

Nora Koch 1

UML+OCL Specification

of the Dexter Hypertext Reference Model
*

Nora Koch
1

Ludwig-Maximilians-Universität München

Institut für Informatik

Oettingenstr. 67

D-80538 München

Tel. +49 89 2178 2151

Fax +49 89 2178 2152

kochn@informatik.uni-muenchen.de

1 Introduction

The Dexter Hypertext Reference Model was the result of the discussions of a small

workshop on hypertext at the Dexter Inn, Sunapee, New Hampshire in October 1988.

The purpose was to find a common language for the people involved in hypermedia

development and to obtain common abstractions to the hypermedia systems existing at

that time (Halasz and Schwartz, 1994). It has been proven to be so useful and stable,

that it has been used since then as basis for discussions and to build hypermedia

systems. No doubt that the Dexter Reference Model is one of most the important

milestones in the hypermedia development history.

The Dexter Model was formalised by Halasz and Schwartz (1990) in the specification

language Z (Spivey, 1992), a specification language based on the set theory. Since then,

object-oriented models and programming have increased their importance and

dissemination. In addition, more emphasis is put in visual modeling languages, that

improve intuitive comprehension of models.

The specification developed in this work is an object-oriented specification approach

based on the Unified Modeling Language (UML) and the Object Constraints Language

(OCL). UML (Booch, Rumbaugh & Jacobson, 1999) provides the notation and the

object-oriented modeling techniques for the visual representation of the model. OCL

(Warmer & Kleppe, 1999) is used for the formal specification of invariants on the

model elements and attributes as well as of pre-conditions and post-conditions on the

functions of the Dexter Reference Model.

*
 Technical Report 0008, Ludwig-Maximilians-Universität München, Dezember 2000.

1
 also working at F.A.S.T. Applied Software Technology GmbH, Arabellastr. 17, D-81925 München,

Germany, koch@fast.de.

Nora Koch 2

The visual representation has the advantage that it shows at one glance the relevant

concepts, how they are organised and how these concepts are related. UML has been

chosen as it has become a standard modeling language. The semi-formal graphical

representation is complemented with semantic information formally written in OCL.

The use of OCL improves the model precision as it is stresses by Richter and Gogolla

(1999) compared to constraints described as English text. But in this work it also allows

for an object oriented formal specification that is equivalent to the original Z

specification of Dexter Model.

This work is structured as follows. The second section gives a brief textual description

of the Dexter Hypertext Reference Model. The third section details the object-oriented

specification of the reference model. It is based on UML class diagrams of the layers of

the Dexter model and the OCL descriptions of invariants, pre- and post-conditions for

classes, attributes and operations. Finally, some conclusions and further work is

outlined. The Dexter Model uses the word “hypertext” to refer to both text-only and

multimedia systems; so is done in this work.

2 The Dexter Hypertext Reference Model

The Dexter Reference Model divides a hypertext system into three layers. They are the

run-time layer, the storage layer and the within-component layer connected by the

interfaces presentation specification and anchoring. The model focuses mainly on:

 the storage layer,

 the mechanisms of anchoring (interface between the storage layer and within-

component layer),

 the presentation specification (interface between the storage layer and run-

time layer), and

 some aspects of the run-time layer.

The within-component layer is purposely not elaborated within this reference model.

Figure 1 shows these layers as presented in the work of Halasz & Schwarz (1994).

The main goal of the reference model is to describe the network of nodes and links of

the storage layer, i.e. the mechanisms by which these links and nodes are related. In this

layer the nodes are treated as general data containers. The content and structure within

the hypertext nodes are described in the within-component layer. The run-time layer

contains the description of how nodes and links are presented, how interaction can be

performed, i.e. the description of the dynamics of the application. But the Dexter Model

only provides the realisation of a set of interfaces, it does not attempt to cover all the

details of the user interaction with the hypertext.

For the general containers of data of the within-component layer, no details are given

about their content, such as text, graphics, animation, etc. as well about the structure and

the mechanism to deal with this structure.

In addition, the model describes the interfaces between the run-time layer and the

storage layer (presentation specification) and between the storage layer and the within-

Nora Koch 3

Run-time Layer
presentation of the hypertext

user interaction, dynamics

Prresentation Specification

Storage Layer
network of nodes and links

Anchoring

Within-Component Layer
content/structure inside the nodes

Figure 1: Layers of the Dexter Hypertext Reference Model

component layer (anchoring). It can be observed that this separation of the contents,

structure and presentation aspects of hypermedia systems is the basis of most of the

hypermedia design methods.

The Dexter Model describes the storage layer as the structure of a hypertext system that

consists of a finite set of components. A component is either an atom, a link or a

composite entity. Atoms in the Dexter Model terminology are the "nodes" of the

hypertext system. Links, also called link components, are entities that represent relations

between components. Each component includes a component information and a content

specification. The component information consists of a list of attributes, a presentation

specification and a list of anchors.

 With attributes arbitrary properties can be included, as for example to attach

keywords to a component.

 The list of anchors provides a mechanism to specify the end points of the links

that relate this node with other nodes of the network.

 The presentation specification is used as interface to the run-time layer.

 The content specification is used as interface to the within-component layer.

Every component has associated a unique identifier (UID). These UIDs are assumed to

be unique in the whole universe of discourse.

The content of a link component is a list of two or more specifiers. Each specifier

contains a component specification, a presentation specification, an anchor

identification (id) and a direction. Direction can either have the value "from", "to",

"bidirect" or "none" with the following semantic: source of a link, destination, both or

neither source nor destination.

