Towards a Methodical Development of Electronic Catalogues*

Nora Koch'

Introduction

The technologies currently used to develop and de-
liver multimedia systems like electronic catalogues
are still far from being elaborate and easy to apply.
Due to the distinct difficulties arising during develop-
ment, production, and maintenance of sophisticated
multimedia software, it is necessary to get the job
done by a multi-disciplinary team of programmers,
graphic designers, media-experts, and quality control
specialists. The results of their work could be signif-
icantly improved by easy-to-use tools which achieve
the following goals:

e help to determine the requirements,
e reduce the design efforts,
e increment the quality testing speed,

e reduce the costs of producing and updating mul-
timedia systems, and

e simplify the system maintenance.

Electronic product catalogues (EPCs) are informa-
tion systems, that put emphasis on the multimedia
presentation of products (or services) and which con-
tain some standard functionality of searching, selec-
tion, and ordering of products. In this paper we will

*This work was supported by the BMBF, Forderkennzei-
chen 011S520.

fNora Koch (kochn@informatik.uni-muenchen.de) is a re-
search assistant of the Institute of Computer Science at the
University of Munich. Her main interests are in the fields of
Multimedia and Electronic Publishing with a special focus on
user modeling.

fAndreas Turk (turk@forwiss.de) works at the Bavarian
Research Center for Knowledge-Based Systems on strategies
of system development. In the EPK-fix project he focuses on
requirements and system analysis for EPCs.

Andreas Turk?

concentrate on this particular sort of information sys-
tems. However, we expect most of the presented top-
ics to be useful for the development of information
systems in general.

We present some of the results of the EPK-fix'
project, which deal with the systematic construction
of EPCs. Within the scope of this project a method-
ology of EPC-engineering has been developed and
an integrated set of powerful software tools has heen
designed and implemented to cover the whole life cy-
cle of electronic product catalogues on CD-ROM. A
SGML-based specification language permits a declar-
ative description of catalogues, enabling the tools to
support the requirements analysis and the specifica-
tion of EPCs. The essential EP C-functionality is
provided in advance as predefined services. An ex-
haustive automated validation of the resulting cata-
logue becomes feasible.

The project EPK-fix is supported by the ger-
man Bundesministerium fir Bildung, Wissenschaft,
Forschung und Technologie (BMBF). The partners
are the Bavarian Research Center for Knowledge-
Based Systems (FORWISS) in Erlangen, the Ludwig-
Maximilians-University of Munich, the Technical
University of Darmstadt, the Technical University of
Dresden, and the mediatec GmbH in Nuremberg.

In the first section we describe the software develop-
ment process for EPCs. The second section presents
the architecture of the EPK-fix system including brief
descriptions of the specification language EPKMTI
and the four assistance systems. In the last section
some conclusions are delineated.

Thttp://www.forwiss.uni-erlangen.de/fg-we/epkfix /

1 The Development Process

The development process for EPCs is derived from
general object-oriented software engineering and thus
contains the main phases requirements analysis, sys-
tem analysis, specification, automated software gen-
eration, and testing (fig.1) [7, 1].

The requirements analysis serves to elicit the primary
customer expectations in order to decide about the
feasibility of a project and the adequacy of the EPK-
fix methods and tools. The resulting requirements
analysis document may be part of a concrete offer.
During system analysis, which introduces the actual
development cycle, a model of the EPC has to be
described informally. The resulting analysis model
is used immediately as a guidance in the following
graphical specification in order to generate a formal
catalogue description (specification). During genera-
tion phase this formal description is transformed au-
tomatically into program code (the EPC). At last the
EPC has to be tested against the specification and
the analysis model (test report). Every iteration of
the development cycle leads to a new prototype.
The development model shows an evolutionary na-
ture: in the course of several iterations a prototype
will approximate the customer’s requirements, which
in turn also have to be elaborated and detailed. Mu-
tual adjustment belongs to the prototype analysis,
which is part of the system analysis.

Each of the development phases (analysis, specifica-
tion, generation, and testing) considers the orthog-
onal aspects of EPCs layout, structure, product
data, navigation and direction, and special services.
These aspects are described in detail in [5, 4].

2 The System Architecture

The EPK-fix methodology and software tools sup-
port the complete production cycle of EPCs starting
with the catalogue providers requirements, continuing
with the catalogue design up to the functional tests.
These tools have to be sophisticated and handy at the
same time to reduce the time expended in EPC de-
velopment and thus permit a low-cost production of
catalogues necessary conditions to employ EPK-

RASSI
fo———— b —mm—mmm—mm - —
I lRequirements| EPK-fix
: analysis :
=7 :
| o |
I|| System + |
| analysis |
: Specification v o I
| Automated v :
: TSR . —‘ ! Operation/
| T ‘_T Maintenance
[I E el I
SASSI |GASSI ([TASSI
Figure 1: The EPC development model (overview)

fix in small and medium sized enterprises.

