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1 Introduction 

The Dexter Hypertext Reference Model was the result of the discussions of a small 

workshop on hypertext at the Dexter Inn, Sunapee, New Hampshire in October 1988. 

The purpose was to find a common language for the people involved in hypermedia 

development and to obtain common abstractions to the hypermedia systems existing at 

that time (Halasz and Schwartz, 1994). It has been proven to be so useful and stable, 

that it has been used since then as basis for discussions and to build hypermedia 

systems. No doubt that the Dexter Reference Model is one of most the important 

milestones in the hypermedia development history.  

The Dexter Model was formalised by Halasz and Schwartz (1990) in the specification 

language Z  (Spivey, 1992), a specification language based on the set theory. Since then, 

object-oriented models and programming have increased their importance and 

dissemination. In addition, more emphasis is put in visual modeling languages, that 

improve intuitive comprehension of models.  

The specification developed in this work is an object-oriented specification approach 

based on the Unified Modeling Language (UML) and the Object Constraints Language 

(OCL). UML (Booch, Rumbaugh & Jacobson, 1999) provides the notation and the 

object-oriented modeling techniques for the visual representation of the model. OCL 

(Warmer & Kleppe, 1999) is used for the formal specification of invariants on the 

model elements and attributes as well as of pre-conditions and post-conditions on the 

functions of the Dexter Reference Model.  
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The visual representation has the advantage that it shows at one glance the relevant 

concepts, how they are organised and how these concepts are related. UML has been 

chosen as it has become a standard modeling language. The semi-formal graphical 

representation is complemented with semantic information formally written in OCL. 

The use of OCL improves the model precision as it is stresses by Richter and Gogolla 

(1999) compared to constraints described as English text. But in this work it also allows 

for an object oriented formal specification that  is equivalent to the original Z 

specification of Dexter Model.  

This work is structured as follows. The second section gives a brief textual description 

of the Dexter Hypertext Reference Model. The third section details the object-oriented 

specification of the reference model. It is based on UML class diagrams of the layers of 

the Dexter model and the OCL descriptions of invariants, pre- and post-conditions for 

classes, attributes and operations. Finally, some conclusions and further work is 

outlined. The Dexter Model uses the word “hypertext” to refer to both text-only and 

multimedia systems; so is done in this work. 

2 The Dexter Hypertext Reference Model 

The Dexter Reference Model divides a hypertext system into three layers. They are the 

run-time layer, the storage layer and the within-component layer connected by the 

interfaces presentation specification and anchoring. The model focuses mainly on: 

 the storage layer, 

 the mechanisms of anchoring (interface between the storage layer and within-

component layer),  

 the presentation specification (interface between the storage layer and run-

time layer), and 

 some aspects of the run-time layer. 

The within-component layer is purposely not elaborated within this reference model. 

Figure 1 shows these layers as presented in the work of Halasz & Schwarz (1994).  

The main goal of  the reference model is to describe the network of nodes and links of 

the storage layer, i.e. the mechanisms by which these links and nodes are related. In this 

layer the nodes are treated as general data containers. The content and structure within 

the hypertext nodes are described in the within-component layer. The run-time layer 

contains the description of how nodes and links are presented, how interaction can be 

performed, i.e. the description of the dynamics of the application. But the Dexter Model 

only provides the realisation of a set of interfaces, it does not attempt to cover all the 

details of the user interaction with the hypertext.   

For the general containers of data of the within-component layer, no details are given 

about their content, such as text, graphics, animation, etc. as well about the structure and 

the mechanism to deal with this structure.  

In addition, the model describes the interfaces between the run-time layer and the 

storage layer (presentation specification) and between the storage layer and the within-
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Figure 1: Layers of the Dexter Hypertext Reference Model 

 

component layer (anchoring). It can be observed that this separation of the contents, 

structure and presentation aspects of hypermedia systems is the basis of most of the 

hypermedia design methods. 

The Dexter Model  describes the storage layer as the structure of a hypertext system that 

consists of a finite set of components. A component is either an atom, a link or a 

composite entity. Atoms in the Dexter Model terminology are the "nodes" of the 

hypertext system. Links, also called link components, are entities that represent relations 

between components. Each component includes a component information and a content 

specification. The component information consists of a list of attributes, a presentation 

specification and a list of anchors.  

 With attributes arbitrary properties can be included, as for example to attach 

keywords to a component.  

 The list of anchors provides a mechanism to specify the end points of the links 

that relate this node with other nodes of the network. 

 The presentation specification is used as interface to the run-time layer. 

 The content specification is used as interface to the within-component layer. 

Every component has associated a unique identifier (UID). These UIDs are assumed to 

be unique in the whole universe of discourse.   

The content of a link component is a list of two or more specifiers. Each specifier 

contains a component specification, a presentation specification, an anchor 

identification (id) and a direction. Direction can either have the value "from", "to", 

"bidirect" or "none" with the following semantic: source of a link, destination, both or 

neither source nor destination.  
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Anchoring is the mechanism that provides the functionality to allow for linking between 

nodes or documents but also for addressing (referring) to locations within the content of 

a component. An anchor is an indirect addressing entity, which has two parts: anchor id 

and anchor value. The anchor value is an arbitrary value specifying a location, an item 

or a region. This anchor value only is a variable and interpretable field within the 

content of the component. It is part of the within-component layer. Otherwise, the 

anchor id remains constant and identifies its anchor uniquely within the scope of its 

component or uniquely across the whole universe through a pair "UID-anchor id". 

