
The UML4SOA Profile

This document describes the UML4SOA profile for behavioural specifications of services.

Metadata

 Version: 2.1

 Date: 2009-07-24

 Authors: Philip Mayer, Nora Koch, Andreas Schroeder

Change Log

Version Date Notable Changes

1.0 September 30, 2007 Initial version.

1.1 July 08, 2008 Event handling.

1.2 September 15, 2008 Complete metamodel. Full transformation support.

1.3 December 1, 2008 Protocol state machines.

2.0 June 7, 2009 Data handling.

2.1 July 24, 2009 Revised metamodel.

License

Common Public License Version 1.0 (CPL)

Acknowledgements

This work has been partially supported by the EC project SENSORIA, IST-2005-016004.

Introduction to UML4SOA

UML4SOA is a profile for specifying behavioural aspects of service-oriented architectures
(SOAs). In particular, we focus on service orchestrations, i.e. compositions of services, by
means of an orchestration workflow. An orchestration, in turn, is another service to be used
externally, or in other orchestrations.

We have selected UML2 activity diagrams as the base for modelling such workflows, and
UML2 state machines for modelling their externally visible behaviour with regard to a certain
partner. We extend both notations by SOA-specific stereotypes, thereby enabling developers
to model SOA orchestrations in a high-level fashion. The extension is minimal, i.e. we use
existing UML2 elements wherever possible, only extending the UML2 where we require
additional semantics, or if it adds to the overall clarity of the diagrams.

The UML4SOA profile has been developed within the SENSORIA project, where it has been
used as input to several case studies. There are also model transformation tools available for
converting UML4SOA diagrams to BPEL/WSDL, Java, and Jolie. Finally, UML4SOA diagrams
enjoy formal analysis support through the SENSORIA Development Environment (SDE) and
integrated tools.

UML4SOA complements the SoaML profile that focuses on the structural aspects of SOAS
and can be used in combination with other UML profiles, such as the MARTE profile, which
has been used for performance analysis within the scope of the SENSORIA project.

Notes on Design Decisions

Diagrams

UML4SOA is a profile for specifying behavioural properties of services. We therefore focus

on two diagram types of the UML which offer us the ability to specify behaviour:

 Activity Diagrams. We use activities and actions to create the platform-independent

“implementation” of a service. In particular, this mechanism can be used for creating

service orchestrations, i.e. a workflow which combines several services into a new

one.

 Protocol State Machine Diagrams. We use PSMs for denoting the externally visible

behaviour of services, as seen from a partner.

UML4SOA attempts to extend the UML2 in a lightweight way. We only define new

metaclasses and stereotypes where necessary, allowing users to leverage their existing

knowledge of the UML2 as far as possible.

Service Interactions

One of the most important points of behavioural service specification is the specification of

interactions. We employ UML2 operations, defined in interfaces or classes, as the basic

interaction mechanism, and re-use existing UML2 metaclasses for invoking and receiving

functionality. In particular,

 a service invocation is a specialization of a CallOperationAction,

 a service reply is a specialization of a ReplyAction,

 a service receive is a specialization of an AcceptCallAction.

We do not assume a mode of communication between services – UML4SOA allows both

message passing and RPC styles. However, we recommend message passing due to better

maintainability of the resulting system.

Partners

Another important point of SOA-based architectures is the notion of service providers and

requesters. Operations invoked on external services, or operation calls received from

external services usually follow an abstract interface specification. This specification is useful

for reaching an agreement on the common interface, and is used by UML through

operations of classes and interfaces. In a SOA context, however, we need something more:

The information about a service binding, i.e. the target or source we are talking to in a

specific instance of a service implementation.

For this, we introduce the notion of a Partner of a service. We use specializations of UML2

ports for denoting a partner: service point and request point.

Structural Aspects

Focussing on behavioural aspects of services, we employ external profiles for structural

properties and non-functional requirements. In particular, we employ stereotypes from the

SoaML profile for structural properties of services:

 MessageType for denoting value types to be used as operation arguments and return

types.

