
The Munich Reference Model for Adaptive Hypermedia
Applications

Nora Koch, Martin Wirsing

Ludwig-Maximilians University of Munich
www.pst.informatik.uni-muenchen, Germany

{kochn,wirsing}@informatik.uni-muenchen.de

Abstract. Although adaptive applications are increasing in popularity, there are
only a few approaches that focus on their generalization or the specification of a
reference model. Trying to fill this gap, this paper presents a reference model
for adaptive hypermedia applications, similar to AHAM. The main novelty of
our approach is an object-oriented specification written in UML (Unified
Modeling Language) which integrates both an intuitive visual representation
and a formal unambiguous specification in OCL (Object Constraint Language).
Our reference model is defined as an extension of the Dexter Hypertext
Reference Model including user modeling aspects and rule-based adaptation
mechanisms.

Keywords. Adaptive Hypermedia, Reference Model, Visual Modeling, UML,
Formal Specification, Constraint Language, OCL.

1 Introduction

An adaptive hypermedia system is a set of nodes and links that allows one to
navigate through the hypermedia structure and that dynamically “adapts”
(personalizes) various visible aspects of the system to individual user’s needs,
preferences or knowledge [2]. These applications include an explicit representation of
properties of the user. This paper presents a reference model for these adaptive
hypermedia applications. The contribution of the paper is twofold. Firstly, we provide
an object-oriented formalization for such a reference model. Secondly, we include a
graphical representation of this model.

The objective of a reference model is to find common abstractions to the current
systems and to provide a basis for the development of these applications. It is named
Munich Reference Model, continuing with the tradition of choosing names of places
for the reference models related to the hypermedia field, such as the Dexter Model
[4], the Amsterdam Model [5] or the Dortmund Family of Hypermedia Models [9].

Adaptive hypermedia systems are first of all hypermedia systems, therefore our
reference model is based on the widely used Dexter Model for hypertext systems. It
includes the same three layers, but enhanced with adaptation functionality. The key
aspects of the Munich Reference Model are inclusion of a user model and an
adaptation model as part of the Storage Layer, the dynamic acquisition of user
behavior, a dynamic rule-based adaptation and a user behavior triggered Run-Time

Published in 2nd International Conference on Adaptive Hypermedia and Adaptive Web-based
Systems, Proceedings. P. De Bra, P. Brusilovsky, and R. Conejo (eds.) LNCS 2347, ©Springer
Verlag, 213-222, May 2002.

session. To our knowledge there is only one other reference model for adaptive
applications: AHAM [3,12], which is semi-formally defined with tuples. The Munich
Model takes an object-oriented software engineering point of view whereas AHAM
takes more a database point of view. Our architecture is similar to the architecture of
the AHAM reference model, where user models are always structured as tables. The
AHAM adaptive engine is included in the adaptation model of our reference model as
data and functionality are integrated in the object-oriented approach. An important
contribution of AHAM is the adaptation rule language.

Our focus is, as already mentioned, the formal and visual description of the
reference model. The Dexter Model was formalized by Halasz and Schwartz [4] in the
specification language Z, early in the nineties. Since then, the use of object-oriented
methodologies gained in dissemination and importance. In addition, more emphasis is
now put on visual modeling languages making models more intuitive. These were our
motivations to select the Unified Modeling Language (UML) – standard for object-
oriented modeling – for the formalization of the Munich Reference Model. On the
one side, the UML [10] provides the notation and techniques (diagrams) for the visual
representation. It has the advantage of showing the relevant concepts at a glance, how
they are organized and how they are related to each other. This augments the intuitive
comprehension. On the other side, the Object Constraint Language (OCL) which is
part of the UML, is used to supplement the semi-formal graphical representation with
formally written semantics information.