Nora Koch 4

Anchoring is the mechanism that provides the functionality to allow for linking between

nodes or documents but also for addressing (referring) to locations within the content of

a component. An anchor is an indirect addressing entity, which has two parts: anchor id

and anchor value. The anchor value is an arbitrary value specifying a location, an item

or a region. This anchor value only is a variable and interpretable field within the

content of the component. It is part of the within-component layer. Otherwise, the

anchor id remains constant and identifies its anchor uniquely within the scope of its

component or uniquely across the whole universe through a pair "UID-anchor id".

The functionality of the storage layer is supported by a resolver function and an

accessor function. Together they are responsible for mapping specifications of

components into the components themselves, i.e. retrieving the components. The

resolver function "resolves" the component specification into a component UID or set

of UIDs, which is used by the accesor function to "access" the correct component(s).

The accessor function may find out that no component exits for a UID. We are in

presence of a dangling link.

In addition to the data model, the Dexter Model defines a set of operations to access or

modify the hypertext structure. These operations are: create an atom, a link or a

composite component, delete or modify components, set values of attributes and get a

component (using the accessor function) as well an operation to get all attributes of a

component. Two other operations help to determine the accessibility of the network.

They are the linkTo and linkToAnchor operations. The first one, given a component and

an anchor contained in the component, it returns the set of links that resolve to this

anchor. The second one, given a hypertext and a component UID, it returns all links

resolving to that component.

The Dexter Model requires link consistency. Therefore, when a component is deleted,

the system has to guarantee that also all links resolving to that component are deleted.

This requirement has been widely criticised.

The run-time layer describes how the components are presented to the user. The

presentation is based on the concept of instantiation of a component, i.e. a copy of the

component is cached to the user. If the user modifies the instantiation, it is written back

into the storage layer. The copy receives an instantiation identifier (IID). To note is, that

simultaneously there may exits more than one instantiation for a component and that a

user may be viewing more than one component. In order to keep track of all these

instantiations the run-time layer uses an entity session. The user will open a session by

the action present Component of a given hypertext, she can edit the instantiation, save

the modifications, create a new component or delete a component. The most common

action is follow Link, which takes the IID of an instantiation together with the link

marker contained within that instantiation and presents then to the user any component

resolved according the content of a link component specifier, i.e. components that are

the end point destination of links. The user is allowed to remove an instantiation and

close the session.

Nora Koch 5

3 UML+OCL Specification of the Dexter Model

The run-time layer, storage layer and the within-component layer, into which the Dexter

Model divides a hypertext system, are represented in this work as packages in a UML

class diagram. This diagram is shown in Figure 2.

The following sections present the UML class diagrams and the OCL specification of

the storage layer, run-time layer and the description of the functionality of these layers.

The description of the within-component layer is not within the scope of Dexter

hypertext reference model.

3.1 The Storage Layer

The storage layer describes the structure of a hypertext (class Hypertext) as a finite set

of components (class Component) together with two functions, a resolver and an

accessor function. With these two functions it is possible to “retrieve” components.

Every component has a globally unique identity (class UID), that is assumed to be

unique in the entire hypertext universe. The accessor function allows for the “access” to

a component given its UID. UIDs provide a guaranteed mechanisms for addressing any

component in a hypertext.

In the Dexter model this addressing is accomplished in a indirect way based on the

entities called anchor (class Anchor) consisting of two parts: an anchor ID and anchor

value (classes AnchorID and AnchorValue). The anchor value is an arbitrary value that

specifies some location within a component. The anchor ID is an identifier that uniquely

Run-time Layer

Storage Layer

Within-Component

 Layer

Presentation

Specification

Interface

Anchoring

Interface

Figure 2: UML-Model for the Layers of the

Dexter Hypertext Reference Model

Nora Koch 6

identifies the anchor within the scope of the component. Together with the UID it

permits to uniquely identify the anchor within the scope of the hypertext.

A component is composed by two parts: a component base (class ComponentBase) and

a component information (class ComponentInfo). The component information consists

of attributes (class Attribute), a presentation specification (class PresentSpec) and a

sequence of anchors (class Anchor). The component base can be either an atom (class

Atom), a link (class Link) or a composite of other components (class Composite). A link

is a set of two or more specifiers (class Specifier). Specifiers are a composed by a

component specification, an anchor specification and a presentation specification.

Figure 3 shows the Storage Layer represented by a UML class diagram. All the classes

depicted are part of the package “Storage Layer” with exception of Content and Anchor

Value that are classes of the package “Within-Component Layer”.

Component

A component has associated a base component (ComponentBase) and a component

information (ComponentInfo). It is represented with an abstract class Component.

Hypertext

resolver(cs): Set (UID)

accessor(uid): Component

linksTo(uid): Set (UID)

linksToAnchor(uid,aid):

 Set (UID)

...

anchorId

anchors

specifiers

Specifier

/compSpecs

compSpec

value
attributes

1

1

1

1..*

1

1

0..*

1

1

1..*

1

2..*

direction = enum

(TO,FROM,

NONE,BIDIRECT)

Component

components

1

{ordered}

Anchor 1

children

PresentSpec

/anchorSpecs

AnchorID

0..*

{ordered}

ComponentSpec

anchor

Value

UID

anchorSpec

presSpec
presSpec

Attribute Value0..*

1..*

1..*

resolvesTo

accessTo

1 1
1

1

1 1

1

1

1

1

1

1

1

1

compInfocompBase 1

consistency(c,c): Boolean

component(b,i):Component

Component

Base

Atom LinkComposite

Component

Info

Within-

component

Layer ::

Content

1

1

1

content

Within-

component

Layer ::

AnchorValue

uids1..*

component

1

uid

Figure 3: UML Class Diagram for the Storage Layer

Nora Koch 7

The base component describes the content of the component. It can be either an atom

(Atom), a link (Link) or a composite (Composite), as it is shown in the UML class

diagram (see Figure 3).