The functionality of the storage layer is supported by a resolver function and an 

accessor function. Together they are responsible for mapping specifications of 

components into the components themselves, i.e. retrieving the components. The 

resolver function  "resolves" the component specification into a component UID or set 

of UIDs, which is used by the accesor function to "access" the correct component(s). 

The accessor function may find out that no component  exits for a UID. We are in 

presence of a dangling link.  

In addition to the data model, the Dexter Model defines a set of operations to access or 

modify the hypertext structure. These operations are: create an atom, a link or a 

composite component, delete or modify components, set values of attributes and get a 

component (using the accessor function) as well an operation to get all attributes of a 

component. Two other operations help to determine the accessibility of  the network. 

They are the linkTo and linkToAnchor operations. The first one, given a component and 

an anchor contained in the component, it returns the set of links that resolve to this 

anchor. The second one, given a hypertext and a component UID, it returns all links 

resolving to that component.  

The Dexter Model requires link consistency. Therefore, when a component is deleted, 

the system has to guarantee that also all links resolving to that component are deleted. 

This requirement has been widely criticised.  

The run-time layer describes how the components are presented to the user. The 

presentation is based on the concept of instantiation of a component, i.e. a copy of the 

component is cached to the user. If the user modifies the instantiation, it is written back 

into the storage layer. The copy receives an instantiation identifier (IID). To note is, that 

simultaneously there may exits more than one instantiation for a component and that a 

user may be viewing more than one component. In order to keep track of all these 

instantiations the run-time layer uses an entity session. The user will open a session by 

the action present Component of a given hypertext, she can edit the instantiation, save 

the modifications, create a new component or delete a component. The most common 

action is follow Link, which takes the IID of an instantiation together with the link 

marker contained within that instantiation and presents then to the user any component 

resolved according the content of a link component specifier, i.e. components that are 

the end point destination of links. The user is allowed to remove an instantiation and 

close the session.   
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3 UML+OCL Specification of the Dexter Model  

The run-time layer, storage layer and the within-component layer, into which the Dexter 

Model divides a hypertext system, are represented in this work as packages in a UML 

class diagram. This diagram is shown in Figure 2.  

The following sections present the UML class diagrams and the OCL specification of 

the storage layer, run-time layer and the description of the functionality of these layers. 

The description of the within-component layer is not within the scope of Dexter 

hypertext reference model. 

3.1  The Storage Layer 

The storage layer describes the structure of a hypertext (class Hypertext) as a finite set 

of components (class Component) together with two functions, a resolver and an 

accessor function. With these two functions it is possible to “retrieve” components. 

Every component has a globally unique identity (class UID), that is assumed to be 

unique in the entire hypertext universe. The accessor function allows for the “access” to 

a component given its UID. UIDs provide a guaranteed mechanisms for addressing any 

component in a hypertext.  

In the Dexter model this addressing is accomplished in a indirect way based on the 

entities called anchor (class Anchor) consisting of two parts: an anchor ID and anchor 

value (classes AnchorID and AnchorValue). The anchor value is an arbitrary value that 

specifies some location within a component. The anchor ID is an identifier that uniquely 

Run-time Layer

Storage Layer

Within-Component

 Layer

Presentation 

Specification

Interface

Anchoring

Interface

 

Figure 2: UML-Model for the Layers of the 

Dexter Hypertext Reference Model 
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identifies the anchor within the scope of the component. Together with the UID it 

permits to uniquely identify the anchor within the scope of the hypertext. 

A component is composed by two parts: a component base (class ComponentBase) and 

a component information (class ComponentInfo). The component information consists 

of attributes (class Attribute), a presentation specification (class PresentSpec) and a 

sequence of anchors (class Anchor). The component base can be either an atom (class 

Atom), a link (class Link) or a composite of other components (class Composite). A link 

is a set of two or more specifiers (class Specifier). Specifiers are a composed by a 

component specification, an anchor specification and  a presentation specification.  

Figure 3 shows the Storage Layer represented by a UML class diagram. All the classes 

depicted are part of the package “Storage Layer” with exception of Content and Anchor 

Value that are classes of the package “Within-Component Layer”.  

Component 

A component has associated a base component (ComponentBase) and a component 

information (ComponentInfo). It is represented with an abstract class Component.  

Hypertext

resolver(cs): Set (UID) 

accessor(uid): Component 

linksTo(uid): Set (UID)
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1
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Figure 3: UML Class Diagram for the Storage Layer 
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The base component describes the content of the component. It can be either an atom 

(Atom), a link (Link) or a composite (Composite), as it is shown in the UML class 

diagram (see Figure 3). 

The model defines a “type consistency” relationship between components: two 

components are “type consistent”, if they are both atoms or both links or both 

composites. This relationship is specified by the following constraint. 

context  Component :: consistency (c1:Component, c2: Component): Boolean 

pre:  - - none 

post: result  =  c1.oclIs TypeOf (Atom)  and  c2.oclIs TypeOf (Atom)           or   

c1.oclIs TypeOf (Link)  and   c2.oclIs TypeOf (Link) 

             or   c1.oclIs TypeOf (Composite) and c2.oclIs TypeOf (Composite) 

 

The following function builds a component given its component base and associated 

information.  

context  Component :: component (base:ComponentBase, info: ComponentInfo): 

Component 

pre:  - - none 

post:  let    c = self.oclIsNew  

in     c.compBase = base 

             and   c.compInfo = info  

and   result = c 

 

The component information instead describes the properties of the component, that are 

different to the content of the component. These properties are a sequence of anchors 

(Anchor), a presentation specification (PresentSpec) and optionally a set of arbitrary 

attribute/value pairs (Attribute and Value). The last one can be used to define any 

arbitrary property for a component and assign a value to it. The presentation 

specification contains information specifying how this component should be presented 

at run-time. It is part of the interface between the storage layer and the run-time layer. 