The EPK-fix system components comprise the for-
mal description language for electronic product cat-
alogues (EPKML) and the following software tools:
the Requirements Analysis Assistant (RASSI), the
Specification Assistant (SASSI), the Generation As-
sistant (GASSI), and the Test Assistant (TASSI),
which will be explained in the following. An integra-
tion is provided by data exchange via World Wide
Web (WWW) thus enabling distributed workgroups

to act efficiently.

2.1 The EPKML Language

EPKML is a specification language that enables the
description of the static and dynamic aspects of the
electronic product catalogue. EPKML is a high-level
HTML-like language. It is defined as an instance of
SGML (ISO-standard 8879, [2]). Here we enumerate
only some of the characteristics of the language, for
more details see [3, 4, 6].

The Standard Query Language (SQL) is embed-
ded into the language for easy access to relational
databases. EPKML has primitives for navigation flow
and permits connection to external languages like
Java-applets. The language enables a conceptual
view of EPCs comparable to a structured, annotated,
multimedia, and highly automatic database front-
end.

Products are organized in hierarchical structures,
which are the base for automatic navigation. The
visual (layout) features of EPKML are a superset of
those in HrML. EPKML is window-oriented instead
of screen-oriented as HTML. Multimedia integra-
tion is achieved adding constructs expressing time-
dependency while user interaction is specified with
buttons and menus. Some features of the language
are shown in the following example.

<theme name=all>
<window style=introduction>
<video name=presentation src=video.avi>
<stop-button>
<on-click>
<close name=presentation>
</on-click>
</video>
<open name=presentation-video>
</window>
<extension result=city>
<sql>
SELECT name,description,image
FROM database
</sql>
<template name=cities>
<page>
<frame name=details>

<p>$city.name$</p>
<previous-button>
<next-button>
<back-button>
</frame>
</page>
</template>
</extension>
</theme>

2.2 RASSI

In our opinion, human dialogue is central to the anal-
ysis process in software engineering. Requirements
analysis for EPCs can be viewed as information ac-
quisition, compared to the acquisition of knowledge
in knowledge-based system development. Thus, the
fundamental analysis activity is to carry out struc-
tured interviews [8].

The Requirements Analysis Assistant is a software
tool that supports the task of interviewing. It con-
tains a couple of integrated submodules, that serve to
manipulate and convert the basic object types check-
lists, questionnaires, protocols, and the final analysis

document. Checklists enumerate all important as-
pects that have to be addressed during EPC design
and development. They are to be extended to situa-
tion specific questionnaires for the interview. Inter-
views result in protocols, which in turn can be com-
bined and edited to receive the analysis document.

The following are the RASSI submodules: a ques-
tionnaire editor is used to assemble a questionnaire
from a checklist by formulating questions and adding
explanatory documents; the interview assistant per-
forms a complete audio recording of an interview, al-
lows for synchronously written notes, and links ar-
bitrary multimedia material together; a presentation
assistant supports the revisiting and combining of
multiple interviews and the generation of the analy-
sis document.

As an example, fig.2 sketches a single, unmodified
topic concerning the arrangement of elements in the

vz Netscape - [CAR Grouping. Placement and Attachment. Ver_ 1.3]
File Edit Yiew Go Bookmarks Opfions Direclory Windew Help

/z§| 2| @ ®

2] Goto [Soemmsememsio ay o
WhatsNew? | WhatsCaol? | Destinations | NetSearch | People | Sawere |

=

o

Biok

=
Goen

)

Find

=]
Foryad i Frne

A 4A>

VExplanation ¥3ummary

Catalogue annotation: CAR Screen elements for city pages,
Ver. 1.3

Catalogue annotations

® CAR Nawigation elements Ver. 1.3

* CAR Information elements Ver. 1.3

® CAR Links to help Ver 1.3

* CAR Grouping, Placement and Attachment Ver, 1.3
® CAR Selection from sample catalogue Ver 13

Technical data

* CA Screen elements for city pages

Explanation: CAR Screen elements for city pages, Ver. 1.3

Screen elements for city pages must be enumbered in general or for each deviating specific page, as wel as some aspects of placement,
etc.

tal: annotation: CAR Screen elements for city pages, Ver. 1.3

Summary: CAR Screen elements for city pages, Ver. 1.3

The customer wants a characteristic pichire of each city in the upper-left comer. (These pictires
are supplied in the database.) Standard navigation (previous / nex) must be below, should have
the same width and include the text "To other cities”. Further element placement s not restricted,
but suggestions may be rejected, Links to relevant information pages must be completely
contained.

[Andreas Tork,
97101731, 16.45]

el annotation: CAR. Screen elements for city pages, Ver. 1.3

8] [Document: Done &7

Figure 2: Part of a RASSI analysis document

user interface of a service catalogue (page design). Tt
is part of the resulting documentation.