The model defines a “type consistency” relationship between components: two

components are “type consistent”, if they are both atoms or both links or both

composites. This relationship is specified by the following constraint.

context Component :: consistency (c1:Component, c2: Component): Boolean

pre: - - none

post: result = c1.oclIs TypeOf (Atom) and c2.oclIs TypeOf (Atom) or

c1.oclIs TypeOf (Link) and c2.oclIs TypeOf (Link)

 or c1.oclIs TypeOf (Composite) and c2.oclIs TypeOf (Composite)

The following function builds a component given its component base and associated

information.

context Component :: component (base:ComponentBase, info: ComponentInfo):

Component

pre: - - none

post: let c = self.oclIsNew

in c.compBase = base

 and c.compInfo = info

and result = c

The component information instead describes the properties of the component, that are

different to the content of the component. These properties are a sequence of anchors

(Anchor), a presentation specification (PresentSpec) and optionally a set of arbitrary

attribute/value pairs (Attribute and Value). The last one can be used to define any

arbitrary property for a component and assign a value to it. The presentation

specification contains information specifying how this component should be presented

at run-time. It is part of the interface between the storage layer and the run-time layer.

Anchors are part of the interface between the storage layer and the within-component

layer.

Note that a presentation specification always has some value. Therefore, a component

information (ComponentInfo) is initialised with no attributes, no anchors and a

presentation specification which is given as argument. The post-condition of the

operation init indicates that a component instance has to fulfil these constraints.

context ComponentInfo :: init (ps:PresentSpec)

pre: - - none

post: attributes isEmpty

 and anchors isEmpty

 and presSpec =ps

Nora Koch 8

Anchor

Anchoring is the mechanism that provides the functionality to allow for linking between

nodes or documents but also for addressing (referring) to locations within the content of

a component.

An anchor is defined as a pair of an anchor ID (AnchorID) and an anchor value

(AnchorValue). The anchor ID is an identifier which uniquely identifies its anchor

within the scope of its component. Through the pair component UID - anchor ID an

anchor can therefore be uniquely identified across the whole universe. The anchor value

is an arbitrary value that indicates some location, item or substructure within the

component. The anchoring process is made possible by this decomposition of the anchor

in two parts: the anchor ID is used by the storage layer while the anchor value is a

variable field for use by the within-component layer.

Thus, to ensure that the anchor identifiers are unique within a component the following

invariant constraint must be fulfilled: The number of anchors must be equal to the

number of different anchor identifiers.

context ComponentInfo

inv number of anchors:

 anchors size = anchors.anchorID asSet size

Atom

An atom has a content which represents the data of the component. The content of an

object is a primitive of the model. It is concern of the within-component layer, therefore

no details are described in the storage layer. The operation init connotes that a atom

instance has no content after initialisation.

context Atom :: init ()

pre: - - none

post: content isEmpty

Specifier

Another type of component is a link. It consists of a sequence of at least two specifiers.

A specifier defines one single end point of a link. A specifier consists of a component

specification (ComponentSpec) and an anchor identification (AnchorID) as well as two

additional fields: a presentation specification and a direction.

The component specification together with the anchor identification specifies a

component and an anchor within the component. The use of the component

specification instead of the UID has the advantage that it allows for indirect addressing,

i.e. the UID of destination is resolved at run-time.

The direction encodes whether the end point is the source of the link (FROM), the

destination (TO), both a source and a destination (BIDIRECT), or neither a source nor a

destination (NONE). The direction of a specifier instance is initialised with NONE.

Nora Koch 9

context Specifier :: init ()

pre: -- none

post: direction = #NONE

The presentation specification (PresentSpec) is a primitive value that forms part of the

interface between the storage layer and the run-time layer.

Link

As already defined, a link consists of a sequence of at least two specifiers. Thus, the

Dexter Model excludes dangling links, but allows for links with arity greater than two.

Binary links are the standard in hypertext systems.

All links should have at least one destination. The following invariant ensures this as it

requires at least one specifier with value TO for the direction.

context Link

inv at least one specifier with direction TO:

 specifiers.direction exists (s: Specifier | s.direction = #TO)

Links are “first class citizen” as they inherit from component, that implies that links to a

link component may be defined in the same way as to an atom or composite component.

Link includes two derived associations (compSpecs and anchorSpecs) establishing a

direct association to ComponentSpec and to AnchorID. These associations are annotated

with a “/”. The association /compSpec results in the set of component specifications for

a link and /anchorSpec in the set of anchors IDs for the link.

context Link

inv derived association /compSpecs:

 /compoSpecs = specifiers.compSpec asSet

context Link

inv derived association /anchorSpecs:

 /anchorSpecs = specifiers.anchorSpec asSet

Composite

A composite component is constructed recursively out of other components. It is

restricted to be a directed acyclic graph, i.e. a component may be sub-component of

more than one composite and no composite may directly or indirectly contain itself as a

sub-component. Here the composite pattern (Gamma, Helm, Johnson & Vlissides,

1995) is used for modeling a component structure.

The “no existence of children” is a constraint that has to be fulfilled by a new composite

instance.

context Composite :: init ()

pre: - - none

Nora Koch 10

post: children isEmpty

Hypertext

A hypertext system represented by the class model (Figure 3) consists of three parts:

 a set of components that represent “nodes” and “links”,

 a function called “resolver” that returns the UID for a given component

specifier (more than one specifier may return the same UID), and

 an “accessor” function which given a UID returns a component.