The Munich Reference Model constitutes the basis for the UML-based Web
Engineering (UWE) approach that focus on development of adaptive hypermedia
applications [6,7]. UWE includes a design method and the description of a
development process that covers the whole life-cycle of these applications. This
reference model was used in the development of SmexWeb, a framework for
implementing adaptive learning systems on the Web [1]. SmexWeb supports all type
of dynamic adaptations, i.e. content, link and presentation adaptation.

This paper is an outline of the specification of the Munich Reference Model; the
complete version is included in [6]. It is organized as follows: Section two gives an
overview of the Munich Reference Model. Section three presents the specification of
the domain. Section four introduces the extensions to include user modeling and
adaptivity. Section five briefly presents the specification of a hypermedia session
management. Finally, in the last section some conclusions are outlined.

2 An Overview of the Reference Model

The Munich Reference Model preserves the three-layer structure of the Dexter
Model describing the network of nodes and links and the navigation mechanism. It
extends the functionality of each layer to include the user modeling and adaptation
aspects. The Run-Time Layer, the Storage Layer and the Within-Component Layer
are represented as UML subsystems as it is illustrated in Figure 1.

• The Run-Time Layer contains the description of the presentation of the nodes
and links. It is responsible for user interaction, acquisition of user behavior and
management of the sessions.

Run-time Layer

Storage Layer

Within-Component
 Layer

Presentation
Specification

Interface

Anchoring
Interface

Domain
Meta-Model

Adaptation
 Meta-Model

User
Meta-Model

Fig. 1: Architecture of
Adaptive Hypermedia

Applications

• The Storage Layer has more functionality than just storing information about
the hypermedia structure. To support adaptation the Storage Layer is divided
into three sub-models:
− The Domain Meta-Model that manages the basic network structure of the

hypermedia system in terms of mechanisms by which the links and nodes
are related and navigated. The nodes are treated as general data containers.

− The User Meta-Model manages a set of users represented by their user
attributes with the objective to personalize the application.

− The Adaptation Meta-Model consists of a set of rules that implement the
adaptive functionality, i.e. personalization of the application.

• The content and structure within the
hypermedia nodes are part of the Within-
Component Layer, which is not further
detailed as its structure and content depend on
the application.

The functionality of adaptive hypermedia
systems is specified by three types of operations
included in the classes of the reference model:

• Authoring operations are needed by adaptive
hypermedia systems to update components,
rules and user attributes, e.g. to create a link
or a composite component, to create a rule, to
add an user attribute to the model, to delete
components or rules.

• Retrieval operations are required to access the
hypermedia domain structure and the User
Model, e.g. to get a component, to get all rules
triggered by a user’s behavior or another rule.

• Adaptation operations are used to dyna-
mically adapt the User Model content to the
user behavior and to adapt the presentation to
the current state of the User Model, e.g. the
adaptive resolver, the constructor or the rule
executor.

The remainder of this paper presents the visual
specification (slightly simplified) of the layers of the reference model and includes a
few constraints of the formal specification out of a total of seventy constraints that
comprise the complete specification of the Munich Reference Model [6].

3 Specification of the Domain Model

The Domain Meta-Model describes the structure of a hypermedia as a finite set of
components together with three main operations, a resolver, an accessor and a

constructor. These concepts are modeled by a class Domain and a class Component.
Every component has a globally unique identity (class UID). With the operations
resolver, accessor and constructor it is possible to “retrieve” and “construct” adaptive
components. The accessor operation allows one to “access” a component given its
UID. UIDs “resolve” to a component. This way UIDs provide a guaranteed
mechanism for addressing any component in the hypermedia domain. As in the
Dexter Model, this addressing is accomplished in a indirect way based on the entities
called anchor (class Anchor) consisting of two parts: an anchor ID (class AnchorID)
and an anchor value (class AnchorValue). The anchor value is an arbitrary value that
specifies some location within a component. The anchor ID is an identifier that
uniquely identifies the anchor within the scope of the component.

The visual specification of the Domain Meta-Model of the Munich Reference
Model is represented by an UML class diagram. Part of it is shown in Figure 2. Note
that for classes belonging to another package, the name of the package is included
before the class name, e.g. Within-Component-Layer::AnchorValue. As examples, the
classes Component and Domain are described with some more detail below.