Anchors are part of the interface between the storage layer and the within-component 

layer.    

Note that a presentation specification always has some value. Therefore, a component 

information (ComponentInfo) is initialised with no attributes, no anchors and a 

presentation specification which is given as argument. The post-condition of the 

operation init indicates that a component instance has to fulfil these constraints.  

context  ComponentInfo :: init (ps:PresentSpec) 

pre:  - - none  

post:  attributes  isEmpty    

            and  anchors  isEmpty   

            and  presSpec =ps 
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Anchor 

Anchoring is the mechanism that provides the functionality to allow for linking between 

nodes or documents but also for addressing (referring) to locations within the content of 

a component.  

An anchor is defined as a pair of an anchor ID (AnchorID) and an anchor value 

(AnchorValue). The anchor ID is an identifier which uniquely identifies its anchor 

within the scope of its component. Through the pair component UID - anchor ID an 

anchor can therefore be uniquely identified across the whole universe. The anchor value 

is an arbitrary value that indicates some location, item or substructure within the 

component. The anchoring process is made possible by this decomposition of the anchor 

in two parts: the anchor ID is used by the storage layer while the anchor value is a 

variable field for use by the within-component layer. 

Thus, to ensure that the anchor identifiers are unique within a component the following 

invariant constraint must be fulfilled: The number of anchors must be equal to the 

number of different anchor identifiers. 

context  ComponentInfo   

inv  number of anchors: 

       anchors   size  =  anchors.anchorID   asSet    size 

Atom 

An atom has a content which represents the data of the component. The content of an 

object  is a primitive of the model. It is concern of the within-component layer, therefore 

no details are described in the storage layer. The operation init connotes that a atom 

instance has no content after initialisation. 

context  Atom :: init ()  

pre:   - - none 

post:  content  isEmpty     

Specifier 

Another type of component is a link. It consists of a sequence of at least two specifiers. 

A specifier defines one single end point of a link. A specifier consists of a component 

specification (ComponentSpec) and an anchor identification (AnchorID) as well as two 

additional fields: a presentation specification and a direction.  

The component specification together with the anchor identification specifies a 

component and an anchor within the component. The use of the component 

specification instead of the UID has the advantage that it allows for indirect addressing, 

i.e. the UID of destination is resolved at run-time.  

The direction encodes whether the end point is the source of the link (FROM), the 

destination (TO), both a source and a destination (BIDIRECT), or neither a source nor a 

destination (NONE). The direction of a specifier instance is initialised with NONE.  
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context  Specifier :: init ()  

pre:   -- none 

post:  direction = #NONE  

 

The presentation specification (PresentSpec) is a primitive value that forms part of the 

interface between the storage layer and the run-time layer.    

Link 

As already defined, a link consists of a sequence of at least two specifiers. Thus, the 

Dexter Model excludes dangling links, but allows for links with arity greater than two. 

Binary links are the standard in hypertext systems.  

All links should have at least one destination. The following invariant ensures this as it 

requires at least one specifier with value TO for the direction.  

context Link  

inv at least one specifier with direction TO: 

       specifiers.direction exists ( s: Specifier | s.direction = #TO) 

 
 

Links are “first class citizen” as they inherit from component, that implies that links to a 

link component may be defined in the same way as to an atom or composite component. 

Link includes two derived associations (compSpecs and anchorSpecs) establishing a 

direct association to ComponentSpec and to AnchorID. These associations are annotated 

with a “/”. The association /compSpec results in the set of component specifications for 

a link and /anchorSpec in the set of anchors IDs for the link. 

context Link   

inv derived association /compSpecs: 

        /compoSpecs  =  specifiers.compSpec asSet  

 

context Link  

inv  derived association  /anchorSpecs: 

       /anchorSpecs  =  specifiers.anchorSpec asSet  

Composite 

A composite component is constructed recursively out of other components. It is 

restricted to be a directed acyclic graph, i.e. a component may be sub-component of 

more than one composite and no composite may directly or indirectly contain itself as a 

sub-component. Here the composite pattern (Gamma, Helm, Johnson & Vlissides, 

1995) is used for modeling a component structure. 

The “no existence of children” is a constraint that has to be fulfilled by a new composite 

instance. 

context Composite :: init () 

pre:  - - none 
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post:  children isEmpty 

   

Hypertext 

A hypertext system represented by the class model (Figure 3) consists of three parts: 

 a set of components that represent “nodes” and “links”,  

 a function called “resolver” that returns the UID for a given component 

specifier (more than one specifier may return the same UID), and 

 an “accessor” function which given a UID returns a component. 