The resolver function is responsible for “resolving” a component specification into a

UID. The UIDs are primitives in the model with attribute ID. The accessor function is

responsible to access the component corresponding to the resolved UID. The resolver is

a partial function; the accessor a total and invertible function.

context Hypertext :: resolver (cs : ComponentSpec) : Set (UID)

pre: components exists (c: Component |

 c.compBase.oclIsTypeOf (Link)

 and c.compBase./compSpecs includes (cs)

)

post: result = UID.allInstances select (u: UID | cs.uid includes (u))

context Hypertext :: accessor (uid : UID) : Set (Component)

pre: components exists (c: Component |

 c.compBase.oclIsTypeOf (Link)

 and c.compBase./compSpecs.uids includes (uid)

)

post: result = uid.component

To identify the set of links resolving to a component, the Dexter Reference Model

introduces the function linksTo which, given a hypertext system and the UID of a

component in the system, returns the UIDs of all links resolving to that component.

context Hypertext :: linksTo (uid : UID) : Set (UID)

pre: self.components exists (c : Component | accessor (uid) = c)

post: result = UID.allInstances select (lid : UID |

Component.allInstances exists (link : ComponentBase |

link.oclIsTypeOf (Link)

 and link = accessor (lid).compBase

 and ComponentSpec.allInstances exists (cs : ComponentSpecs

 | link./compSpec includes (cs)

 and uid = resolver (cs)

)))

There are four constraints which must be satisfied by every instance of the class

Hypertext (invariants):

Nora Koch 11

 The accessor function must yield a value for every component. As this

function is invertible, every component must then have a UID.

 The resolver function must be able to produce all possible valid UIDs, i.e.

the range of the resolver has to be equal to the domain of the accessor. Thus,

dangling links are not allowed in the model.

 The anchor ID of a component must be the same as the anchor IDs of the

component specifiers of the links resolving to the component.

 There are no cycles in the component/sub-component relationship, that is no

component may be a sub-component (directly or transitively) of itself.

The first constraint is the “components accessibility” and ensures that all hypertext

components are accessible by means of the accessor function. It can be formalised as

follows:

context Hypertext

inv components accessibility:

components forAll (c:Component |

UID.allInstances exists (uid:UID | c = accessor (uid)

))

The second constraint states that the set of UIDs obtained “resolving” component

specifications (resolver range) is equal to the set of valid documents that can be

retrieved by the accessor (accessor domain).

context Hypertext

inv range of resolver = domain of accessor:

 ComponentSpec.allInstances forAll (cs: ComponentSpec |

 UID.allInstances exists (uid:UID |

 resolver (cs) includes (uid)

 and Component.allInstances exists (c:Component |

 accessor (uid) = c

 and components includes (c)

))) and

 UID.allInstances forAll (uid: UID|

 Component.allInstances exists (c:Component |

 accessor (uid) c

 and ComponentSpec.allInstances exists (cs:ComponentSpec |

 resolver (cs)includes (uid)

 and componentsSpecincludes (cs)

)))

The third constraint can be described in OCL using the previously defined operation

linkTo. This constraint assures that the set of anchors identifiers of a component should

always be equal to the set of anchors identifiers of the links resolving to that component.

Nora Koch 12

context Hypertext

inv anchors IDs of a component = anchors IDs of the links resolving to the

component:

components forAll (c : Component |

UID exists (uid:UID |

c = accessor (uid)

 and AnchorID exists (aid : AnchorID |

 c.compInfo.anchors.anchorID includes (aid) implies

 Component exists (link:Link | UID exists (lid: UID |

 linksTo (uid) includes (lid)

 and link./anchorSpecs includes (aid)

)))))

The fourth constraint guarantees that a component is not included in the transitive

closure of sub-components of this components.

It has to be proved that the transitive closure of the relation children does not contain a

pair with two equal elements. To calculate the transitive closure, first the association

children is transformed into an association class as depicted in Figure 4.

The OCL constraint that we are looking for is the following, where transClos is the

transitive closure of the pairs of composites related by a children relationship:

 not transClos exists (ch: Children | ch.component = ch.composite)

Unfortunately, OCL collections of collections are flattened, i.e. we define the transClos

as a sequence as proposed by Mandel and Cengarle (1999), of an even number of

elements, where even positions belongs to components and odd positions to composites.

The expression written above can be replaced by:

not transClos exists (i : Integer | transClos at (i*2-1) =

transClos at (i*2))

1..*
Component

Composite
1 ...

Children

composite

component

Figure 4: The children association class

Nora Koch 13

The transitive closure can be calculated in two steps. First an operation called

subcomponents is defined that builds a sequence of pairs of components (sub_comp)

including all components that have children of type composite.

context Hypertext:: subcomponents(): Sequence (Composite)

pre: --none

post: Children.allInstances iterate (pair: Children;

sub_comp : Sequence (Composite) = Sequence{} |

 if pair.component.oclTypeOf (Composite)

then sub_comp append (pair.composite)

 append (pair.component)

else sub_comp

endif

)

In the second step an operation transitiveClosure is defined. It applies the Warschall’s

algorithm (Lang, 1988) to a given sequence of composites (pair of related composites)

to calculate the transitive closure (transClos) . The result is a sequence of all pair of

composites included in the transitive closure of the initial sequence.

context Hypertext :: transitiveClosure(initial:Sequence (Composite)):

Sequence (Composite)

pre: --none

post: Composite.allInstances iterate (c3 : Composite;

aux3 : Sequence (Composite) = initial |

 Composite.allInstances iterate (c2 : Composite;

 aux2 : Sequence (Composite) = aux3 |

 Composite.allInstances iterate (c1 : Composite;

 aux1 : Sequence (Composite) = aux2 |

 if Sequence {1..(aux1 size) / 2}exists (i,j : Integer |

 aux1 at (2*i-1) = c1 and aux1 at (2*i) = c3

 and aux1 at (2*j-1) = c3 and aux1 at (2*j) = c2

 then aux1 append (c1) append (c2) else aux1

 endif

)))