 ServicePoint / RequestPoint (specializations of Port) for denoting connection points

through which service provider provides or service requester requests a service. In

the text we use “partner” for either service point or request point.

We recommend using SoaML and the above stereotypes for modelling structural parts of a

SOA, however you are of course free to exchange these stereotypes with those of another

profile.

Contents

Metadata .. 1

Change Log.. 1

License .. 1

Acknowledgements .. 1

Introduction to UML4SOA .. 2

Notes on Design Decisions ... 3

Diagrams ... 3

Service Interactions .. 3

Partners .. 3

Structural Aspects ... 4

Contents ... 5

The UML4SOA Metamodel ... 7

Core ... 7

Overview ... 7

ServiceElement (abstract) ... 7

ServiceActivityNode .. 8

ServiceInteractionAction (abstract) .. 10

Actions .. 11

Overview ... 11

ServiceSendAction .. 11

ServiceReceiveAction .. 13

ServiceReplyAction.. 14

ServiceSend&ReceiveAction ... 15

Pins .. 16

Overview ... 16

LinkPin ... 17

SendPin ... 18

ReceivePin ... 19

Compensation&Events ... 20

Overview ... 20

CompensationEdge ... 20

EventEdge ... 21

CompensateAction .. 22

CompensateAllAction.. 24

Extensions ... 25

Overview ... 25

MessageType .. 25

RequestPoint ... 26

ServicePoint .. 26

Protocol State Machine .. 27

Overview ... 27

ReceiveTransition .. 27

ReplyTransition ... 28

SendTransition .. 29

Stereotypes .. 30

The UML4SOA Metamodel

Core

Overview

Metaclass Stereotype UML Base Classes Description Used In

ServiceElement None Element A ServiceElement serves
the purpose of attaching
compensation, event, and
exception handlers to
ServiceActivityNode and
service interaction
actions.

None

ServiceActivityNode «serviceActivity» StructuredActivityNode
ServiceElement
Activity

A ServiceActivityNode
groups service-related
actions for compensation,
exception handling, and
events.

Activity
Diagram

ServiceInteractionAction None ServiceElement ServiceInteractionAction
is the common base class
of all service interaction
actions, which have
associated with them a
LinkPin.

None

ServiceElement (abstract)

Description

An ServiceElement is an abstraction of a ServiceActivityNode and a ServiceInteractionAction.
It serves the purpose of attaching compensation, event, and exception handlers to
ServiceActivityNodes and service interaction actions, such as send and reply actions.

Generalizes

 Element

Associations

 eventHandler : EventEdge[0...*]
 The event handlers attached to this ServiceElement.

 compensationHandler : CompensationEdge[1...1]
 The compensation handlers attached to this ServiceElement.

Semantics

None.

Constraints

a) If a compensation handler is specified, the target element MUST have this element as the
compensatedElement.

b) If event handlers are specified, each of them MUST have this element as the
eventBaseElement.

Notation

No visual representation.

ServiceActivityNode

Description

A ServiceActivityNode represents either

a) a special activity for service behaviour or

b) a grouping element for actions and ServiceActivityNode (nesting)

A ServiceActivityNode may have control edges connected to it, and pins when merged with
CompleteActivities or on specializations in CompleteStructuredActivities. The execution of
any embedded actions may not begin until the ServiceActivityNode has received its object
and control tokens. The availability of output tokens from the structured activity node does
not occur until all embedded actions (note that this does not include handlers) have
completed execution.

In addition to both Activity and StructuredActivityNode, a ServiceActivityNode node may
have attached compensation and event handlers.

Generalizes

 StructuredActivityNode
 ServiceElement
 Activity

Associations

None.