The resolver function is responsible for  “resolving” a component specification into a 

UID. The UIDs are primitives in the model with attribute ID. The accessor function is 

responsible to access the component corresponding to the resolved UID. The resolver is 

a partial function; the accessor a total and invertible function. 

context Hypertext :: resolver ( cs : ComponentSpec ) : Set (UID) 

pre:  components exists ( c: Component |  

              c.compBase.oclIsTypeOf (Link)  

               and  c.compBase./compSpecs includes (cs) 

 ) 

post:  result = UID.allInstances select ( u: UID | cs.uid  includes (u) ) 

 

context Hypertext :: accessor ( uid : UID ) : Set (Component) 

pre:  components exists ( c: Component |  

              c.compBase.oclIsTypeOf (Link)  

               and  c.compBase./compSpecs.uids  includes (uid) 

 ) 

post:  result = uid.component 

  

To identify the set of links resolving to a component, the Dexter Reference Model 

introduces the function linksTo which, given a hypertext system and the UID of a 

component in the system, returns the UIDs of all links resolving to that component.  

context Hypertext :: linksTo ( uid : UID ) : Set (UID) 

pre:   self.components exists ( c : Component | accessor (uid) = c ) 

post:  result = UID.allInstances select ( lid : UID |  

Component.allInstances exists (link : ComponentBase |     

link.oclIsTypeOf (Link)    

               and  link  =  accessor (lid).compBase    

                   and ComponentSpec.allInstances exists ( cs : ComponentSpecs  

                        | link./compSpec includes (cs)  

    and   uid = resolver (cs) 

               ) ) )  

 

There are four constraints which must be satisfied by every instance of the class 

Hypertext (invariants): 
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 The accessor function must yield a value for every component. As this 

function is invertible, every component must then have a UID.  

 The resolver function must be able to produce all possible valid UIDs, i.e. 

the range of the resolver has to be equal to the domain of the accessor. Thus, 

dangling links are not allowed in the model.  

 The anchor ID of a component must be the same as the anchor IDs of the 

component specifiers of the links resolving to the component.  

 There are no cycles in the component/sub-component relationship, that is no 

component may be a sub-component (directly or transitively) of itself. 

The first constraint is the “components accessibility” and ensures that all hypertext 

components are accessible by means of the accessor function. It can be formalised as 

follows: 

context Hypertext 

inv  components accessibility: 

components forAll ( c:Component |  

UID.allInstances exists (uid:UID | c = accessor (uid)  

        ) )  

 

The second constraint states that the set of UIDs obtained “resolving” component 

specifications (resolver range) is equal to the set of valid documents that can be 

retrieved by the accessor (accessor domain).  

context Hypertext 

inv  range of resolver = domain of accessor: 

       ComponentSpec.allInstances forAll (cs: ComponentSpec | 

            UID.allInstances exists (uid:UID | 

     resolver (cs) includes (uid)    

               and Component.allInstances exists  (c:Component | 

                       accessor (uid) = c    

                       and  components includes (c)   

                ) ) )    and  

         UID.allInstances forAll (uid: UID|                                                            

              Component.allInstances exists (c:Component | 

        accessor (uid) c        

      and  ComponentSpec.allInstances exists  (cs:ComponentSpec | 

         resolver (cs)includes (uid)     

                             and  componentsSpecincludes (cs)   

                ) ) ) 

 

The third constraint can be described in OCL using the previously defined operation 

linkTo. This constraint assures that the set of anchors identifiers of a component should 

always be equal to the set of anchors identifiers of the links resolving to that component.  
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context Hypertext 

inv  anchors IDs of a component =  anchors IDs of the links resolving to the 

component: 

components forAll  ( c : Component |  

UID exists ( uid:UID |  

c =  accessor (uid) 

         and  AnchorID exists ( aid : AnchorID |  

   c.compInfo.anchors.anchorID includes (aid)     implies  

             Component exists ( link:Link | UID exists ( lid: UID |  

                  linksTo (uid) includes (lid)  

                  and  link./anchorSpecs includes (aid)  

) ) ) ) ) 

 

The fourth constraint guarantees that a component is not included in the transitive 

closure of sub-components of this components.  

It has to be proved that the transitive closure of the relation children does not contain a 

pair with two equal elements. To calculate the transitive closure, first the association 

children is transformed into an association class as depicted in Figure 4.  

The OCL constraint that we are looking for is the following, where transClos is the 

transitive closure of the pairs of composites related by a children relationship:  

   not  transClos exists ( ch: Children | ch.component = ch.composite ) 

 

Unfortunately, OCL collections of collections are flattened, i.e. we define the transClos 

as a sequence as proposed by Mandel and Cengarle (1999), of an even number of 

elements, where even positions belongs to components and odd positions to composites. 

The expression written above can be replaced by: 

not  transClos exists ( i : Integer | transClos at (i*2-1)  =    

transClos at (i*2) )    

 

1..*
Component

Composite
1 ...

Children

composite

component

 

Figure 4: The children association class 
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The transitive closure can be calculated in two steps. First an operation called 

subcomponents is defined that builds a sequence of pairs of components (sub_comp) 

including all components that have children of type composite.  

context Hypertext:: subcomponents(): Sequence (Composite) 

pre:   --none 

post:  Children.allInstances iterate ( pair: Children;  

sub_comp : Sequence (Composite) =  Sequence{} | 

         if  pair.component.oclTypeOf  (Composite) 

then sub_comp append (pair.composite)

  append (pair.component)      

else  sub_comp   

endif 

             ) 

In the second step an operation transitiveClosure is defined. It applies the Warschall’s 

algorithm (Lang, 1988) to a given sequence of composites (pair of related composites) 

to calculate the transitive closure (transClos) . The result is a sequence of all pair of 

composites included in the transitive closure of the initial sequence. 

context Hypertext :: transitiveClosure(initial:Sequence (Composite)):  

Sequence (Composite) 

pre:   --none 

post: Composite.allInstances iterate ( c3 : Composite;  

aux3 : Sequence (Composite) =  initial | 

  Composite.allInstances iterate ( c2 : Composite;     

               aux2 : Sequence (Composite) =  aux3 | 

  Composite.allInstances iterate ( c1 : Composite; 

  aux1 : Sequence (Composite) =  aux2 | 

   if  Sequence {1..(aux1 size) / 2}exists ( i,j : Integer | 

             aux1 at (2*i-1) = c1   and   aux1 at (2*i) = c3     

             and  aux1 at (2*j-1) = c3   and   aux1 at (2*j) = c2 

  then  aux1 append (c1) append (c2)  else  aux1   

                       endif   

) ) ) 