The fourth invariant is obtained using the above defined operation subcomponents and

transitiveClosure. Thus, the constraint specifying that a composite may not contain itself

as a sub-component can be formalised as follows:

context Hypertext

inv notItselfAsSubcomponent:

let transClos : Sequence (Composite) =

 transitiveClosure (self.subcomponents())

in not transClos exists (i : Integer | transClos at (i*2-1)

 = transClos at (i*2))

Nora Koch 14

3.2 The Storage Layer Functions

The Hypertext class includes two operations to access to links and anchors, i.e. ensuring

the navigability functionality of the hypermedia system. The first one determines the set

of links that resolve to a specific component (linksTo). The second one obtains the set of

links that resolve to a specific anchor (linksToAnchor). Given a hypertext system and

the UID of a component in the system, the function linksTo (defined above) returns the

UIDs of all links resolving to that component.

The operation linksToAnchor returns the link components that are associated to a

particular anchor of a component. The following is the OCL expression for

linksToAnchor.

context Hypertext :: linksToAnchor (uid:UID, aid:AnchorID) : Set (UID)

pre: -- none

post: result = linksTo (uid) select (lid: UID |

 accessor (lid).compBase.oclIsTypeOf (Link)

 and accessor (lid).compBase./anchorSpecs includes (aid)

)

Operations are provided to update a hypertext: createComponent, modifyComponent

and deleteComponent. Operations that modify nodes and links of the hypertext must

assure “link consistency”, i.e. that is all the component specifiers resolve to existing

components. It is proven with the following invariant.

context Hypertext

inv linkConsistency:

 components.compBase.allInstances forAll (cb : ComponentBase |

 cb.oclIsTypeOf (Link) implies

 Components.allInstances exists (c : Component |

 accessor(resolver(cb./compSpec)) = c

))

In addition to the functions to manipulate anchors and links, the Dexter Reference

Model defines functions for the creation, modification, removing and retrieval of a

component as well as for the manipulation of attributes. Creation is supported by a set of

operations described below, modification by modifyComponent, removal by

deleteComponent, retrieval by getComponent and manipulation of attributes by

attributeValue, setAttributeValue and allAttributes.

Creating a New Component

The operation createNewComponent is the function invoked from the run-time layer to

incorporate a new component to the hypertext. It calls one of the following operations:

createAtomicComponent, createLinkComponent or createCompositeComponent. These

three operations make use of are the operation addComponent (createComponent is the

original name given by the authors of the Dexter Model to this operation).

Nora Koch 15

The operation addComponent adds a new component to the hypertext. It ensures that the

range of the accessor function is extended to include the new component. The resolver

function is also extended so that there is at least one component specifier for this new

component that resolves to this unique identifier.

The constraints related to this operation are:

context Hypertext :: addComponent (c : Component)

pre: -- none

post: components = components @pre including (c)

 and UID.allInstances exists (uid:UID | accessor (uid) = c

and ComponentSpec.allInstances exists (cs:ComponentSpec |

resolver (cs) = uid includes (uid)

))

createAtomicComponent takes an atom and a presentation specification and uses

addComponent to create a new atomic component.

context Hypertext :: createAtomicComponent (a: Atom, ps: PresentSpec) :

Component

pre: -- none

post: Component. allInstances exists (c: Component |

c.oclIsNew

and c.compBase = a

and c.compInfo.presSpec = ps

and self.addComponent (c)

 and result = c

)

createLinkComponent takes a link and a presentation specification and utilises

addComponent to create a new link component. Link consistency has to be proven.

context Hypertext :: createLinkComponent (link:Link, ps: PresentSpec) :

Component

pre: -- none

post: Component. allInstances exists (c: Component |

c.oclIsNew

and c.compBase = link

and c.compInfo.presSpec = ps

and self.addComponent (c)

 and result = c

)

post: linkConsistency

createCompositeComponent takes a collection of base components and a presentation

specification and utilises addComponent to create a new composite component. It must

be ensured that any subcomponent of the new composite are already in the hypertext.

Nora Koch 16

context Hypertext :: createCompositeComponent (cp: Composite, s: Set

(Component), ps: PresentSpec) : Component

pre: s.oclIsTypeOf (Sequence)

post: Component. allInstances exists (c: Component |

c.oclIsNew and

and c.compBase = cp

and c.compInfo.presSpec = ps

and self.createComponent (c)

and s.allInstances forAll (s: S | components includes (s)

and c.children = c.children@pre including (s)

)

 and result = c

)

createNewComponent is the function that will ultimately be invoked from the run-time-

layer. Here an abbreviated form is used as OCL requires expressions in the body of an

if-then-else.

context Hypertext :: createNewComponent (bc:BaseComponent, ps:PresentSpec, s:

Set (Component)) : Component

pre: -- none

post: result = if bc.oclIsTypeOf (Atom)

 then createAtomicComponent (bc, ps)

 else if bc.oclIsTypeOf (Link)

 then createLinkComponent (bc, ps)

 else if bc.oclIsTypeOf (Composite)

 then createCompositeComponent (bc, s, ps)

 else -- none

 endif

 endif

 endif

Removing a Component

The operation deleteComponent eliminates a component from the hypertext ensuring

that all links whose specifiers resolve to that component are removed.

context Hypertext :: deleteComponent (uid:UID)

pre: components includes (accessor (uid))

post: let lIDs = linksTo (uid) including (uid)

 in lIDs iterate (lid:lIDs |

components = components@pre excluding (lid)

