
1

Rapid Development of Electronic Product Catalogues

Nora Koch
Ludwig-Maximilians-University of

Munich
Institute for Computer Science

Oettingenstr. 67
80538 München, Germany

kochn@informatik.uni-muenchen.de

Bernd Gaede
 FORWISS

University of Erlangen
 Am Weichselgarten 7

 91058 Erlangen, Germany
gaede@forwiss.uni-erlangen.de

Josef Schneeberger
Schema GmbH

Sulzbacherstr. 81
90489 Nürnberg
js@schema.de

Abstract

The production of electronic product catalogues (EPCs) is a creative process as well as a software design
problem. This paper presents the results of the EPK-fix project1. It proposes a development model for EPCs,
defines a high-level specification language for the description of catalogues and implements a set of integrated
tools to support the production process of EPCs. The iterative software engineering process starts with the
requirements analysis and goes on with the catalogue design, both steps are supported by special editors. An
automatic catalogue generation based on the design specification is the key of the rapid development of EPCs.
The process is completed with a testing phase for the static and dynamic features of catalogues.

Keywords
Electronic Product Catalogues, Development Process of Multimedia Applications, Mark-up Language.

1 Introduction

With the availability of low cost computers and high quality (graphical) user interfaces,
electronic product catalogues (EPCs) become an increasingly important class of software
systems. There exist many different kinds of EPCs: some present very vast numbers of
products with many variants, others present only few products with complicated and detailed
descriptions. While multimedia technology is improving, EPCs include more and more fancy
features like videos, software animation, and sound. They also increment their functionality
offering features like electronic commerce and online banking to the users.

An EPC is used as an alternative to a paper catalogue, it has to be produced rapidly with a
limited budget. Nevertheless, there are usually high requirements concerning the appearance of
an EPC which demands iterative design cycles and layout variants. Modern EPC development
is an interdisciplinary endeavour, which involves marketing personnel, screen designer, and
software engineers. Since the resulting piece of software partially presents the company --
called catalogue provider in the sequel -- there are high quality standards required in general.
Nevertheless, an EPC is just a software system and its development has to take into account all
the problems and activities present in software development [Gloor, 1997; Lennon, 1997].

1 This work was supported by the German BMBF project EPK-fix under grant 01 IS 250

2

In the EPK-fix project2 we have focused an all aspects of the development process of EPCs. It
is characterised by phases of a life cycle and by organisational aspects. The life cycle starts
with the analysis of the catalogue providers requirements, it continues with the catalogue
design and ends with functional tests. The approach is supported by a collection of integrated
tools, which have been designed for efficient specification, production, and validation of EPCs.
All tools are based on the specification language EpkMl which is a high level HTML-like
language that is particularly designed to support the description of EPCs. The organisational
aspects characterise particular features of the EPC like page layout, multimedia components,
catalogue and product structure, navigation, or added values.

In the following, we focus on the development method and on the role of EpkMl in the
development process. Although the integrated tool suite of the assistance system is described
elsewhere [Knapp et al.,1997], we give a brief overview here for the sake of completeness.

In the second section we present the development process for electronic product catalogues.
The third section delineates the organisational aspects of EPCs and the section four gives an
overview of the EPK-fix architecture. We describe the specification language in section five
and the generation of an example catalogue based on its specification in section six. Related
work is presented in the seventh section. Finally we give some conclusions and further steps in
section eight.

2 The EPC Development Process

Electronic product catalogues are special information systems with definable application fields
and well identifiable characteristics like important multimedia (especially visual) product
presentations and navigation facilities. Instead of using a standard development model for
general software systems, we defined a methodology adjusted to EPCs. This appropriate
development model allowed to design efficient tools for the rapid prototyping and production
of EPCs.

Important parts in the development model for EPCs, that have been adopted from models for
expert systems [Jackson,1990,Bibel et al.,1989], authoring tools, graphical user-interfaces, and
object-oriented software systems [Rumbaugh et al., 1991] are: informal preanalysis,
description through checklists, human-machine interaction, multimedia integration, formal
description of catalogues, generation of prototypes, creation and management of reusable
libraries of EPCs components, and quality tests for the resulting catalogues.

The development process that unifies these characteristics, requires an informal preanalysis
followed by the phases: requirements analysis, design, implementation, and test. Combining
an effective requirements analysis, a well-supported software-design (specification),
automation of the error-prone implementation step, and an exhaustive, partially automated
testing allows a quick (small number of iterations) and inexpensive prototype completion. The

2 The partners of the EPK-fix project are: Bavarian Research Center for Knowledge-Based Systems (FORWISS)
in Erlangen, Ludwig-Maximilians-University of Munich, Technical University of Dresden, Technical
University of Darmstadt and mediatec GmbH in Nuremberg. The EPK-fix homepage is http://www.forwiss.uni-
erlangen/fg-we/epkfix/.

3

resulting process is a kind of spiral model [Koch and Schneeberger, 1997; Boehm, 1988] that
leads to the final EPC through successive revisions and refinements (see Fig. 1).

Each phase, described below, is supported by one of the following tools: Requirements
analysis ASSIstant (RASSI), Specification ASSIstant (SASSI), Generation ASSIstant
(GASSI), and Testing ASSIstant (TASSI). These tools are based on the specification
language, called EpkMl, designed for the formal description of the static and dynamic aspects
of a catalogue and for the definition of tool interfaces [Knapp et al., 1997; Koch and Turk,
1997].