Domain

resolver(cs): Set (UID)
accessor(uid): Component
constructor (atoms):Page
linksTo(uid): Set (UID)
linksToAnchor(uid,aid):
 Set (UID)...

anchorID

anchors

specifiers

Specifier

compSpec

attributes

1

1

1..*

1

 *

1
1..*

1

2..*

direction = enum
(TO,FROM,
NONE,BIDIRECT)

Component

components

{ordered}

Anchor
1

children

PresentSpec

AnchorID

1

{ordered}

ComponentSpec

anchor
Value

UID

anchorSpec

presSpec

pres
Spec

Attribute
value:Value

 *

1..*

resolvesTo

accessTo

1

1

1..*

1
1

1

1

1

1

1

0..1

consistency(c,c): Boolean

Concept

Atom

Link

Composite

Within-
component

Layer ::
Content

11

1

content

Within-
component

Layer ::
AnchorValue

uids
1..*

component

1

Concept
Relationship

/fragments

OnPage

Prerequisite

...

uid

Page

1..*

constructs

1

1
specifier

Fig. 2: View of the Domain Meta-Model of the Munich Reference Model

Component. A component is an abstract representation of an information item
from the application domain. It is represented by an abstract class Component. A
component can either be a concept (class Concept) or a concept relationship (class
ConceptRelationship). A concept, in turn, can either be an atom (class Atom) or a
composite (class Composite). A concept relationship can be a link (class Link) or a
prerequisite (class Prerequisite), or a is-part-of relation (class On page), etc. This
inheritance hierarchy is shown in the UML class diagram (Figure 2). The component
information consists of attributes (class Attribute), a presentation specification (class
Present Spec) and a sequence of anchors (class Anchor). The UML visual
specification is insufficient to model the “type consistency” between components.
Therefore, the following OCL constraint is added to the specification to express that
two components are “type consistent” if both are of the same type.

context Component :: consistency (c1:Component, c2:Component):Boolean
post: result = c1.oclIsTypeOf(Composite) and c2.oclIsTypeOf(Composite)
 or c1.oclIsTypeOf(Link) and c2.oclIsTypeOf(Link)

 or c1.oclIsTypeOf(Atom) and c2.oclIsTypeOf(Atom)
 or

Domain. The domain is represented by a class Domain, which is a composition of
objects of type Component. The class Domain includes two operations for links and
anchors ensuring the navigation functionality of the hypermedia system. These are the
linksTo and the linksToAnchor operations. The linksTo operation returns the set of
links that resolve to a specific component. The linksToAnchor obtains the set of links
that resolve to a specific anchor. The following is the OCL specification of the pre-
condition and post-condition of linksTo. The post-condition expresses that result
consists of the set of all Link identifiers such that one of the component specifications
of the corresponding Link resolves to the given UID.

context Domain :: linksTo (uid : UID) : Set (UID)
pre: components → exists (c : Component | accessor (uid) = c)
post: result = UID.allInstances → select (lid : UID |

 Component.allInstances → exists (link :Component |
 link.oclIsTypeOf (Link) and link = accessor (lid)

 and ComponentSpec.allInstances → exists (cs :
 ComponentSpecs | link.specifiers.compSpecs → includes (cs)
 and uid = resolver (cs))))

4 Modeling Adaptive Hypermedia Applications

The Munich Reference Model includes adaptation and user modeling functionality.
The User Meta-Model defines the user attributes and attribute-values that are relevant
to the adaptive application. The adaptive mechanisms are specified in the Adaptation
Meta-Model and they are responsible for adaptive content, adaptive links and
adaptive presentation. The presentation specification builds pages out of page
fragments, taking into account the adaptive mechanisms.