)

post: linkConsistency

Nora Koch 17

Modifying a Component

Components are modified by the operation modifyComponent that ensures that the

associated information as well as the type (atom, link or composite) remains unchanged

and that the resulting hypertext remains link consistent. The resolver is not modified

when modifying a component as the new component overrides the old one.

context Hypertext :: modifyComponent (uid:UID, new:Component)

pre: components includes (accessor (uid))

post: let old = accessor (uid)

 in components = components@ pre excluding (new)

including (old)

 and oclType (new.compBase) = oclType (old.compBase)

 and new.compInfo = old.compInfo

post: linkConsistency

Retrieving a Component

The operation getComponent takes a UID and uses the accessor function to return a

component. If the UID represents a link component, it returns either a source or a

destination specifier for that component.

context Hypertext :: getComponent (uid:UID) : Component

pre: components includes (accessor (uid))

post: result = accessor (uid)

Accessing and Modifying Attributes

The Dexter model includes the following three operations that allow for manipulation of

attributes of components. These operations are attributeValue, setAttributeValue and

allAttributes.

The first one takes a component UID and an attribute and returns the value of the

attribute.

context Hypertext :: attributeValue (uid:UID, a:Attribute) : Value

pre: components includes (accessor (uid))

post: Components.allInstances exists (c:Component | c = accessor (uid)

 and c.attributes select (at:Attribute | at = a

 implies result = at.value

))

The second operation is setAttributeValue, that given a component UID, an attribute and

a value, it sets the value of the attribute.

context Hypertext :: setAttributeValue (uid:UID, a:Attributes, v:Value)

pre: components includes (accessor (uid))

post: Components.allInstances exists (c:Component | c = accessor (uid)

 and Attributes.allInstances exists (at:Attribute |

 at = c.attributes and at = a

Nora Koch 18

 implies at.value = v

))

The third one, allAttributes returns the set of all component attributes.

context Hypertext :: allAttributes () : Set (Attribute)

pre: -- none

post: result = Attributes.allInstances select (at:Attribute |

Component exists (c:Component | c.compInfo.attributes includes

(at)

))

3.3 The Run-time Layer

The run-time layer describes the mechanisms supporting the user’s interaction with the

hypertext. The fundamental concept of this layer is the instantiation. An instantiation is

a presentation of the component to the user. It can be considered as a kind of run-time

cache of the component as the user sees and edits a copy of the component. Thus, more

than one instantiation for any given component can coexist.

Figure 5 shows the classes of the Run-time Layer that are described in the Dexter

Reference Model and part of the Storage Layer.

Instantiation of a component also results in instantiation of its anchors. An instantiated

anchor is known as a link marker (LinkMarker). In order to follow the same structure as

in the storage layer, the instantiation is a complex entity that consists of a base

instantiation (BaseInstantiation), a sequence of link markers and a function mapping

link markers to the anchors they instantiate. Base instantiation is a primitive in the

model and represents the presentation of a component to the user.

Nora Koch 19

Instantiation

Each instantiation has a unique instantiation identifier from a given set of instantiations

ID (IID). In addition, an instantiation consists of, according to Halasz and Schwarz

(1994), a base instantiation which “represents” a component, a sequence of link markers

which “represents” the anchors of the component, and a function mapping link markers

to anchor IDs called “link anchor” (operation linkAnchor).

context Instantiation : linkAnchor (lm : LinkMarker) : AnchorID

pre: links include (lm)

post: result = lm.anchorLink

The invariant “ dom linkAnchor = ran links” for the operation link anchor demands that

for every link marker the function link anchor maps the link marker to an anchor ID.

context Instantiation

inv dom linkAnchor = ran links:

 links forAll (lm: LinkMarker | links includes (lm)

 implies AnchorID.allInstances exists (aid : AnchorID |

linkAnchor (lm) = aid

))

 and LinkMarker.allInstances exists (lm : LinkMarker |

 linkAnchor (lm) = aid

 implies links includes (lm)

compInfo

1..*

1

0..*

Component

components

Anchor

PresentSpec

{ordered}

presSpec

1 accessTo

ComponentInfo

1

1

1

1

1

anchorId
1

AnchorID

UID

1

1

1

ComponentSpec

1..*

Session

instants (iid):Instantiation

instantiator (uid, ps):

Instantiation

realizer (inst): Component

runTimeResolver(cs): UID

0..*
1

History

operations

1

anchor

Link

1..*

IID

1

1..*
iids

Instantiation

1

1

1

LinkMarker

0..*links

{ordered}

1

1 base

1

1

{ordered}

linkAnchor (lm): AnchorID

hypertext

anchors

inst

1..*
1

instUid

pres

Specs

BaseInstantiation

sessions

Operations

1

1

history

resolvesTo

0..*

link

Markers

resolver(cs):UID

accessor(uid): Component

linksTo(uid):Set (UID)

linksToAnchor(uid,aid):

 Set (UID)

Hypertext

0..*

Run-time LayerStorage Layer

1

1

comp

Base

...

Figure 5: UML Class Diagram for the Run-time Layer and Part of the Storage Layer

Nora Koch 20

)

Session

In the Dexter Reference Model the session contains the hypertext being accessed, a

history, a mapping from IIDs of the session’s current instantiations to the corresponding

components of the storage layer, an instantiator function, a realizer function and a run-

time resolver function. This is represented by a class Session with an association to the

class Hypertext and to a class History.

The history records all the operations a user performs during a session, i.e. since the last

open session. There are seven different types of operations that a user can perform

during a session. This operations are: open and close a session, present and unpresent an

instantiation of a component, create a new instantiation during a session as well as edit,

save or delete an instantiation.

