the corollary given below which shows that indeed for the global deadlock
check it is enough if the subcomponents are locally checked for deadlock-freeness and
correctness and if the architect of the composite component checks each single port con-
nection on the basis of the interaction behaviour of the connected ports. The corollary is a
consequence of the following theorem which considers the general case, where an arbitrary
number of connections can exist such that the behaviour specifications of the ports of the
central component are not reflected by the port connections (but the port interaction is still
deadlock-free).In this case, the difficulty is that it is no more sufficient to consider only the
behaviour specifications of ports but one has to consider the observable behaviour of the
whole central component C at all ports that are not connected in a behaviour reflecting way.

Theorem 6.4 Let CC be a composite component with component structure as shown in
Fig. 6. Let the following conditions be satisfied:

(i) All components C1, . . . , Cn are correct and C is deadlock-free and correct with re-
spect to the port declarations p1 : P1, . . . , pn : Pn. 10

10We have not explicitly required that all C1, . . . , Cn are deadlock-free, because, for j = i + 1, . . . , n this follows from
their correctness and from condition (iii) and for j = 0, . . . , i this is not even necessary.
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(ii) For all j ∈ {1, . . . , i} the interaction behaviour of Pj and Qj reflects the behaviour
of Pj .

(iii) c.obspi+1,...,pn(C) ⊗
(c.pi+1,ci+1.qi+1)

Q(i+1) with

Q(i+1) = ci+1.qi+1.Qi+1 ⊗
(c.pi+2,ci+2.qi+2)

. . . ⊗
(c.pn,cn.qn)

cn.qn.Qn ,

is deadlock-free, where the synchronised product is computed from left to right and,
for all j, Qj denotes, by abuse of notation, the I/O-transition system representing the
behaviour specification of the port type Qj .

Then the I/O-transition system representing the behaviour of CC is deadlock-free.

Proof We assume, w.l.o.g, that CC has exactly one relay port rp : RP referring to port
r : R of C. By condition (ii) we know that for j = 1, . . . , i, Pj ≈ Pj ⊗Qj where, for sim-
plicity, Pj , Qj denote the I/O-transition systems representing the behaviour specifications
of the respective ports. Obviously, since C is correct,

c.obspi+1,...,pn(C) ≈ c.obs(C) ⊗
(c,c1)

c1.P1 ⊗
(c,c2)

. . . ⊗
(c,ci)

ci.Pi .

Then, by condition (ii) and since the product preserves “≈”, Pj can be replaced by Pj⊗Qj ,
which, within the context of obs(C), can in turn be replaced by Qj for j = 1, . . . , i:

(*) c.obsr,pi+1,...,pn(C) ≈ c.obs(C) ⊗
(c.p1,c1.q1)

c1.q1.Q1 ⊗
(c.p2,c2.q2)

. . . ⊗
(c.pi,ci.qi)

ci.qi.Qi .

Again by the compatibility of the product with “≈”, we then obtain from (*)

c.obsr,pi+1,...,pn(C) ⊗
(c.pi+1,ci+1.qi+1)

Q(i+1) ≈

c.obs(C) ⊗
(c.p1,c1.q1)

c1.q1.Q1 ⊗
(c.p2,c2.q2)

. . . ⊗
(c.pn,cn.qn)

cn.qn.Qn .

By condition (iii), the lefthand side of the equivalence is deadlock-free and hence, since
“≈” is compatible with deadlock-freeness, also the righthand side is deadlock-free. Then,
since by condition (i) all components C1, . . . , Cn are correct, the righthand side from above
is observationally equivalent to

c.obs(C) ⊗
(c.p1,c1.q1)

c1.obs(C1) ⊗
(c.p2,c2.q2)

. . . ⊗
(c.pn,cn.qn)

cn.obs(Cn) .

which then in turn is deadlock-free. If we finally apply the relabelling λr(c.r.op) = rp.op

for all labels op of R (and hence of RP ) then we obtain an I/O-transition system which
just represents the behaviour of CC and, since relabelling preserves deadlock-freeness, the
result is also deadlock-free. 2

Corollary 6.5 Let CC be a composite component as in Theorem 6.4 such that the condi-
tions (i) of Theorem 6.4 is satisfied.

(a) If the interaction behaviour of Pj and Qj reflects the behaviour of Pj for all j ∈
{1, . . . , n}, then the I/O-transition system representing the behaviour of CC is dead-
lock-free.
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(b) If there exists k ∈ {1, . . . , n} such that Pj and Qj reflects the behaviour of Pj for all
j ∈ {1, . . . , n} with j 6= k and the ports Pk and Qk are behaviourally compatible,
then the I/O-transition system representing the behaviour of CC is deadlock-free.

Proof For (a), condition (ii) of Thm. 6.4 is satisfied for i = n and condition (iii) is trivially
true. The result follows then from Thm. 6.4.