RASSI

SASSI GASSI TASSI

Requirements
analysis

Testing
Operation/

Maintenance

System
analysis

Specification
Automated
generation

EPK-fix

Figure 1: An overview of the EPC development model

Requirements Analysis

 EPK-fix provides sophisticated solutions for requirements, system, and prototype analysis
during development of EPCs. The fundamental analysis activity is to carry out structured
interviews. This interviewing process is divided into three major steps [Klausner et al., 1994;
Wieringa, 1996]: preparation, interview, and edition. During preparation a questionnaire is
assembled considering all aspects of an EPC. The selection of the questions is guided by
predefined generic checklists. The interview is a complete (audio-) recorded conversation
between the EPC developer and the catalogue provider with any multimedia information like
text, pictures, or electronic documents attached to the corresponding questions and answers of
the interview. Finally, the edition constructs the resulting analysis documents from written
(transcribed) notes, acoustic data, and multimedia documents. The software tool RASSI,
supports the recording of information (text, sound, images, video) resulting from structured
interviews during the requirements analysis stage.

Design

The informal catalogue description recorded in the analysis document provides the
characteristics and details of the intended catalogue needed to design an EPC. The catalogue
developer carries out his work with the help of editors for the catalogue structure and layout
design, that automatically generate a formal specification of the catalogue. The design process
of EPCs follows the same steps as the creation of other multimedia productions: there are

4

media-object generation (text, images, videos, audio, and animations), object embedding into
pages, windows, or layout forms (templates), and incorporation of paths from one layout piece
to another (navigation). The catalogue designer uses the specification assistant to supply the
structure and the layout for the EPC.

The SASSI tool has been developed for the EPC design, which is based on the results of the
Requirements Analysis Assistant and generates an EpkMl specification, that is the starting
point for the next phase.

Integrated Software Generation

The result of the design phase is a specification of the EPC in EpkMl. The subsequent phase
generates code for the final EPC which is either Java, HTML, or a paper catalogue in our
approach. The advantage of code generation -- in contrast to hand-crafting software using
some high level programming library for multimedia systems -- is obvious. EPCs can be
produced more rapidly and debugging of the resulting code is omitted. Furthermore, a
prototypical EPC version is generated, that includes additional interfaces to communicate with
the other development tools (particularly Requirement Analysis and Testing Assistants). These
interfaces provide capture and replay facilities that can, for instance, be used to present a
catalogue prototype to the developer in exactly the state which is referred to by a given
analysis document. The generation is based on a library of generic and reusable classes
implementing all components of multimedial product presentations. When the EpkMl is
changed or extended, or if implementation details have to be changed, the library has to be
adapted.

Testing

Tests of complex multimedia software like EPCs require a complete testing instead of
traditional sample testing. A large number of tests has to be carried out, therefore they have to
be performed mostly automatically. The first step is to perform a rule-based static test for all
elements and database objects of the catalogue specification in EpkMl. The rules are utilised to
define implicit requirements and inconsistency patterns in specifications. Grouping elements,
i.e. pages and windows, must be examined for group errors, for instance it could be verified,
that the text colours are in adequate contrast to the background colours or that not too many
different fonts are used on one page. In a second phase the actual catalogue is dynamically
tested, therefore each branch of the EpkMl instance has to be tested and all media-objects be
inspected manually. Each error found is recorded and an error protocol is generated.

The tool TASSI performs static tests on the catalogue description in EpkMl and a dynamic
validation on the EPC generated by the generation tool, using test data especially prepared for
that purpose.

3 Organisational Aspects of Electronic Catalogues

An EPC typically appears as a CD-ROM or as a web application and its minimal functionality
is comparable to a paper catalogue enriched with multimedial objects (audio, video, and
animations) and cross references [Koch and Mandel, 1997]. However, state of the art EPCs
offer many more features which take advantage of the underlying computational power [Siegel,
1997]. We refer to these features as services. Services are, e.g.,

5

• search functions to find products or explanations,
• demos (animation or video) to illustrate the use of the EPC or some product,
• inquiries and orders via online connection or by fax,
• facilities to accumulate, compare, or combine products in one large order, or even
• games and animations to entertain and inform (″infotainment″) the customer.

 Our analysis of EPCs focused on the organisational aspects and on the functional requirements
of the software systems. The results were the basis for our definition of the specification
language EpkMl (see Sec. 5) that reflects:

• Static requirements comprise all layout elements, i.e. windows, frames, buttons,
check-boxes, pull-down menus, sliders, texts, paragraphs, headings, and listings.

• Dynamic requirements include every interactive situation, such as starting or
stopping an animation or a video, navigating by clicking on buttons, searching,
selecting help functions, ordering products, scrolling in a browser, etc.

• Data requirements are related to products, companies, and customers information,
help text or help windows, navigation sequences, orders, and multi-lingual text for
the pages.

START

FINAL

OVERVIEW

DEMO

REGISTRATION

PRESENTATIONINDEX

QUESTION
FORM

GENERAL
INFOS

SEND

SEARCH

SHOPPING
BAG ORDER

END TITLES

PRODUCT
PRESENTATION

SHOPPING
LIST

PRODUCT
PAGES

 Figure 2: A typical catalogue structure

 Similarly to the international standards ODA (Office Document Architecture) [ISO8613, 1988]
and SGML [Goldfarb,1994], various aspects of EPCs can be distinguished and handled
separately. Office documents have a (logical) structure and a presentation layout. In addition,
an EPC includes multimedia elements, it makes use of an underlying database, and it offers
services and navigation facilities. All aspects are simultaneously present in any state of the
EPC at runtime. For example, a page of the EPC that presents product information being
retrieved from the database. Layout elements like frames, buttons, and menus appear on the
screen complemented by multimedia elements like sound or animation. Using buttons and

6

hyperlinks, it is possible to navigate to a help window or to an arbitrary (e. g. the next or
previous) page in the catalogue [Schneiderman, 1998].

 The aspects we considered in our design are: the structure, the layout, the direction, the
database, and the services.

• The structure is the skeleton of the catalogue; it comprises a hierarchy or graph of
themes (product families) and pages.

• The layout is the static description of pages, frames, windows, and their contents. It
describes (sub-)sets of catalogue pages by abstraction from particular contents (see
templates in Sec. 5).

• The direction describes the dynamic facilities for pages and themes that permit user
interaction and navigation through the catalogue. It comprises the micro-direction
for each page and the macro-direction for the connection between pages.