For the manipulation of instantiations a mapping function is defined from instantiations

to components. Instantiations are generated for a session. Given an instantiation

identification, the function instants returns the instantiation of the component and the

function instantsUid the UID of the corresponding component.

context Session :: instants (iid: IID) : Instantiation

pre: iids includes (iid)

post: result = iid.inst

context Session :: instantsUid (iid: IID) : UID

pre: iids includes (iid)

post: result = iid.instUid

The instantiator is the core of the run-time model. This function returns, given a UID of

a component and a presentation specification, an instantiation of the component that is

part of the session. The presentation specification is a primitive in the model that

contains information about how the component is to be presented by the system during

instantiation.

context Session :: instantiator (uid: UID, ps: PresentSpec) : Instantiation

pre: hypertext.components includes (accessor(uid))

and accessor (uid).compInfo.presSpec = ps

post: result = Instantiation.allInstances select (ins:Instantiation |

 ins.instPresSpec = ps and ins.iid.instUid = uid

)

The inverse function to the instantiator is the realizer. It takes an instantiation and

returns a “new” component reflecting the recent changes due to editing the instantiation.

This returned component is the input for the modifyComponent operation of the

hypertext of the storage layer.

Nora Koch 21

context Session :: realizer (inst: Instantiation) : Component

pre: Instantiation.allInstances includes (ins)

post: hypertext.components exists (c:Component |

c.oclIsNew

and c.compBase = ins.Base

and ins.links forAll (lm:LinkMarker | links includes (lm)

 implies c.compInfo.anchors.anchorID = ins.linkAnchor (lm)

)

and (let uid = instantsUID (ins.iid)

 in hypertext.modifyComponent (uid,c)

)

and result = c

)

The session’s run-time resolver is the run-time version of the storage’s layer resolver

operation. It maps component specifiers into component UIDs. The run-time resolver is

needed when run-time information is used for the resolution process, i.e. when history

or time aspects are taken into account in the process. The storage layer resolver wouold

not be able to handle this specification. The run-time resolver is a superset of the storage

layer resolver.

context Session :: runTimeResolver (cs: ComponentSpec) : UID

pre: -- none

post: result = resolver (cs)

 -- cs is a component specification that may have changed during run-time

The following invariants have to be fulfilled for every Session:

context Session

inv first operation in a session is OPEN:

 history.operations first #OPEN

inv the set of components accessible by the accessor function is equal to set of

components realised from instantiations:

 UID.allInstances forAll (uid : UID |

 PresentSpec.allInstances exist (ps : PresentSpec |

 accessor (uid) = realizer (instantiator(uid,ps))

))

inv storage layer resolver is a subset of the run-time resolver:

 ComponentSpec.allInstances forAll (cs : ComponentSpec |

 UID exists (uid : UID |

 resolver (cs) = uid implies runTimeResolver (cs) = uid

))

Nora Koch 22

3.4 The Run-time Layer Functions

A set of functions are included in the Run-time-Layer at least to fulfil the presentation of

the components of the Storage Layer.

Opening a Session

A Session starts with an existing hypertext (storage layer) and neither instantations nor

history. The openSession has to fulfil the following constraint:

context Session :: openSession (h: Hypertext)

pre: self.oclIsNew

post: h.sessions = h.sessions@pre including (self)

and history isEmpty

and history.operations append (#OPEN)

 and iids isEmpty

Opening an Instantiation

There are several operations which can open a new instantiation: opening components,

presenting a component, following a link and creating a new component.

The first operation is called openComponents and it opens up a set of new instantiations

based on a set of existing components. The function uses as input a sequencce of

specifiers and a sequence of present specifications.

context Session :: openComponents (specs: Seq (Specifier), pspecs: Seq

(PresentSpec))

-- two sequences are defined instead of a set of pairs as in OCL all collections --

are flat

pre: specs size > 0 and pspecs size = specs size

post: history.operations append (#PRESENT)

post: let newiids: Set (IID) isEmpty

 and newinst : Set(Instantiation) isEmpty

in specs iterate (j : Integer; r = true|

 let s = specs at (j) and ps = pspecs at (j)

 in Instantiation.allInstances exists (ins:Instantiation |

 ins.oclIsNew

 and IID.allInstances exists (iid:IID |

 iid.oclIsNew

and instants (iid) = ins

and ComponentSpec.allInstances exists (cs:

ComponentSpec | s.compSpec = cs

and UID.allInstances exists (uid:UID |

 runTimeResolver (cs) = uid

 and instantiator (uid, ps) = ins

 and instantsUID (iid) = uid

))

 and newiids including (iid)

Nora Koch 23

 and newinst including (ins)

)))

 and iids union (newiids)

 and iids.inst union (newinst)

The second one, presentComponent, is the operation that calls openComponents to

present just one component given one specifier and one presentation specification.

context Session :: presentComponent (spec:Specifier, pspec:PresentSpec)

pre: -- none

post: openComponents ({spec}, {pspec})

Another way to open a component is to follow a link from a given link marker in a

given instantiation and present all the components for which the associated links have

specifiers with a direction that has value “TO”. There may be more than one link

involved because there may be more than one link associated with a particular anchor.

context Session :: followLink (iid:IID, lm:LinkMarker)

pre: -- none

post: let specs = Specifier.allInstances select (s:Specifier |

 s.direction = #TO

 and AnchorID.allInstances exists (aid: AnchorID |

 aid = instants (iid).linkAnchor (lm)

 and UID.allInstances exists (uid :UID |

 LinksToAnchor (instantsUid (iid), aid) includes (uid)

 and accessor(uid).compBase.oclTypeOf (Link)

 and accessor(uid).compBase./anchorSpecs

includes (aid)

and accessor(uid).compBase.specifiers includes (s)

)))

 in Sequence { 1.. (specs size)} iterate (i:Integer ;

 result : pspecs: Sequence (PresentSpec) |

 pspecs at (i) = (specs at (i)).presSpec

)

and openComponents (specs,pspecs)