For (b), let w.l.o.g. k = n. Then condition (ii) of Thm. 6.4 is satisfied for i = n − 1.
Since, by assumption, the port product Pn ⊗Qn is deadlock-free and since, by correctness
of C, obspn(C) ≈ pn.Pn, c.obspn(C) ⊗

(c.pn,cn.qn)
qn.Qn is deadlock-free as well. Hence

condition (iii) of Thm. 6.4 is satisfied and the desired result follows from Thm. 6.4. 2

Part (a) of the corollary is related to a similar result in [4] where, however, no explicit
port concept is considered. Part (b) can directly be applied to our example since all sub-
components are correct and the behaviour of the Adaptor component (and also of the other
subcomponents) is deadlock-free. Moreover, we know from Sect. 6.1 that the interaction
behaviour of the two ports GifCompr and ToJpg reflects the behaviour of GifCompr and that
the ports TxtCompr and Zip are behaviourally compatible. Hence, the behaviour of the com-
posite component CompressingProxy is deadlock-free.

6.3 Correctness of Composite Components

An important aspect of the analysis of composite components concerns their correctness
which is needed to apply iteratively our results when climbing up the component hierarchy.
In this case the question is whether the given behaviour specification of each relay port
coincides, up to observational equivalence, with the behaviour of the composite component
observable at the relay port. Considering again the component structure of Fig. 6, one may
even expect that for the behaviour specification of a relay port RPj of CC one could reuse
the behaviour specification of the referenced port Rj of the subcomponent C as it is indeed
the case in our example. In general, this is however only true if all port connections inside
the composite component reflect the behaviour of the ports as assumed in Corollary 6.5(a).
In all other cases it may happen that a non-behaviour reflecting (but still behaviourally
compatible) port connection restricts the behaviour of the central component C in a way
which influences also the actual behaviour visible at some port rj : Rj referenced by a
relay port rpj : RPj . Hence, for the composite component to be correct, the behaviour
specification of the relay port (type) RPj of CC may be a restriction of the behaviour
specification of the referenced port (type) Rj of C. Unfortunately, for lack of space, we
cannot provide an example here which illustrates this situation. The following theorem
provides general conditions for the correctness of composite components whose structure
conforms to the star topology.

Theorem 6.6 Let CC be a composite component with component structure as shown in
Fig. 6 and let rp : RP be a relay port of CC (referring to port r : R of C). Let the
following conditions be satisfied:

(i) All components C1, . . . , Cn are correct.

(ii) For all j ∈ {1, . . . , i} the interaction behaviour of Pj and Qj reflects the behaviour
of Pj .
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(iii) obsrp((c.obsr,pi+1,...,pn(C) ⊗
(c.pi+1,ci+1.qi+1)

Q(i+1))λr) ≈ rp.RP with

Q(i+1) = ci+1.qi+1.Qi+1 ⊗
(c.pi+2,ci+2.qi+2)

. . . ⊗
(c.pn,cn.qn)

cn.qn.Qn ,

where RP denotes, by abuse of notation, the I/O-transition system representing the
behaviour specification of the port type RP and λr(c.r.op) = rp.op for all labels op

of R (and hence of RP ).

Then CC is correct w.r.t. its relay port rp : RP .

Proof We assume, w.l.o.g, that rp : RP is the only relay port of CC. From the proof of
Thm. 6.4 we know that

c.obsr,pi+1,...,pn(C) ⊗
(c.pi+1,ci+1.qi+1)

Q(i+1) ≈

c.obs(C) ⊗
(c.p1,c1.q1)

c1.obs(C1) ⊗
(c.p2,c2.q2)

. . . ⊗
(c.pn,cn.qn)

cn.obs(Cn) .

We apply now on both sides of the equivalence the relabelling λr which preserves “≈”. The
right hand side is then the I/O-transition system representing the behaviour of CC which,
for simplicity, will be also denoted by CC. In a second step we construct on both sides
the observable behaviour at port rp by applying obsrp. Then the lefthand side coincides
with the transition system in condition (iii) and the transition system on the righthand side
is obsrp(CC). Hence, by condition (iii) and transitivity of “≈”, we obtain obsrp(CC) ≈
rp.RP . Thus CC is correct w.r.t. rp : RP . 2

Coming back to our example we know that condition (i) is satisfied and, concerning
condition (ii), that the interaction behaviour of the two ports GifCompr and ToJpg reflects
the behaviour of GifCompr. Hence, the condition (iii) to be proved for the correctness of
CompressingProxy w.r.t. the relay port l : UpStream is that

obsl((obsu,t(adapt.Adaptor) ⊗
(adapt.t,gzip.z)

gzip.z.Zip)λu) ≈ l.Up .

This condition can again be verified with the LTSA tool. Similarly, we can show that
CompressingProxy is correct w.r.t. its relay port r : Down.

7 Conclusions

We have studied in detail the tasks to be carried out when we want to prove deadlock-
freeness and correctness of large scale components. From the methodological point of view
our main principle is to split the verification tasks along the modular and hierarchical struc-
ture of a component deriving global properties from local ones. Technically this approach
is supported by the introduction of explicit ports with user-defined protocols, hierarchical
structuring operators, and by exploiting the observational equivalence (weak bisimulation)
concept thus revealing how powerful this concept can be in more practical applications.
Our results provide the source for the investigation of several open issues concerning e.g.
run-time reconfigurations of networks of component instances and extensions to more gen-
eral system topologies.
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