• The database component provides all the information about products and offers,
such that it can easily be searched and maintained.

• The services add functionality in order to work efficiently with the EPC. For
example, services include administration of orders (shopping bag feature),
calculation of financial or configuration parameters, user registration, access to the
help system, and online communications (e.g. ordering).

 Working with EPCs can be divided into the phases installation, presentation, search, selection,
and order. Depending on their relative importance [Knapp et al., 1996], we distinguish
between the catalogue types: presentation, search, and order catalogues. Fig. 2 illustrates a
typical catalogue structure and the navigation through its units.

 4 The Architecture of the EPK-fix System

 The goal of the EPK-fix project, as already said, is the development of methods and a
collection of integrated tools for efficient specification, production, and validation of EPCs.
The EPK-fix system comprise the following five tools: the Requirements Analysis ASSIstant,
the Specification ASSIstant, the Generation ASSIstant, the Testing ASSIstant and the
Organisation ASSIstant (see [Koch and Turk, 1997]. The formal description language EpkMl
is the base of almost all EPK-fix interfaces.

 The EPK-fix architecture integrates the tools described below, their user interfaces and a
repository for catalogue descriptions [Shaw-Garlan,1996]. These descriptions are HTML-
documents for the requirement analysis and test protocols, EpkMl catalogue specifications, and
automatically generated Java-code for the EPCs.

 The methodology and specific tools support the complete life cycle of EPCs starting with the
catalogue providers requirements, continuing with the catalogue design up to the functional
tests. These tools must be easy to use, reduce the amount of EPC development time and permit
a low-cost production of catalogues. These conditions are a prerequisite for the acceptance of
the EPK-fix system especially in small and mid size enterprises (SMEs).

 RASSI (Requirements Analysis Assistant) supports the informal recording of information
(text, images, video) that result from the requirements analysis stage based on structured

7

interviews. This assistant contains the following submodules to manipulate and convert five
types of basic objects, i.e. checklists, questionnaires, interviews, protocols, and documents:

• The questionnaire and checklist editor is used to create new checklists either from
scratch or based on existing ones by reordering or deleting themes, adding
subthemes, complementing with annotations, etc. Additionally, it supports
assembling a questionnaire from a checklist by formulating questions and adding
documents.

• The interview assistant performs a complete audio recording of the interview.
Linking to multimedia material and the inclusion of typed notes during the interview
is also possible. Segments of the recorded dialogue are associated to the themes of
the questionnaire through mouse clicks.

• The protocol editor allows for reproduction of the whole audio sequence, adjusting
reassignment of the audio links and an automatic reorganisation of the theme
structure.

• The presentation assistant integrates multiple interviews generating an analysis
document in HTML or RTF format.

 SASSI (Specification Assistant) is responsible for the EPC design based on the results of the
RASSI tool and the conversion into a catalogue specification in EpkMl. The editors that assist
the catalogue developer in this step are:

• The structure editor is used by the catalogue designers to define the theme structure
and navigation paths through the catalogue.

• The layout editor assists the user in the detailed visual specification of the
presentation and the integration of special services.

• The database editor permits the access to a database. The queries are formulated
using SQL-statements.

 A three-window approach supports the developers in the design process. They produce the
catalogue design in the central window working with one of the editors (structure, layout or
database) based on the RASSI-documentation that is visible in the left window. Objects from
the left and central window are automatically linked through object identifier. In the right
window the developer observes the EpkMl description of the generated catalogue.

 GASSI (Generation Assistant) makes use of the EPC specification generated by SASSI and
translates the EpkMl description into Java implementing this way the electronic product
catalogue. The generation of this formally specified multimedia system is done by analogy with
compiler phases in the following steps:

• The parsing step comprises lexical and syntactical analysis of a given EpkMl
specification. An EpkMl conform document defines a tree structure of EpkMl
elements that can be parsed by a standard SGML-parser yielding text output that is
more easy to process. GASSI calls the parser nsgmls and uses its output for further
processing.

• An Intermediate Representation of syntactically correct specifications is used for
semantic analysis and optimisation. The internal representation of a specification
consists of specification objects arranged in a tree structure, yielding an extended

8

document object model. Each node of this tree structure contains an SGML element
and allows the access to the attributes that had been set in the specification. The
intermediate representation is also responsible for the replication of globally defined
specification elements (e.g. stylesheets, that might define the size of other elements)
to make them locally available where needed.

• The basis of the Sourcecode Generation is a class library realising common features
of EPCs which are used for a specific implementation either by parameterised direct
instantiation or by subclassing and instantiation of the new subclass. For these
classes miscellaneous Java-syntax-conform expressions can be retrieved or
composed, e.g. unique Java identifiers; constructor calls; variable declarations or
templates for subclasses.

 The generation of EPCs relies on a library of extensible generic classes (that are reusable, and
reliable due to their automated testing by TASSI) providing EPC-specific components ranging
from simple layout elements up to modules that perform services (e.g. online-help, ordering-
facilities).

 TASSI (Testing Assistant) realises static tests on the catalogue description in EpkMl and a
dynamic validation on the EPC generated by GASSI, using for that purpose especially
prepared test data. TASSI supports automatic and manual tests with a strong support for
manual tests. However, structure-based testing of Java applets or databases that are treated as
black-boxes is out of the systems scope.

 The characteristics of TASSI are:

• fully graphical user interface,
• declarative specification of general and catalogue-specific automatic tests via rules,
• automatic execution of static tests of all media-objects,
• support of dynamic tests by a test agent (automatic navigation of the EPC to untested

objects),
• automatic execution of static tests of dynamic objects,
• error classification via browser,
• context-sensitive specification and requirements presentation,
• capture and replay of manual test input,
• complete test state administration, and
• automatic test document generation.