 

The fourth invariant is obtained using the above defined operation subcomponents and 

transitiveClosure. Thus, the constraint specifying that a composite may not contain itself 

as a sub-component can be formalised as follows: 

context Hypertext  

inv notItselfAsSubcomponent: 

let  transClos : Sequence (Composite)  =  

  transitiveClosure (self.subcomponents()) 

in  not  transClos  exists ( i : Integer | transClos at (i*2-1)   

           =  transClos at (i*2) ) 
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3.2  The Storage Layer Functions 

The Hypertext class includes two operations to access to links and anchors, i.e. ensuring 

the navigability functionality of the hypermedia system. The first one determines the set 

of links that resolve to a specific component (linksTo). The second one obtains the set of 

links that resolve to a specific anchor (linksToAnchor). Given a hypertext system and 

the UID of a component in the system, the function linksTo (defined above) returns the 

UIDs of all links resolving to that component.  

The operation linksToAnchor returns the link components that are associated to a 

particular anchor of a component. The following is the OCL expression for 

linksToAnchor. 

context Hypertext :: linksToAnchor (uid:UID, aid:AnchorID) : Set (UID) 

pre:    -- none  

post:  result = linksTo (uid) select (lid: UID |   

  accessor (lid).compBase.oclIsTypeOf (Link)    

   and  accessor (lid).compBase./anchorSpecs includes (aid) 

                ) 

 

Operations are provided to update a hypertext: createComponent, modifyComponent 

and deleteComponent. Operations that modify nodes and links of the hypertext must 

assure “link consistency”, i.e. that is all the component specifiers resolve to existing 

components. It is proven with the following invariant.  

context Hypertext  

inv    linkConsistency:  

          components.compBase.allInstances forAll ( cb : ComponentBase | 

      cb.oclIsTypeOf (Link)   implies 

      Components.allInstances exists ( c : Component | 

  accessor(resolver(cb./compSpec))  =  c 

 ) ) 

 

In addition to the functions to manipulate anchors and links, the Dexter Reference 

Model defines functions for the creation, modification, removing and retrieval of a 

component as well as for the manipulation of attributes. Creation is supported by a set of 

operations described below, modification by modifyComponent, removal by 

deleteComponent, retrieval by getComponent and manipulation of attributes by 

attributeValue, setAttributeValue and allAttributes.  

Creating a New Component 

The operation createNewComponent is the function invoked from the run-time layer to 

incorporate a new component to the hypertext. It calls one of the following operations: 

createAtomicComponent, createLinkComponent or createCompositeComponent. These 

three operations make use of are the operation addComponent (createComponent is the 

original name given by the authors of the Dexter Model to this operation).  
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The operation addComponent adds a new component to the hypertext. It ensures that the 

range of the accessor function is extended to include the new component. The resolver 

function is also extended so that there is at least one component specifier for this new 

component that resolves to this unique identifier. 

The constraints related to this operation are: 

context  Hypertext :: addComponent (c : Component)  

pre:    -- none 

post:  components   =  components @pre including (c)     

            and UID.allInstances  exists ( uid:UID | accessor (uid) = c  

and  ComponentSpec.allInstances  exists (cs:ComponentSpec |            

resolver (cs) = uid  includes  (uid)  

             ) )        

 

createAtomicComponent takes an atom and a presentation specification and uses 

addComponent to create a new atomic component. 

context  Hypertext :: createAtomicComponent (a: Atom, ps: PresentSpec) : 

Component 

pre:    -- none 

post:  Component. allInstances exists ( c: Component | 

c.oclIsNew  

and  c.compBase =  a  

and  c.compInfo.presSpec  =  ps  

and  self.addComponent (c)  

             and  result =  c   

 ) 

 

createLinkComponent takes a link and a presentation specification and utilises 

addComponent to create a new link component. Link consistency has to be proven. 

context  Hypertext :: createLinkComponent (link:Link, ps: PresentSpec) : 

Component 

pre:     -- none 

post: Component. allInstances exists ( c: Component | 

c.oclIsNew  

and  c.compBase =  link  

and  c.compInfo.presSpec  =  ps  

and  self.addComponent (c)  

     and  result =  c   

 ) 

post:    linkConsistency  

 

createCompositeComponent takes a collection of base components and a presentation 

specification and utilises addComponent to create a new composite component. It must 

be ensured that any subcomponent of the new composite are already in the hypertext. 
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context  Hypertext :: createCompositeComponent (cp: Composite, s: Set 

(Component), ps: PresentSpec) :  Component 

pre:    s.oclIsTypeOf (Sequence)  

post: Component. allInstances exists ( c: Component | 

c.oclIsNew   and    

and  c.compBase =  cp  

and  c.compInfo.presSpec  =  ps  

and  self.createComponent (c)  

and  s.allInstances forAll ( s: S | components includes (s)  

and  c.children  = c.children@pre including (s) 

 ) 

             and  result =  c   

 ) 

 

createNewComponent is the function that will ultimately be invoked from the run-time-

layer. Here an abbreviated form is used as OCL requires expressions in the body of an 

if-then-else. 

context  Hypertext :: createNewComponent (bc:BaseComponent, ps:PresentSpec, s: 