4.1 The User Meta-Model

The User Meta-Model describes the structure of the individual models of each user
and how these models are administrated. User modeling comprises initialization,
updating and retrieval of the current state of a User Model. The User Meta-Model is
modeled as a subsystem that consists of a class UserManager and a set of Users and
operations initializer, updater and an evaluator. Figure 3 depicts the classes of the
User Meta-Model subsystem and its relationship to the Domain Model.

A user of an adaptive hypermedia application is modeled by a class User, which is
related through an aggregation association to a UserIdentification and to a set of User
Attributes. The user ID identifies the user uniquely in the universe of the application.
With the user attributes the system provides a representation of the user’s
characteristics that are relevant for the application. One can distinguish different types
of information contained in user models: user’s knowledge, user’s preferences, user’s
background experience, user’s tasks, etc., summarized in two categories: “user
knowledge related to the domain components” and “user general characteristics”.

The first group includes domain dependent attributes while those of the second
group are domain independent. The second group includes knowledge not related to
the components, such as background knowledge and preferences. Classification like
this can be found in Hynecos [11] and SmexWeb [1]. We model these two groups of
user’s characteristics with Class DependentAttr and Class IndependentAttr. The
separation has the advantage that the domain independent attributes can be shared
with other applications. The following constraint defines the invariant for a domain
independent User Model, i.e. all user attributes are independent of the domain.

dependAttrs

1..*

1..*

UserAttribute
userAttrs

IndependentAttr

components

User
Domain

resolver(cs)
accessor(uid)
...*

UserID userIDs

DependentAttr Component
*

UserAttrValue
value: Value

user

 *

userID domain

comps

attrVal

User Meta-Model

Domain Meta-Model

username: String
email: String

attname: String

UserManager

initializer(ui,name,attr): User
evaluator(ui,attr):
 UserAttributeValue
updater(ui,attr, val)
...

1..* users

{xor}

Fig. 3: View of the User Meta-Model of the Munich Reference Model

 context User
inv domain independent user model:
 userAttrs → forAll (uat:: UserAttribute |
 uat.oclIsTypeOf (IndependentAttr))

Let us mention here only the formalization of one functionality related to the User

Meta-Model subsystem: the registration of a new user. We define an initializer
operation that creates a new instance of class User for each new user that registers to
the adaptive hypermedia application and assigns a given set of attributes to this user.

context UserManager :: initializer (userIdentification:UserID, n:String,
 defaultAttrs: Set(UserAttribute)) : User
post: result.oclIsNew and users = users@pre → including (result)
 and result.userID = userIdentification and result.username = n
 and result.userAttrs = defaultAttrs

4.2 The Adaptation Meta-Model

The adaptation is performed using a set of rules, such as in most adaptive
hypermedia applications; typical examples of rule-based adaptation is supported by
the frameworks AHA [3] and SmexWeb [1]. These rules determine how pages are
built and how they are presented to the user. The Adaptation Meta-Model is specified
by a UML class diagram, which is depicted in Figure 4.

The core elements used to model the adaptation are the class Adaptation and the
class Rule. The class Adaptation includes three main operations: an adaptation
resolver, a finder and a trigger. The first one “resolves” a component specification
into a UID of an appropriate component that builds an adapted page. The second one
implements a trigger mechanism that returns all the rules triggered by one given rule,
i.e. the rules to be used at a given time. The first rule to be used is triggered by the
user behavior. The executor operation of the class Rule allows the system to select the
appropriate components, and to perform content-adaptation, presentation-adaptation
and link-adaptation as well as to update the User Model. These operations play the
role of the adaptive engine in AHAM.

The specification of the Adaptation Meta-Model is supplemented with a set of
OCL constraints. For example, the following OCL invariant assures the dynamic
update of the User Model: For at least one user attribute there exists a rule that
modifies an attribute value of the User Model.

context Adaptation
inv dynamic update of the user model:
 Rules.allInstances → exists (r:Rule | r.oclIsTypeOf (AcquisitionRule)

and r.action.elements → exists (m: ModelElement |
 m.values.oclIsTypeOf (UserAttributeValue)
 and m.modified))

An object of class Rule consists of one condition (class Condition), one action
(class Action) and attributes, such as phase and propagate proposed by De Bra et. al
[3]. phase determines whether rules are applied before or after the User Model is

updated while propagate with a value true allows the system to trigger other rules.
Conditions and actions are expressions containing model elements and operators.