 OASSI (Organisation Assistant) is responsible for the version management and the
communication of co-operating experts working in a typical distributed environment. RASSI
supports the interviewing process with the customer while SASSI, GASSI and TASSI are used
in the development area. Therefore, a central repository and a communication tool has been
implemented that controls the assistants registration and disconnection. It is an Internet-based
tool that provides information about the current state of the ongoing catalogue projects.

9

 5 The Language EpkMl

 The specification language EpkMl has been defined to enable declarative description of EPCs
and as basis for the communication between the tools in the catalogue production process. Its
design was guided by some basic considerations like easiness of learning and extensibility as
well as more EPC-specific considerations like the integration of database features or
navigational support. A central aspect of the specification language is the description of a
catalogue structure that permits the definition of navigation contexts and an automatic
generation of navigation path through these contexts.

 Design Decisions

 EPCs on CD-ROM and online are an alternative to traditional paper catalogues for product
sale and service offer. The goal of the project was to allow specification of different types of
catalogues in parallel. An HTML-like declarative language achieves this goal. Thus, the
language EpkMl is defined as an instance of SGML using mark-up tags [Goldfarb,1994] and
supports all components that were observed during the analysis of the organisational aspects of
an EPC (see Sec. 3): structure, layout, direction (control constructions), database, and
services. An important requirement is the simple handling of catalogue standard operations
(services), like user registration, product search, order forms, shopping bag, table of contents,
and question forms.

EPKML

header

*
actioninteractiveflow

externals styles definitions main

variables

action

sql
table

extension

schemeclass macro

services

themetoplevelstylesheet

open

close

navigation

applet

foreach

set

previous
next

window

template

button

hyperlink

input

browser

check-box

pull-down menu

interactive

paragraph

listing

tabular

img

video

frame

flow
registration-form*

search-form*

question-form*

shopping-bag*

table-of-content*

demo

 Figure 3: Structure of the EpkMl language

 The most important characteristics of the language can be summarised as follows:

10

• Hierarchical organisation of themes. It means that products are organised in

hierarchies, so-called themes. For each theme the developer can define the products
belonging to the theme (sub-themes) and the presentations of these products.

• Automatic navigation through the theme structure. This structure is used to
generate navigation facilities. Additionally, the user may be guided through the
catalogue in a controlled fashion.

• Windows-oriented layout expanding the graphical and functional possibilities in
comparison with frame-oriented layout.

• Styles for a simple way to define layout templates.
• Multimedia features like video, audio, and slide-show. Multimedia has been

integrated in a transparent way such that the designer may concentrate on its
declarative aspects.

• SQL-statements, that are integrated for access to relational databases.
• Primitives for control flow, that allows the user to navigate through the catalogue

structure.
• Connection to external languages as in HTML via applets; and
• Special services present in most EPCs like searching, adding products to a shopping

bag, or ordering products are included as built-in functions.

 We schematise the structure of the EpkMl language with the graph shown in Fig. 3. For clarity
only a part of the language elements are represented graphically.

 Document Type Definition

 EpkMl as an instance of SGML is defined in a Document Type Definition (DTD) and uses
mark-up tags. Each block begins with <name-of-the-tag> and ends with </name-
of-the-tag>. The closing tag is defined as optional for some tags; it is indicated with ‘- 0’
in the DTD specification. As in the HTML Document Type definition for each element the
contents is defined (‘+’ means at least once, ‘?’ optional, ‘*’ zero or more times). For more
clarity, we concentrate ourselves in this paper to the keywords, i.e. the elements of EpkMl,
only some attributes are mentioned. A small part of the DTD definitions of the EpkMl elements
is shown below. It can be observed how the structure given in Fig. 3 is mapped into the
specification language.

 <!ELEMENT epkml - - (header, externals, styles, definitions, main) +(expand | variant)>

 <!ENTITY % oid "oid CDATA #REQUIRED">

 <!ENTITY % attributes "name %IDENT;
 style %IDENTS;
 invisible (invisible) #IMPLIED
 layer CDATA '#0'
 xpos %DIMEN;

 botmrg %DIMEN; ">

 <!ENTITY % properties "properties CDATA ''
 status (opened | closed | suspended) opened
 attribs %IDENTS;
 elems %IDENTS; ">

11

 <!ENTITY % flow "p | heading |
 listing | itemize | enumerate |
 tabular | img | video | slide-show |
 flowbox | frame">
 <!ENTITY % interactive "button | next-button | previous-button |
 back-button | hyperlink | input | scribble |
 pop-up | browser | multiple-browser |
 radio-button | checkbox | pull-down |
 vertical-slider | horizontal-slider">
 <!ENTITY % toplevel "window | page">
 <!ENTITY % services "demo | registration-form | question-form |
 search-form | shopping-bag | shopping-list |
 table-of-contents">

 <!ENTITY % open "open | redraw">
 <!ENTITY % close "suspend | close ">
 <!ENTITY % database "sql">

 <!ELEMENT (%open;) - O (attribute | element)*>
 <!ATTLIST (%open;)
 %oid;
 name CDATA#REQUIRED>

 <!ELEMENT (%database;) - O (#PCDATA)>
 <!ATTLIST (%database;)
 %oid;
 result %IDENT; >

 <!ENTITY % cntrlbtns "play-button | stop-button | pause-button |
 forward-button | rewind-button">

 <!ELEMENT audio - O (%cntrlbtns;)*>
 <!ATTLIST audio
 %oid;
 name %IDENT;
 %properties;
 %audio-format;
 duration %TIME;
 src CDATA #REQUIRED>

 <!ELEMENT (%cntrlbtns;) - O (disabled?, clicked?, (%flow;)*,
 on-click?)>
 <!ATTLIST (%cntrlbtns;)
 %oid;
 %attributes;
 %properties;
 disabled (disabled) #IMPLIED>

 <!ELEMENT click - O EMPTY>
 <!ATTLIST click
 name CDATA #REQUIRED>

 <!ELEMENT window - - (%flow; | %interactive; | dialog-window |
 %services; | %action;)*>
 <!ATTLIST window
 %oid;
 %attributes;