Set (Component)) : Component  

pre:    -- none 

post:  result = if  bc.oclIsTypeOf (Atom)   

                       then  createAtomicComponent (bc, ps) 

                         else  if  bc.oclIsTypeOf (Link) 

                                 then createLinkComponent (bc, ps) 

                              else  if bc.oclIsTypeOf (Composite) 

                                         then createCompositeComponent (bc, s, ps) 

                                         else   -- none 

                  endif 

                               endif 

             endif   

Removing a Component 

The operation deleteComponent eliminates a component from the hypertext ensuring 

that all links whose specifiers resolve to that component are removed.  

context  Hypertext :: deleteComponent (uid:UID)  

pre:    components includes (accessor (uid)) 

post:  let  lIDs =  linksTo (uid) including (uid) 

            in  lIDs iterate ( lid:lIDs |  

components  =  components@pre  excluding (lid)   

) 

post:  linkConsistency  
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Modifying a Component 

Components are modified by the operation modifyComponent that ensures that the 

associated information as well as the type (atom, link or composite) remains unchanged 

and that the resulting hypertext remains link consistent. The resolver is not modified 

when modifying a component as the new component overrides the old one. 

context  Hypertext :: modifyComponent (uid:UID, new:Component)  

pre:     components  includes (accessor (uid)) 

post:   let    old =  accessor (uid) 

           in    components = components@ pre excluding (new)  

including (old)  

                   and  oclType (new.compBase)  = oclType (old.compBase)      

                   and  new.compInfo  =  old.compInfo 

post:  linkConsistency  

Retrieving a Component 

The operation getComponent takes a UID and uses the accessor function to return a 

component. If the UID represents a link component, it returns either a source or a 

destination specifier for that component. 

context  Hypertext :: getComponent (uid:UID) : Component 

pre:    components  includes (accessor (uid)) 

post:  result =  accessor (uid) 

Accessing and Modifying Attributes 

The Dexter model includes the following three operations that allow for manipulation of 

attributes of components. These operations are attributeValue, setAttributeValue and 

allAttributes.  

The first one takes a component UID and an attribute and returns the value of the 

attribute. 

context  Hypertext :: attributeValue (uid:UID, a:Attribute) : Value 

pre: components  includes (accessor (uid)) 

post:  Components.allInstances exists ( c:Component | c =  accessor (uid) 

               and   c.attributes select (at:Attribute | at = a  

     implies   result  =  at.value   

 ) ) 

 

The second operation is setAttributeValue, that given a component UID, an attribute and 

a value, it sets the value of the attribute.  

context  Hypertext :: setAttributeValue (uid:UID, a:Attributes, v:Value)  

pre: components  includes (accessor (uid) ) 

post:  Components.allInstances exists ( c:Component | c =  accessor (uid) 

     and  Attributes.allInstances  exists (at:Attribute | 

  at = c.attributes  and   at =  a 
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                implies   at.value = v   

) ) 

 

The third one, allAttributes returns the set of all component attributes. 

context  Hypertext :: allAttributes () : Set ( Attribute ) 

pre:    -- none 

post:  result =  Attributes.allInstances select ( at:Attribute |  

Component exists (c:Component | c.compInfo.attributes includes 

(at) 

 ) ) 

3.3  The Run-time Layer  

The run-time layer describes the mechanisms supporting the user’s interaction with the 

hypertext. The fundamental concept of this layer is the instantiation. An instantiation is 

a presentation of the component to the user. It can be considered as a kind of run-time 

cache of the component as the user sees and edits a copy of the component. Thus, more 

than one instantiation for any given component can coexist. 

Figure 5 shows the classes of the Run-time Layer that are described in the Dexter 

Reference Model and part of the Storage  Layer. 

Instantiation of a component also results in instantiation of its anchors. An instantiated 

anchor is known as a link marker (LinkMarker). In order to follow the same structure as 

in the storage layer, the instantiation is a complex entity that consists of a base 

instantiation (BaseInstantiation), a sequence of link markers and a function mapping 

link markers to the anchors they instantiate. Base instantiation is a primitive in the 

model and represents the presentation of a component to the user. 
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Instantiation 

Each instantiation has a unique instantiation identifier from a given set of instantiations 

ID (IID). In addition, an instantiation consists of, according to Halasz and Schwarz 

(1994), a base instantiation which “represents” a component, a sequence of link markers 

which “represents” the anchors of the component, and a function mapping link markers 

to anchor IDs called “link anchor” (operation linkAnchor).  

context Instantiation : linkAnchor (lm : LinkMarker) : AnchorID 

pre:    links include (lm) 

post:  result  =  lm.anchorLink 

 

The invariant “ dom linkAnchor = ran links” for the operation link anchor demands that 

for every link marker the function link anchor maps the link marker to an anchor ID.  

context Instantiation 

inv  dom linkAnchor = ran links: 

        links forAll ( lm: LinkMarker | links includes (lm) 

            implies  AnchorID.allInstances exists ( aid : AnchorID |   

linkAnchor (lm) = aid  

        ) )   

        and  LinkMarker.allInstances exists ( lm : LinkMarker |  

        linkAnchor (lm) = aid   

        implies links includes (lm) 
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Figure 5: UML Class  Diagram for the Run-time Layer and Part of the Storage Layer 
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       )      

Session 

In the Dexter Reference Model the session contains the hypertext being accessed, a 

history, a mapping from IIDs of the session’s current instantiations to the corresponding 

components of the storage layer, an instantiator function, a realizer function and a run-

time resolver function. This is represented by a class Session with an association to the 

class Hypertext and to a class History.  