Semantics

The semantics follow the ones defined in StructuredActivityNode. In addition, we define the
following semantics for compensation and event handlers. When the ServiceActivityNode
has a compensation handler attached, this handler is installed when the ServiceActivityNode
completes successfully. An event handler may be executed at any time during the execution
of the ServiceActivityNode, running in parallel to the ServiceActivityNode. Event handlers
may be invoked multiple times, and run at the same time.

A top-level service activity is attached to a class which represents the service or group of
services for which this is the behaviour.

Constraints

No additional constraints.

Notation

As a ServiceActivityNode comes in two versions, there are two notations.

First, the "StructuredActivityNode" notation: the ServiceActivityNode is notated with a
dashed round cornered rectangle enclosing its nodes and edges, with the keyword
«serviceActivity» at the top. Also see children of StructuredActivityNode.

Second, the "Activity" notation: Same notation as for activities apply, however the
«serviceActivity» stereotype must be used.

Examples

The following examples show the use of a service activity. The activity on the left contains
one action with the stereotype <>, which in turn contains three pins. The serviceActivity is
annotated with the <> stereotype, and carries a name ("MainActivity").

ServiceInteractionAction (abstract)

Description

ServiceInteractionAction is the common base class of all service interaction actions, which
have associated with them a LinkPin.

Generalizes

 ServiceElement

Associations

 partner : LinkPin[1...1]
 Specifies the partner of this ServiceInteractionAction. In case of a
ServiceSendAction, this link subsets target.

Semantics

The interaction is linked to a partner of the behaviour via the link pin. The operation is
specified in the actions themselves.

Constraints

No additional constraints.

Notation

No notation.

Actions

Overview

Metaclass Stereotype UML Base Classes Description Used In

ServiceSendAction «send» CallOperationAction
ServiceInteractionAction

A ServiceSendAction sends
invokes an operation of a
partner asynchronously.

Activity
Diagram

ServiceReceiveAction «receive» ServiceInteractionAction
AcceptCallAction

ServiceReceiveAction is
used to receive an
operation call from an
external partner.

Activity
Diagram

ServiceReplyAction «reply» ReplyAction
ServiceInteractionAction

The ServiceReplyAction
allows specification of data
to be sent out in reply to a
ServiceReceiveAction.

Activity
Diagram

ServiceSend&ReceiveAction «send&receive» ServiceSendAction
ServiceReceiveAction

A
ServiceSend&ReceiveAction
action is a complete,
synchronous operation call
execution with a partner.

Activity
Diagram

ServiceSendAction

Description

ServiceSendAction is an action that invokes an operation of a target service asynchronously,
i.e. without waiting for a reply. The argument values are data to be transmitted as
parameters of the operation call. There is no return value.

ServiceSendAction inherits argument from InvocationAction. We restrict this to SendPins
which contain the data to be sent.

Generalizes

 CallOperationAction
 ServiceInteractionAction

Associations

 (inherited association from supertype) : SendPin[0...*]
 {subsets argument}

Semantics

The ServiceSendAction sends out the data without waiting for a response.
CallOperationAction contains the Operation directly.

Constraints

a) ServiceSendAction constrains argument (inherited from InvocationAction) to pins of type
SendPin.

b) target is constrained to instances of LinkPin.

Notation

A ServiceSendAction is stereotyped with «send». The operation name is given inside the
action body.

Examples

This example shows a send (without receive). An operation call is sent to the partner
hotelBookingService (specified in the lnk pin). The data usage itself is stored in the variable
hotelToBook (specified in the send pin). There is no return value.

ServiceReceiveAction

Description

ServiceReceiveAction is an accept call action representing the receipt of an operation call
from an external partner. No answer is given to the external partner.

Generalizes

 ServiceInteractionAction
 AcceptCallAction

Associations

 (inherited association from supertype) : ReceivePin[0...*]
 {subsets result}

Semantics

ServiceReceiveAction blocks until the message is received. It requires a trigger (with a
CallEvent event), which contains the operation. ReceivePins must be given, which contain
the variables in which the incoming data is stored.