12

 %properties;
 title CDATA %void;
 iconized (iconized) #IMPLIED
 background CDATA %def-background;>

 <!ELEMENT theme - - ((page|window)*,(extension,exceptions*)*,theme*)>
 <!ATTLIST theme
 %oid;
 name CDATA #REQUIRED>

 <!ELEMENT extension - - (sql,template,empty?)>
 <!ATTLIST extension
 %oid;
 result %IDENT;>

 <!ELEMENT template - - (page | window)>
 <!ATTLIST template
 %oid;
 name CDATA #REQUIRED>

 <!ELEMENT styles - O (stylesheet)*>

 <!ELEMENT main - O (var | %action;)+>
 <!ATTLIST main
 %oid;>

 Language description

 The five catalogue aspects considered in the design (structure, layout, direction, database, and
services) are specified with a group of elements and their attributes in the EpkMl language. It
follows a short description of some interesting elements.

• Structure
 Each <theme> is specified through an <extension> that includes an SQL-statement

declaring the products that will be retrieved from the database and through a <template>
describing the layout aspects of these products.

 The theme description may contain sub-themes. <exceptions> may be specified for
products of the extension to be presented with their own <template>. Templates are
predefined forms for structured data presentation. Their gaps can be filled "on the fly'' with
values obtained via SQL-statements. The results of a database query are held in variables,
which names have to be surrounded by $...$ and which values may be assigned by the
<set> construct.

 Theme hierarchies build-up tree structures, in which navigation takes place by special
commands <next>, <previous>, <up>, <down>, and <back>. These
instructions branch to the next or previous theme in a given hierarchy, to the one below or
above, or back in the history of visited themes, respectively.

• Layout
 The visual (layout) features of EpkMl are a superset of those of HTML. Different text fonts

and styles are provided as <p> (paragraphs), <image>, <frame> and other HTML-like
elements. Interactive elements such as <browser>, <checkbox>, <pulldown-

13

menu>, <button>, <input> among others have also been included. We add
<window> (thus making EpkMl window-oriented instead of screen-oriented) and
<flowbox> for images inside texts. Multimedia is integrated by adding the time-
dependent elements <video>, <slide-show>, and <audio>.

 All these elements may be customised in advance defining <stylesheet>s, which set
values for certain attributes. These values can be overloaded by individual settings in the
element, that includes the defined <style>.

 The HTML set of interactive elements is extended and these elements are provided with
specifiable methods, e.g. <on-click> for <button> that are invoked if an interaction
takes place. For the most common interaction facilities, such as navigation through the
catalogue structure, there are precustomised elements with standard behaviour like
<previous-button>, <next-button>, and <back-button>. This behaviour
can be changed or extended in the specification.

• Direction

 Navigation through the catalogue is specifiable with a set of user controlled tags.
Conditional branching may be achieved with the <empty> and <non-empty> tags on
the basis of the result of a database query.
 For unconditional branching there are several possibilities: navigation through the theme
structure, opening and closing of elements, and use of interactive elements. In the first case,
there may be a change between themes by the use of <next>, <previous>, etc.,
already mentioned. Second, a layout element or a theme may be called directly via an
<open> statement (provided with a name) with the effect of element visualisation and
execution of its statements. Conversely, elements may be closed with <close> with no
effect on the control flow.
 Last but not least, the control flow will be changed if interaction with the catalogue takes
place, e.g. by clicking a button (<on-click> tag in a <button> or selecting an option
<on-selected> in a <browser>).

• Database
 Access to databases is specified with the <sql> tag. Statements under the scope of this tag

must be written in standard SQL (see [Melton and Simon,1993]. The result of an SQL-
statement can be casted to options of a browser by using the <make-options> tag or to
items of a list by using the <make-items> tag.

• Services
 Services provide standard functionality for a catalogue. To serve to that purpose EpkMl

includes the following tags:

− <table-of-contents>: allows the definition of an introduction window or page
as an index of the different alternatives of the EPC (company's presentation, demo,
tutorial, different views of the product database, ordering).

− <registration-form>: permits the personalisation of the catalogue. Data
entered in this form will appear in the order form.

− <search-form>: with this tag it is possible to define which kind of search will be
done onto the database every time the end-user fills in the corresponding form with
adequate keywords.

14

− <shopping-bag>: is a template to maintain a list of products to buy. Update
functions are supported to modify this list.

− <shopping-list>: serves to administrate the list of products selected all together
at the beginning and to be visited during navigation.

− <order>: defined to send a buy order to the provider. This function has different
semantics depending on the hardware configuration. An order can be sent by Internet,
by E-mail, by dialing a telephone number by modem, by fax, or can be printed. When
the catalogue is installed the semantics of this tag is settled.

− <question-form>: to be filled in by the end-user to return feedback to the
catalogue provider about the success of the catalogue or to criticise it.

A more detailed description of the language is given in [Knapp et al.,1996] and a formal
structural operational semantics is presented in [Knapp and Kosiuczenko,1997].

6 Generating a Catalogue from an EpkMl Specification

We exemplify the catalogue specification and the generation process with an electronic product
catalogue developed for Sanacorp Pharmahandel AG, a pharmaceutical company. This
company provided us with the product database. We produced a catalogue with EPK-fix
delivered on a CD-ROM as a prototype used to design future EPCs. The EpkMl specification
of the required catalogue was defined based on the interviews realised during the requirements
analysis phase. This design step was performed using the structure and layout editors of the
Specification Assistant. In the following the EPKML catalogue specification of one page (Fig.
4) is described and the automatically generated Java-code is presented. The numbers in
brackets reference lines of code.