ModelElements are defined by two attributes: an element identifier (elementID)
and a Boolean value (modified) which indicates whether the model element is being
modified in the actual action. Only certain types of model elements, i.e. User Model
attribute values and presentation specifications can have a modified value true.

Our formalization of rules is very general, thus our reference model does not
prevent problems with confluence and termination of rule-based systems. Depending
on the chosen rule language, rule applications may be non-terminating and non-
confluent. These problems can be analyzed in each case using different approaches,
such as those used in rewriting systems or in the active database field.

Rules are classified according to their objectives into: construction rules,
acquisition rules and adaptation rules [6]. Adaptation rules adapt content, links or the
presentation of the application. They differ in the executor method. The different
types of rules are represented as a hierarchy of rules as it is shown in the class
diagram of the Adaptation Model (see Figure 4).

5 Session Management

The Run-Time Layer manages different sessions for the users generating and
presenting the instances of pages. The Run-Time Layer describes how the

Action

Rule
propagate: Boolean
phase: enum
 {PRE,POST}
executor (uid,ui,ub)
...

1..*

Adaptation

Condition

rules

ModelElement

1..*

trigger

elements

finder (uid,ub): Rule
trigger (rule): Set(Rule)
adaptationResolver
 (cs,ui,ub): UID
...

elementID: String
modified: Boolean

1..*1..*

condition action
User

Behaviour
0..*

1..*

1..*

triggers

Acquisition
Rule

Adaptation
Rule

Construction
Rule Content

Adapter

Link
Adapter

Presentation
Adapter

elements

behaviours

User Meta-Model::
UserAttributeValue

values

Fig. 4: View of the Adaptation Model of the Munich Reference Model

components are presented to the user. This presentation is based on the concept of
instantiation of a component, i.e. a copy of the component is cached to the user. The
copy receives an instantiation identifier (class IID). It should be noted that more than
one instantiation for a component may exist simultaneously and that a user may be
viewing more than one component.

Instantiation of a component also results in instantiation of its anchors. An
instantiated anchor is known as a link marker. These concepts are modeled with the
classes Instantiation, IID, and LinkMarker. In order to keep track of all these
instantiations the Run-Time Layer uses an entity session (class Session) as shown in
Figure 5. A session can be open or closed and in a session the user can perform
operations, such as open a component that results in the creation of an instantiation,
edit an instantiation and follow a link. All these operations that result from the user
interactions are recorded in a history which constitutes the basis of the observation of
the user behavior and the adaptation mechanism. As example a constraint for the
instantiator operation is shown. Given an UID of a component, the function returns
an instantiation of the component that is part of the session. The presentation
specification is a primitive in the model, which contains information about how the
component is to be presented by the system during instantiation (see Figures 5 and 2).

context Session :: instantiator (uid: UID, ps: PresentSpec): Instantiation
pre: adaptation.domain.components → includes (accessor(uid))
post: result = iids.inst → select (ins:Instantiation |
 ins.presSpec = ps and ins.iid.instUID = uid) → asSequence → first

Figure 5 depicts part of the Run-Time Layer for adaptive hypermedia systems. The
UML class diagram shows how core classes of the Domain Meta-Model, the User
Meta-Model and the Adaptation Meta-Model collaborate with classes of the Run-
Time Layer.

1..*
Domain

Meta-Model::
Component

components

accessTo Domain
Meta-Model ::

UID

Session

instants (iid):Instantiation
openComponent (specs,pspecs):Set(Inst)
realizer (inst): Component
runTimeResolver(cs,ui,uop): UID...