The history records all the operations a user performs during a session, i.e. since the last 

open session. There are seven different types of operations that a user can perform 

during a session. This operations are: open and close a session, present and unpresent an 

instantiation of a component, create a new instantiation during a session as well as  edit, 

save or delete an instantiation. 

For the manipulation of instantiations a mapping function is defined from instantiations 

to components. Instantiations are generated for a session. Given an instantiation 

identification, the function instants returns the instantiation of the component and the 

function instantsUid  the UID of the corresponding component.  

context  Session :: instants (iid: IID) :  Instantiation 

pre:    iids  includes (iid) 

post:  result = iid.inst 

 

context  Session :: instantsUid (iid: IID) :  UID 

pre:    iids  includes (iid) 

post:  result = iid.instUid 

 

The instantiator is the core of the run-time model. This function returns, given a UID of 

a component and a presentation specification, an instantiation of the component that is 

part of the session. The presentation specification is a primitive in the model that 

contains information about how the component is to be presented by the system during 

instantiation.  

context  Session :: instantiator (uid: UID, ps: PresentSpec) : Instantiation 

pre:     hypertext.components includes (accessor(uid) )  

and accessor (uid).compInfo.presSpec = ps 

post:   result =  Instantiation.allInstances  select (ins:Instantiation |  

   ins.instPresSpec = ps   and   ins.iid.instUid = uid     

)  

 

The inverse function to the instantiator is the realizer. It takes an instantiation and 

returns a “new” component reflecting the recent changes due to editing the instantiation. 

This returned component is the input for the modifyComponent operation of the 

hypertext of the storage layer.  
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context  Session :: realizer (inst: Instantiation) : Component 

pre:     Instantiation.allInstances includes (ins)    

post:   hypertext.components  exists (c:Component | 

c.oclIsNew  

and  c.compBase =  ins.Base  

and  ins.links forAll ( lm:LinkMarker | links includes (lm) 

        implies   c.compInfo.anchors.anchorID  = ins.linkAnchor (lm) 

        ) 

and  ( let  uid  = instantsUID (ins.iid) 

        in  hypertext.modifyComponent (uid,c)  

         ) 

and  result  =  c   

            ) 

The session’s run-time resolver is the run-time version of the storage’s layer resolver 

operation. It maps component specifiers into component UIDs. The run-time resolver is 

needed when run-time information is used for the resolution process, i.e. when history 

or time aspects are taken into account in the process. The storage layer resolver wouold 

not be able to handle this specification. The run-time resolver is a superset of the storage 

layer resolver. 

context  Session :: runTimeResolver (cs: ComponentSpec) : UID 

pre:    -- none 

post:   result =  resolver (cs) 

      -- cs is a component specification that may have changed during run-time 

 

The following invariants have to be fulfilled for every Session: 

context  Session  

inv   first operation in a session is OPEN: 

  history.operations first #OPEN 

 

inv    the set of components accessible by the accessor function is equal to set of 

components realised from instantiations:  

         UID.allInstances  forAll ( uid : UID |  

             PresentSpec.allInstances exist ( ps : PresentSpec | 

  accessor (uid)  =  realizer (instantiator(uid,ps)) 

          ) ) 

           

inv   storage layer resolver is a subset of the run-time resolver: 

          ComponentSpec.allInstances forAll ( cs : ComponentSpec |  

   UID exists  ( uid : UID |   

       resolver (cs) = uid   implies   runTimeResolver (cs) = uid  

                ) ) 
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3.4  The Run-time Layer Functions 

A set of functions are included in the Run-time-Layer at least to fulfil the presentation of 

the components of the Storage Layer.  

Opening a Session  

A Session starts with an existing hypertext (storage layer) and neither instantations nor 

history. The openSession has to fulfil the following constraint:  

context  Session :: openSession (h: Hypertext)  

pre:     self.oclIsNew 

post:   h.sessions = h.sessions@pre including (self)    

and  history isEmpty  

and  history.operations append (#OPEN)   

 and  iids isEmpty 

Opening an Instantiation 

There are several operations which can open a new instantiation: opening components, 

presenting a component, following a link and creating a new component.  

The first operation is called openComponents and it opens up a set of new instantiations 

based on a set of existing components. The function uses as input a sequencce of 

specifiers and a sequence of present specifications. 

context  Session :: openComponents (specs: Seq (Specifier), pspecs: Seq 

(PresentSpec))  

--   two sequences are defined instead of a set of pairs as in OCL all collections --   

are flat 

pre:   specs  size > 0   and  pspecs  size  =  specs  size 

post: history.operations append (#PRESENT) 

post:   let  newiids: Set (IID) isEmpty 

       and  newinst : Set(Instantiation)  isEmpty 

in  specs  iterate ( j : Integer; r = true|     

      let  s = specs at (j)  and  ps = pspecs at (j) 

      in Instantiation.allInstances exists (ins:Instantiation | 

        ins.oclIsNew 

        and   IID.allInstances exists ( iid:IID | 

  iid.oclIsNew    

and   instants (iid) = ins 

and   ComponentSpec.allInstances exists ( cs: 

ComponentSpec |  s.compSpec = cs 

and  UID.allInstances exists ( uid:UID | 

  runTimeResolver (cs) = uid 

  and  instantiator (uid, ps) = ins 

  and  instantsUID (iid) = uid 

    ) ) 

         and  newiids including (iid) 
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         and  newinst including (ins) 

   ) ) )  

  and  iids union (newiids)  

  and  iids.inst union (newinst) 

 