15

Figure 4: Catalogue page of the Sanacorp EPC

The catalogue specification

The specification begins with the template declaration for the layout: The element stylesheet
(1) assigns a name of this pattern for the catalogue pages. This template defines a white
background colour (2) for pages within which three elements can be seen: an image (3), a
navigation tree (4-6) representing the catalogue structure, and a button (7-15) for finishing the
navigation process. The button layout is described through an image (8-9), his functionality
through the included element on-click (13-16), i.e. closing the active (12) page, opening
another one (13).

1 <stylesheet oid="stylesheet21" name="Sanacorp1">
2 <page oid="Page7" width=800 height=600 background="white">
3
4 <applet oid="applet1764" name="EpkTree" xpos=640 ypos=16
5 width=144 height=448 function="Navigation">
6 </applet>
7 <button oid="Button19" xpos=256 ypos=528 width=128 height=48>
8 <img oid="Image20" xpos=640 ypos=528 width=128 height=48
9 src="epk/img/beenden.gif"> // finish
10 <on-click>
12 <close oid="close99011" name="Page7">
13 <open oid="open99012" name="Theme27">
14 </on-click>
15 </button>
16 </page>
17 </sylesheet>
18 [...]

The specification continues with a theme (19) description. A theme can define just one
catalogue page or a set of pages through the reference of a template in the extension sub-
element. The example page references the above defined stylesheet (21) for the basic layout.
Additionally, it is enriched with frame (24), a table (25) and a text (30-33) as well as other
buttons. The table shows how the result of an sql-query is used from the EpkMl-element
make-table (26) and table-column (27-28). The specification of the buttons beginning in (35)
is done in analogy to the button in the stylesheet element.

19 <theme oid="Theme10" name="Allg">
20 [...]
21 <page oid="Page29" style="Sanacorp1">
22 <sql oid="SQL2469" result="ALLG">
23 SELECT * FROM PCLAVBAY WHERE SLAV = '1' </sql>
24 <frame oid="P799" xpos=144 ypos=16 width=480 height=504>
25 <table oid="Table8 xpos=144 ypos=16 width=480 height=480>
26 <make-table from=ALLG>
27 <table-column name="Einheit"> $ALLG.EIN$ // unit
28 [...]
29 </table>
30 <p oid="P179" xpos=144 ypos=500 width=480 height=20
31 font="helvetica" fontsize=14 fontcolor="black">
32 Allgemeiner Praxis- und Sprechstundenbedarf
33 </p>

16

34 </frame>
35 <button oid="Button459" xpos=128 ypos=528 width=128 height=48>
36 <img oid="Image2076" xpos=128 ypos=528 width=128 height=48
37 src="epk/img/weiter.gif"> // continue
38 <on-click>
39 <next oid="next99012">
40 </on-click>
41 </button>
42 [...]
43 </page>
44 [...]
45 </theme>

The generated source code

The code generation process generates Java program code (a new class "EpkPageSanacorp1")
from the specification. The new class implements the desired layout and behaviour based on
the stylesheet using the standard components EpkPage, EpkButton and EpkImage. This class
is then used to build subclasses for the catalogue pages that are derived from the class.

In our example the specified page is generated as a subclass of the previously generated
standard page class (15). Now the specific contents is considered in addition to the already
defined elements. Therefore, some variables are declared (17-25). The body of the generated
method init (36-81) includes the initialisation of these elements based on the call of the
parametrised constructors (41, 47, 58, 65). Other statements assign the unique identifiers
needed for extended development support and determine the position of the elements. At
runtime the concrete catalogue page is generated as an instance of this class incorporating the
concrete data of the product database. The code that is responsible for this instantiation is
located in the main class of the application.

1 // Classfile for EpkPageExt39
2 // The following code was generated by GASSI Version 1.0
3 // Tue Oct 14 11:27:58 GMT+00:00 1997
4 //--
5
6 /*** ## Package declaration ## ***/
9 package sanaEpk;
8
9 /*** ## The imports ## ***/
10 import java.awt.*;
11 import java.util.*;
12 import epk.*;
13
14 /*** ## Class declaration ## ***/
15 public class EpkPageExt39 extends EpkPageSanacorp1 {
16
17 /*** ## Variable declarations ## ***/
18 protected Epkcontainer frameFrame799;
19 protected EpkTable table8;
20 protected EpkTTA ttaP799;
21 protected EpkButton buttonButton459;22 protected EpkButton buttonButton460;
23 protected EpkButton buttonButton461;
24 protected EpkButton buttonButton462;
25 protected EpkButton next_buttonButton2072;
26

17

27 /*** ## The Constructor ## ***/
28 /** GASSI generated method. **/
29 public EpkPageExt39(Frame dummy) {
30
31 super(dummy);
32
33 }
34
35 /*** ## The methods ## ***/
36 /** GASSI generated method. **/
37 public void init() {
38
39 super.init();
40
41 frameFrame799 = new Epkcontainer();
42 frameFrame799.setOId("Frame799");
43 frameFrame799.setBounds(144, 16, 480, 504);
44 Epk.objTable().put("Frame799", frameFrame799);
45 this.add((ComponentIF)frameFrame799);
46
47 table8 = new EpkTable("SELECT * FROM PCLAVBAY WHERE SLAV='1'");
48 table8.setOId("Table8");
49 table8.setBounds(144, 16, 480, 480);
50 table8.setColumn("EIN", "Einheit");
51 table8.setColumn("NAM", "---- Artikelbezeichnung ----");
52 table8.setColumn("INFO", "Info?");
53 table8.setColumn("LAVK", "AVK*");
54 table8.setColumn("KZZUZAH", "Erstattung");
55 Epk.objTable().put("Table8", table8);
56 frameFrame799.add((ComponentIF)table8);
57
58 ttaP799 = new EpkTTA("Allgemeiner Praxis- und Sprechstundenbedarf");
59 ttaP799.setOId("P799");
60 ttaP799.setBounds(144, 500, 480, 20);
61 Epk.objTable().put("P799", ttaP799);
62 ttaP799.setFont(new Font("Helvetica", Font.PLAIN, 14));
63 frameFrame799.add((ComponentIF)ttaP799);
64
65 buttonButton459 = new EpkButton("epk/img/weiter.gif", "epk/img/weiter.gif",
66 "epk/img/weiter.gif", Navigation.NEXT);
67 buttonButton459.setOId("Button459");
68 buttonButton459.setBounds(128, 528, 128, 48);
69 Epk.objTable().put("Button459", buttonButton459);
70 this.add((ComponentIF)buttonButton459);
71
72 buttonButton460 = new EpkButton("epk/img/hilfe.gif", "epk/img/hilfe.gif",
73 "epk/img/hilfe.gif", Navigation.COMP);
74 buttonButton460.setOId("Button460");
75 buttonButton460.setBounds(256, 528, 128, 48);
76 Epk.objTable().put("Button460", buttonButton460);
77 buttonButton460.setOIDsForActions(" Page29 Theme27 ");
78 buttonButton460.setActionIDs(" 2009 2008 ");
79 this.add((ComponentIF)buttonButton460);
80 [...]
81 }
82 }