2.3 SASSI

The Specification Assistant supports the transforma-
tion of an informal description of an EPC to a formal
specification. A qualified developer uses SASSI’s set
of powerful editors to compose an EPC according to
the information gained by the requirements analysis.
SASSI is based on an intuitive graphical user inter-
face and implemented in Smalltalk. SASSI includes
a three-window interface presenting the relevant part
of the analysis document, one of the following editors:
structure editor, layout editor, or database editor, and
the corresponding part of the generated specification.
Main features of the SASSI component are to sup-
port a complete specification of the analysis infor-
mation, to protocol which analysis objects led to
which specification objects, to make sensible assump-
tions where analysis information is incomplete, to
provide version information in order to make recov-
ery possible, and to generate syntactically and static-
semantically correct EPKML output.

2.4 GASSI

The purpose of the Generation Assistant is to gen-
erate catalogues based on their formal specification
in EPKML. These catalogues are in fact JAVA pro-
grams. GASSI is a fully automated tool, which needs
no user interaction. Details and backgrounds of soft-
ware generation must be regarded as laying beyond
the scope of this brief article. However, a main con-
cept of GASSI is the application of a generic software
repository containing reusable components for EPC
standard functionality, called standard services (on-
line help, ordering facilities, search, etc.). Assembling
software by predefined and well-tested components
leads to improvement in quality.

2.5 TASSI

The Test Assistant ensures a high level of software
quality in the development process. TASSI en-
ables a test engineer to systematically and mostly

automatically check static and dynamic aspects of
an EPC. Where no automated testing is possible,
strong support for manual tests is given. Some fea-
tures of TASSI are: fully graphical user interface
(fig. 7?), rule-based declarative specification of auto-
matic tests, automated execution of static tests of
media-objects, support of dynamic tests by a test
agent, error classification, and automatic test doc-
ument generation, besides others.

3 Conclusions

The EPK-fix project comes out with an integrated
package of tools that support the whole life cycle of
the production process of EPCs. These tools aim at
the efficient production of low cost electronic product
catalogues. Catalogues are described in a declarative
form using the language EPKML specially designed
for that purpose. The developer is assisted from the
beginning of the requirements analysis phase through
the design and catalogue generation up to the test-
ing process. Manual and automatic tests assure the
correctness of the catalogue.

An EPC is in our approach the result of cooper-
ating experts working at different places. In order
to keep track of the correct versions of the docu-
ments and programs produced so far, version man-
agement is required. We are currently implement-
ing a WWW-based project server, which permits to
manage projects and which handles developers’ ac-
cess. Furthermore the server will control revision and
release management.

Additional features (e.g. secure electronic online or-
dering and payment) are planned for the future com-
mercial version of EPK-fix. Further user modeling
aspects may be incorporated to the development pro-
cess of EPCs, thus producing adaptive catalogues.

References

[1] B. Boehm. A Spiral Model of Software Develop-
ment and Enhancement. IEEE Computer, 21(5):61
72, May 1988.

[2] C. Goldfarb. The SGML Handbook. Clarendon Press,
Oxford, 1994.

3]

(4]

[5]

7]

A. Knapp, N. Koch, and [.. Mandel. The Language
EPKML. Technical report 9605, LMU Miinchen,
November 1996.

A. Knapp, N. Koch, M. Wirsing, J. Duckeck,
R. Lutze, H. Fritzsche, D. Timm, P. Closhen,
M. Frisch, H.-J. Hoffmann, B. Gaede, J. Schneeberger,
H. Stoyan, and A. Turk. EPK-fix: Methods and Tools
for Engineering Electronic Product Catalogues. In
R. Steinmetz and L. Wolf, editors, Interactive Dis-
tributed Multimedia Systems and Telecommunication
Services, LNCS 1309, pages 199-209. Springer-Verlag
Berlin-Heidelberg, September 1997.

N. Koch and L. Mandel. Catalogues on CD-ROM:
The State of the Art. Technical report 9610, Ludwig—
Maximilians Universitat Miinchen, December 1996.

J. Schneeberger, N. Koch, A. Turk, R. Lutze,
M. Wirsing, H. Fritzsche, and P. Closhen. EPK-
fix: Software-Engineering und Werkzeuge fur elektro-
nische Produktkataloge. In M. Jarke, K. Pasedach,
and K. Pohl, editors, Informatik’97, Informatik als
Innovationsmotor, 27. Jahrestagung der Gesellschaft
fur Informatik, Informatik aktuell. Springer Verlag,
September 1997.

I. Sommerville. Software Engineering. Addison-
Wesley, 4th edition, 1992.

A. Turk and H. Stoyan. Erfassung, Verarbeitung und
Dokumentation nattrlichsprachlicher Auﬁerungen in
der Anforderungsanalyse. In E. Ortner, B. Schien-
mann, and H. Thoma, editors, Natirlichsprachlicher
Entwurf von Informationssystemen, pages 32-46. Uni-
versitatsverlag Konstanz, May 1996.