 *

History

operations
 *

IID

* iids

InstantiationLinkMarker *
links

{ordered}

{ordered}

linkAnchor (lm): AnchorID

inst

*
instUid

sessions

Operation history
Domain

Meta-Model::
Domain

Adaptation
Meta-Model::
Adaptation

Adaptation
Meta-Model::

Rule

Adaptation
Meta-Model::

UserBehaviour

*
1..*

1..*

User Meta-Model
:: UserID adaptation

1..*
userIDs

rules

opn = enum (
ÓPEN, CLOSE,
EDIT, SAVE, ...)

iids

 *
operations

behaviour

Fig. 5: View of the Run-Time Layer of the Munich Reference Model

6 Conclusions and Future Work

In this paper we introduced an object-oriented reference model for adaptive
hypermedia applications – called Munich Reference Model. It constitutes the basis of
our UWE engineering approach for adaptive Web applications [6,8]. This model was
defined in parallel to the development of SmexWeb. SmexWeb is a framework for
adaptive Web learning applications [1]. The architecture of this model is similar to the
AHAM architecture, i.e. it extends the Dexter model by including an user model and
an adaptation model in the Storage Layer as well as adapting the domain model and
the Run-Time Layer.

We presented an integrated visual and formal specification of the reference model.
The model is visually represented using UML notation and is formally specified in
OCL. UML was chosen as it is the de facto standard modeling language. A visual
representation is missing when other kind of specification, e.g. Z or VDM are selected
[4]. OCL is part of the UML and is used for the specification of invariants for the
model elements and for the specification of pre-conditions and post-conditions on
operations describing the adaptive functionality.

Acknowledgment. We thank the reviewers for their valuable feedback and their
requests for additional explanations.

References

1. Albrecht F., Koch N. and Tiller T. (2000). SmexWeb: An Adaptive Web-based Hyperme-
dia Teaching System. Journal of Interactive Learning Research. Kommers P. &
Mizoguchi R. (Eds.).

2. Brusilovsky P. (1996). Adaptive Hypermedia: An attempt to analyze and generalize.
Proceedings of First International Conference on Multimedia, Hypermedia and Virtual
Reality 1994. Brusilovsky P. & Streitz N. (Eds.) LNCS 1077, Springer Verlag, 288-304.

3. De Bra P., Houben G.-J., and Wu H. (1999). AHAM: A Dexter-based Reference Model of
Adaptive Hypermedia. Proceeding of the ACM Hypertext Conference.

4. Halasz F. and Schwartz M. (1990). The Dexter Hypertext Reference Model. NIST
Hypertext Standardization Workshop.

5. Hardman L., Bulterman C. and Rossum G. (1994). The Amsterdam Reference Model.
Communications of the ACM 37(2).

6. Koch N. (2000). Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. PhD. Thesis, Uni-Druck.

7. Koch N. (2002). An Object-Oriented Hypermedia Reference Model. In Information
Modeling for Internet Applications, van Bommel P. (Ed.), to appear.

8. Koch N. and Wirsing M. (2001). Software Engineering for Adaptive Hypermedia
Applications? Third Workshop on Adaptive Hypertext and Hypermedia at the UM´2001.

9. Tochtermann K. and Dittrich G. (1996). The Dortmund Family of Hypermedia Systems.
Journal of Universal Computer Science.

10. UML: The Unified Modeling Language. Version 1.3. (1999). http://www.omg.org/uml
11. Vassileva J. (1994). A Practical Architecture for User Modeling in a Hypermedia-based

Information System. Proceeding of the 4th International Conference on User Modeling.
12. Wu H., De Bra P., Aerts A. and Houben G.-J. (2000): Adaptation Control in Adaptive

Hypermedia Systems. Proceedings of the Adaptive Hypermedia and Adaptive Web-based
Systems. Brusilovsky P, Stock O., Strapparava C. (Eds.). LNCS 1892, Springer
Verlag,250-259.