18

The source code of all the classes generated for an application is compiled and transformed
into an executable program. The user of the GASSI generation tool can decide, if he wants to
include the new classes in the catalogue class library. Therefore unique names to identify them
have to be chosen. Reuse of these classes is then possible.

7 Related Work

Approaches related to our work come from four areas: First of all, numerous approaches focus
on development of multimedia documents in general. There exist process models as well as
development tools which support the production, publication, and management of hypermedia
documents. The generality of these approaches is their drawback to our scenario. They do not
provide any help for the particular task of electronic product catalogue development. Second,
there are tools and approaches which focus on the particular aspects of commerce using
modern "electronic'' media. These approaches often lack the ability to create a vast range of
variations of catalogues, which is desirable since customers usually like to give their catalogues
a characteristic appearance. Third, framework-based software engineering is also apt to
improve development of EPCs. The last related field of activity is the use of XML (eXtensible
Markup Language) with respect to extended WWW presentation possibilities.

Process models and development tools for electronic catalogues are aspects of particular
interest, both are likewise important. We need a wide flexibility to model catalogues in all
variants of hypermedia, as well as appropriate support for frequent commercial features.

Well-known commercial authoring tools like Macromedia Director™ and Toolbook™ support
the design and implementation of catalogues, but do not cover the whole life cycle. There are a
lot of other different approaches regarding authoring environments. None of them covers
requirements analysis assistant or extensive testing integrated with rapid prototyping through
automatic code generation. We now briefly describe two interesting recent approaches with
different focus: SchemaText™ System and OOHDM-Web.

The SchemaText System is an object-oriented WWW authoring environment to construct and
maintain large and complex electronic documents [Schema, 1998]. It supports the authoring
process through initial prototyping, authoring-in-the-large (large-scale design), authoring-in-
the-small (produce text, embed graphics) as well as multi-platform production (WWW, MS-
Windows Help, SGML). It uses Scheme (IEEE Standard 1178-1990) as its scripting language,
a dialect of Lisp. The schema design can be done either in a top-down or in a bottom-up
fashion. In spite of lots of elaborate features, the system doesn’t generate programs and
functionality beyond navigation has to be implemented by hand.

EPK-Editor [Rosewitz and Timm, 1998] is an example for a specific e-commerce authoring
tool. It makes the production of EPCs with standard services like search and ordering facilities
easier, faster and cheaper. Disadvantages are the missing portability of resulting EPCs (MS
Windows™ only) and minor design features due to layout restrictions.

OOHDM-Web is an environment that allows prototyping of web applications designed with
OOHDM [Schwabe and Pontes, 1998]. Therefore it maps the navigation and interface
constructs onto a library of functions in the CGI-Lua environment. OOHDM-Web supports the
dynamic generation of pages based on CGI scripts, predefined-templates, and content from a

19

database (DB). The designer then builds page templates that mix HTML tags with special
commands that are interpreted by CGI-Lua scripting environment. These special commands
build a bridge to the database. Unfortunately, OOHDM schemata first have to be transformed
into tables of a relational database and the dependence of the entire approach on CGI and a
database system restrict conceivable extensions.

Framework-based software development has nowadays become an important strategic issue,
since software vendors "have indicated that as much as eighty percent of their development
cost is spent writing and supporting the basic, non-competitive functions that are essentially the
same for any application solution offered in a specific domain. (...) IBM's San Francisco
project addresses these problems by providing application developers with a base set of object
oriented infrastructure and application logic which can be expanded and enhanced by each
developer in the areas where they chose to provide competitive differentiation" [IBM, 1998].
EPCs with tight integration into enterprise IT applications could be built onto this kind of
applications by means of these extensions.

The generation of code for arbitrary applications is usually based on frameworks, too. The
most general approach known to the authors is developed in the Jakarta project and described
in [Batory et al., 1998]. It deals with the creation of largely domain-independent programming
infrastructure (e.g., languages for component specification, languages for component
composition, etc.). The Jakarta Tool Suite (JTS) is designed for constructing software
component technologies and their generators. In contrast to general application development,
visual design of graphical user interfaces is supported by ubiquitous IDEs (Integrated
Development Environments) but these offer restricted multimedia and no electronic commerce
facilities at all.

XML is used to specify application-specific structured description languages that can be used
to support production and management of hypermedia documents. Its basic renunciation of
considering layout aspects is bypassed via XSL, the eXtensible Style Language. An
introduction to concepts of XML and more detailed information about it can be found in
[Megginson, 1998]. However, XML is no tool with application functionality but only provides
standards. Compliance with these makes it possible to use existing or emerging tools to
produce and view documents.

8 Conclusions and Further Steps

A study of the current state-of-art of electronic product catalogues [Knapp et al.,1997] on the
market showed the need for a comfortable specification language for EPCs and easy-to-use
tools. Through the features and services observed and tested, we identified the components
and characteristics of the language EpkMl and the features of each assistant. The catalogue
developer is assisted by special editors and a presentation assistant from the beginning of the
first interview. During the catalogue design and generation phase the assistance is realised with
other editors and class libraries. Tests accompany the entire development process including the
final EPC.