The second one, presentComponent, is the operation that calls openComponents to 

present just one component given one specifier and one presentation specification. 

context  Session :: presentComponent (spec:Specifier, pspec:PresentSpec) 

pre:    -- none 

post:  openComponents ({spec}, {pspec}) 

 

Another way to open a component is to follow a link from a given link marker in a 

given instantiation and present all the components for which the associated links have 

specifiers with a direction that has value “TO”. There may be more than one link 

involved because there may be more than one link associated with a particular anchor. 

context  Session :: followLink (iid:IID, lm:LinkMarker)  

pre:    -- none 

post:    let   specs =  Specifier.allInstances select (s:Specifier | 

     s.direction = #TO 

    and  AnchorID.allInstances exists ( aid: AnchorID |  

             aid = instants (iid).linkAnchor (lm)  

                  and   UID.allInstances  exists ( uid :UID | 

             LinksToAnchor (instantsUid (iid), aid) includes (uid) 

  and  accessor(uid).compBase.oclTypeOf (Link) 

                       and  accessor(uid).compBase./anchorSpecs  

includes (aid) 

and accessor(uid).compBase.specifiers includes (s) 

  ) ) ) 

   in   Sequence { 1.. (specs size)} iterate (i:Integer ;  

                               result : pspecs: Sequence (PresentSpec) | 

                               pspecs at (i)  = (specs at (i)).presSpec  

) 

and  openComponents (specs,pspecs) 

  

The newComponent operation models the opening of a new instantiation when a new 

component is created.  

context  Session :: newComponent (base:baseComponent, ps:PresentSpec, 

presentSpec :PresentSpec) : Component 

pre:    -- none 

post:   history.operations append (#CREATE) 

post:   result = hypertext.createNewComponent (base, ps) 

     and  UID.allInstances exists (uid : UID  |  

                Instantiation.allInstances exist ( ins : Instantiation | 

         IID.allInstances exists (iid : IID  |  
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    iids excludes (iid)    

                       and  ins =  instantiator (uid,presentSpec)    

    and  accessor (uid)  = c   

      and  instants (iid)  =  ins 

and   instantsUid (iid)  = uid 

     ) ) ) 

 

Removal of an Instantiation 

The operation unPresent models the removal of an instantiation. 

context  Session :: unPresent (iid:IID)  

pre:    iids includes (iid) 

post:  history.operations append (#UNPRESENT) 

post:  iids = iids@pre  excluding (iid) 

 

Modifying an Instantiation and/or a Component 

An edit operation is used to modify instantiations (editInstantiation). The editing of an 

instantiation has no effect on the component. An explicit operation to save the changes 

result of an edit is required. This operation is the realizeEdits. 

context  Session :: editInstantiation (ins:Instantiation, iid:IID)  

pre:    iids include (iid) 

post:   history.operations append (#EDIT)    

post:  let  oldIns =  instants(iid) 

 in   iids.inst  =  iids.inst@pre  excluding (oldIns) including (ins) 

 

 

context  Session :: realizeEdits (iid:IID)  

pre:  iids include (iid) 

post:   history.operations append (#SAVE) 

post:   Components.allInstances  exists ( c: Component |  

  Instantiation.allInstances  exists ( ins: Instantiation | 

   UID.allInstances  exists ( uid: UID | 

    instants (iid) = ins     

    and  instantsUid (iid) = uid     

    and  realizer (i) = c  

      and  hypertext.modifyComponent (uid,c) 

 ) ) ) 

 

Deleting a Component 

To delete a component this component has to be instantiated. Any other instantiations of 

the same component have also to be deleted. 
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context  Session :: deleteComponent (iid:IID)  

pre:  iids  includes (iid) 

post:   history.operations append (#DELETE)   

post:  UID.allInstances select ( uid : UID |  uid = instantsUid (iid)   

                       implies  hypertext.deleteComponent (uid) 

  ) 

post:  iids = iids@pre  excluding (iid) 

Closing a Session 

A session ends when it is closed out, i.e. the last operation registered  in the history has 

value CLOSE. All instantiations of components are deleted. Changes to instantiations 

that have not explicitly be saved will be lost.  

context  Session :: closeSession()  

pre:    history size > 1   and  history.operation first = #OPEN 

post:  history.operation append (#CLOSE)   

post:  iids isEmpty 

Read-only Session 

 A read-only session can be modelled as follows: 

context  Session  

inv    read only session: 

history.operations iterate ( op: Operation; result : Boolean = true | result  

and  ( op <> #SAVE’  and  op <> #CREATE  and  op <> #DELETE  

) ) 

4 Conclusions  

An object-oriented formal specification of the Dexter Hypertext Reference Model is  

presented in this work. It is based on the graphical notation of the UML and it makes 

intensive use of the OCL for the specification of invariants for the model elements and 

for the specification of the pre- and post-conditions on operations. These operations 

describe the functionality of a hypertext system.  

UML class diagrams allow for a visual representation of the reference model which 

show the concepts of the model and how they are related. This graphical representation 

is missing in the Z and ObjectZ specification. The addition of some additional 

constructs to the OCL would improve the readability of the specification.  With 

constructs like domain and range some constraints can be simplified. An important 

difficult arise by the definition of the transitive closure. . Even though the length of the 

computing of the transitive closure presented by Mandel and Cengarle (1999) has been 

reduced by the use of the construct “let ...in ...” that has been included in the UML 

version 1.3., it remains unnecessarily complex. Besides some little improvements that 

would optimise the specification, it has turned out that OCL is adequate for the 

specification of the Dexter Hypertext Reference Model. 
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