The newComponent operation models the opening of a new instantiation when a new

component is created.

context Session :: newComponent (base:baseComponent, ps:PresentSpec,

presentSpec :PresentSpec) : Component

pre: -- none

post: history.operations append (#CREATE)

post: result = hypertext.createNewComponent (base, ps)

 and UID.allInstances exists (uid : UID |

 Instantiation.allInstances exist (ins : Instantiation |

 IID.allInstances exists (iid : IID |

Nora Koch 24

 iids excludes (iid)

 and ins = instantiator (uid,presentSpec)

 and accessor (uid) = c

 and instants (iid) = ins

and instantsUid (iid) = uid

)))

Removal of an Instantiation

The operation unPresent models the removal of an instantiation.

context Session :: unPresent (iid:IID)

pre: iids includes (iid)

post: history.operations append (#UNPRESENT)

post: iids = iids@pre excluding (iid)

Modifying an Instantiation and/or a Component

An edit operation is used to modify instantiations (editInstantiation). The editing of an

instantiation has no effect on the component. An explicit operation to save the changes

result of an edit is required. This operation is the realizeEdits.

context Session :: editInstantiation (ins:Instantiation, iid:IID)

pre: iids include (iid)

post: history.operations append (#EDIT)

post: let oldIns = instants(iid)

 in iids.inst = iids.inst@pre excluding (oldIns) including (ins)

context Session :: realizeEdits (iid:IID)

pre: iids include (iid)

post: history.operations append (#SAVE)

post: Components.allInstances exists (c: Component |

 Instantiation.allInstances exists (ins: Instantiation |

 UID.allInstances exists (uid: UID |

 instants (iid) = ins

 and instantsUid (iid) = uid

 and realizer (i) = c

 and hypertext.modifyComponent (uid,c)

)))

Deleting a Component

To delete a component this component has to be instantiated. Any other instantiations of

the same component have also to be deleted.

Nora Koch 25

context Session :: deleteComponent (iid:IID)

pre: iids includes (iid)

post: history.operations append (#DELETE)

post: UID.allInstances select (uid : UID | uid = instantsUid (iid)

 implies hypertext.deleteComponent (uid)

)

post: iids = iids@pre excluding (iid)

Closing a Session

A session ends when it is closed out, i.e. the last operation registered in the history has

value CLOSE. All instantiations of components are deleted. Changes to instantiations

that have not explicitly be saved will be lost.

context Session :: closeSession()

pre: history size > 1 and history.operation first = #OPEN

post: history.operation append (#CLOSE)

post: iids isEmpty

Read-only Session

 A read-only session can be modelled as follows:

context Session

inv read only session:

history.operations iterate (op: Operation; result : Boolean = true | result

and (op <> #SAVE’ and op <> #CREATE and op <> #DELETE

))

4 Conclusions

An object-oriented formal specification of the Dexter Hypertext Reference Model is

presented in this work. It is based on the graphical notation of the UML and it makes

intensive use of the OCL for the specification of invariants for the model elements and

for the specification of the pre- and post-conditions on operations. These operations

describe the functionality of a hypertext system.

UML class diagrams allow for a visual representation of the reference model which

show the concepts of the model and how they are related. This graphical representation

is missing in the Z and ObjectZ specification. The addition of some additional

constructs to the OCL would improve the readability of the specification. With

constructs like domain and range some constraints can be simplified. An important

difficult arise by the definition of the transitive closure. . Even though the length of the

computing of the transitive closure presented by Mandel and Cengarle (1999) has been

reduced by the use of the construct “let ...in ...” that has been included in the UML

version 1.3., it remains unnecessarily complex. Besides some little improvements that

would optimise the specification, it has turned out that OCL is adequate for the

specification of the Dexter Hypertext Reference Model.

References

Nora Koch 26

Gamma E., Helm R., Johnson R. and Vlissides J. (1995). Design Pattens. Addison Wesley.

Gronbaek K. and Trigg R. (1994). Design Issues for a Dexter-Based Hypermedia System.

Communications of the ACM 37(2), Gronbaek K. and Trigg R. (Eds.), 40-49.

Halasz F. and Schwartz M. (1990). The Dexter Hypertext Reference Model. NIST Hypertext

Standardization Workshop.

Halasz F. and Schwartz M. (1994). The Dexter Hypertext Reference Model. Communications of the

ACM 37(2), Gronbaek K. and Trigg R. (Eds.), 30-39.

Hardman L., Bulterman C. and van Rossum G. (1994). The Amsterdam Hypermedia Model.

Communications of the ACM 37(2), Gronbaek K. and Trigg R. (Eds.), 50-62.

Mandel L. and Cengarle M.V. (1999). On the expressive power of OCL.

Richters M. and Gogolla M. (1999). A Metamodel for OCL. In Proceedings of the Conference The

Unified Modeling Language beyond the standard (UML´99). LNCS 1723, Springer Verlag.

Spivey J. (1992). The Z Notation: A Reference Manual. Series in Computer Science. Prentice Hall

International, second edition.

UML Version 1.3 alpha R5 (1999). Object Constraint Language.

http://www.rational.com/uml/resources/documentation/index.jtmpl

Van Ossenbruggen J. and Eliëns A. (1995). The Dexter Reference Model in Object-Z.

http://www.cs.vu.nl/~dejavu/papers/dexter-full.ps.gz

Warmer J. and Kleppe A. (1999). The Object Constraint Language: Precise Modeling with UML.

Object Technology Series. Addison-Wesley.

http://www.rational.com/uml/resources/documentation/index.jtmpl
http://www.cs.vu.nl/~dejavu/papers/dexter-full.ps.gz