Based on the methodology we developed, four assisting tools (RASSI, SASSI, GASSI, and
TASSI) were implemented for the EPC production. The first experiences with small example
applications proved the practical advantage of our approach and systems. We are currently

20

starting to produce EPCs for more complex domains. Experiences with these applications will
lead to refinements and improvement of our specification language and the tools.

In our approach, an EPC is the result of cooperating experts working at various places on
different aspects of the catalogue. In order to keep track of the correct versions of the
documents and programs produced so far, version management is required. The WWW based
project server OASSI has been implemented, that allows to define and manage users and
projects with appropriate access capabilities. Furthermore, the server manages revisions of
documents and identifies official releases of software modules.

Further user modeling aspects will be incorporated into the development process of EPCs,
thereby producing adaptive catalogues. For a first adaptive prototype the users will supply
their preferences, goals, interests, and tasks filling in the registration form. In a second step this
information will be obtained from the knowledge acquisition component, which inferences
from the user's behaviour. The user model will be instantiated from stereotypes stored in the
knowledge base.

References

[Bibel et al., 1989] W. Bibel, J. Schneeberger and E. Elver. The Representation of Knowledge. In H.
Adelij, editor, Knowledge Engineering. Mc. Graw Hill, New York, chapter I, 1989.

[Batory et al., 1998] D. Batory, B.e Lofaso, and Y. Smaragdakis. JTS: A Tool Suite for Building
GenVoca Generators. Accepted for publication in the 5th International Conference
on Software Reuse, Victoria, Canada, 1998.

[Boehm, 1988] B.W. Boehm. A Spiral Model of Software Development and Enhancement. IEEE
Computer 21(5):61-72, 1988.

[Gloor, 1997] P. Gloor. Elements of Hypermedia Design. Birkhäuser Verlag, 1997.

[Goldfarb, 1994] C. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1994.

[IBM98] IBM: International Business Machines Corporation: San Francisco Project
Technical Summary. http://www.ibm.com/Java/Sanfrancisco/prd_summary.html
(investigated October '98), 1997.

[ISO8613, 1988] 8613, ISO 1988. Information Processing - Text and Office Systems - Office
Document Architecture (ODA) and Interchange Format. Vol i-III, parts 1-8.

[Jackson, 1990] P. Jackson, Introduction to Expert Systems. Addison Wesley, Reading, 1990.

[Klausner et al., 1994] J. Klausner, G. Kraetzschmar, J. Schneeberger and H. Stoyan. The Knowledge
Mining Center. In L. Steels, G. Schreiber and W. van der Velde, editors. Position
paper of the 8th European Knowledge Aquisition Workshop EKAW´94, Technical
Report, Hoegaarden, Vrije Universiteit Brussel, 1994.

[Knapp and
Kosiuczenko,1997]

A. Knapp and P. Kosiuczenko. Developing Formal semantics of EpkMl. Technical
Report 9704, Ludwig-Maximilians-Universität München, 1997.

[Knapp et al.,1996] A. Knapp, N. Koch and L. Mandel. The Language EpkMl. Technical Report 9605,
Ludwig-Maximilians-Universität München, 1996.

21

[Knapp et al.,1997] A. Knapp, N. Koch, M. Wirsing, J. Duckeck, R. Lutze, H. Fritzsche, D. Timm, P.
Closhen, M. Frisch, H.-J. Hoffmann, B. Gaede, J. scneeberger, H. Stoyan and A.
Turk. EPK-fix: Methods and Tools for Engineering Electronic Product Catalogues.
In R. Steinmetz and L. Wolf, editors, Interactive Distributed Multimedia Systems
and Telecommunication services, LNCS 1309, Springer Verlag, 1997.

[Koch and Mandel,
1997]

N. Koch and L. Mandel. State of the Art and Classification of Electronic Product
Catalogues. International Journal of Electronic Markets, University of St. Gallen,
Vol. 7(3), 28-31, 1997.

[Koch and Turk, 1997] N. Koch, and A. Turk, Towards a Methodical Development of Electronic
Catalogues, International Journal of Electronic Markets, University of St. Gallen,
Vol. 7(3), 16-21, 1997.

[Koch and Schneeberger,
1997]

N. Koch, and J. Schneeberger, Integrated Assistance for the Development of
Electronic Product Catalogues, Proceedings of Symposium of Software Technology
(SoST´97), 101-112, 1997.

[Lennon,1997] J. Lennon, Hypermedia Systems and Applications. Springer Verlag, 1997.

[Megginson, 1998] D. Megginson. Structuring XML Documents. In Charles F. Goldfarb Series on Open
Information Management, Upper Saddle River, NJ, Prentice Hall, 1998.

[Meltin and Simon,
1993]

J. Melton and A. Simon. Understanding the new SQL. Morgan Kaufmann, 1993.

[Rosewitz and Timm,
1998]

M. Rosewitz and U. Timm. Editor für Produktberatung.
WIRTSCHAFTSINFORMATIK 40, 1/1998.

[Raumbaugh et al, 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-oriented
Modelling and Design. Prentice Hall, 1991.

[Shaw and Garlan, 1996] M. Shaw and D. Garlan. Software Architecture. Prentice Hall, 1996.

[Shema, 1998] http://www.schema.de

[Schneiderman, 1998] B. Schneiderman. Designing the User Interface. Addison Wesley, 1998.

[Shwabe and Pontes,
1998]

D. Schwabe and R. Almeida Pontes. OOHDM-Web: Rapid Prototyping of
Hypermedia Applications in the WWW, Technical Report PUC-Rio Inf MCC 08/98,
1998.

[Wieringa,1996] R. Wieringa. Requirements Engineering. John Wiley & Sons, 1996.