Constraints

The result pins MUST be ReceivePins. This ensures that the data received has value types.
The trigger must be a CallEvent.

Notation

A ServiceReceiveAction is stereotyped with «receive». The operation name (from trigger-
>CallEvent) is given inside the action body.

Examples

This example shows a receive. A message is received from a partner (called "user", specified
in the lnk pin). The message itself is stored in the variable bookingDates (specified in the rcv
pin). The message type called bookingRequest.

ServiceReplyAction

Description

ServiceReplyAction is an action that accepts a return value and a value containing return
information produced by a previous ServiceReceiveAction. The reply action returns the
values to the request point of the previous call, completing execution of the call.

ServiceReplyAction is a specialized version of ReplyAction for the service-oriented context.
The inherited attribute replyValue is subset to point to instances of SendPin, instead of a
generic input pin, thereby ensuring the data can be interpreted as value data. Thus, a
ServiceReplyAction sends back data to a request point for which previous data was received.

Generalizes

 ReplyAction
 ServiceInteractionAction

Associations

 (inherited association from supertype) : SendPin[0...*]
 {subsets replyValue}

Semantics

The ServiceReplyAction completes a call from an external source.

Constraints

The replyValue pins MUST be of type SendPin.

Notation

A ServiceReplyAction is stereotyped with «reply». The operation name is given inside the
action body (corresponding to the operation inside the attached Trigger).

Examples

This example shows a reply. A reply is always an answer to a previous receive, and carries
the same partner and operation name as the receive. In this example, a bookingRequest is
received from partner "user", and the message is stored in the variable bookingDates. Now,
some processing takes place. After that is finished, the data in the variable
bookingInformation is sent as a reply to the "user" partner.

ServiceSend&ReceiveAction

Description

A ServiceSend&ReceiveAction action is a complete synchronous operation call execution
with a partner. Some data (stored in the SendPins) is sent, then the action waits for data to
be sent back, which is stored in the ReceivePins.

Generalizes

 ServiceSendAction
 ServiceReceiveAction

Associations

None.

Semantics

See ServiceSendAction and ServiceReceiveAction.

Constraints

No additional constraints.

Notation

A ServiceSend&ReceiveAction is stereotyped with «send&receive». The operation name is
given inside the action body.

Examples

This example shows a send&receive. An operation is invoked on the partner
hotelBookingService (specified in the lnk pin). The data itself is stored in the variable
hotelToBook (specified in the snd pin) and must be initialized before the action. The return
value from the service is stored in the variable confirmationNo (specified in the rcv pin).

Pins

Overview

Metaclass Stereotype UML Base
Classes

Description Used In

LinkPin «lnk» Pin A LinkPin is used to indicate the partner service for
the service interaction.

Activity
Diagram

SendPin «snd» InputPin A SendPin is used in send actions to denote the data
to be sent to an external service.

Activity
Diagram

ReceivePin «rcv» OutputPin A ReceivePin is used in receive actions to denote
the data to be received from an external service.

Activity
Diagram

LinkPin

Description

A LinkPin is used to indicate the partner service for the service interaction.

Generalizes

 Pin

Associations

 (inherited association from supertype) : ServicePoint[1...1]
 {subsets type}

 (inherited association from supertype) : RequestPoint[1...1]
 {subsets type}

Semantics

The partner must be bound before execution. Note that a partner can be a service
requester, or a service provider.

Constraints

a) The type of this pin is either RequestPoint or ServicePoint (not both).

b) The RequestPoint or ServicePoint must be a port attached to the class which the root
ServiceActivityNode of this behavioural specification belongs to.

Notation

The pin is stereotyped with «link», or with the corresponding icon ("lnk"). The parter name is
specified along with the pin.

Examples

This example shows the use of a LinkPin. In all partner-related actions, for example in this
send&receive, the service partner must be specified. In this case, the partner is called
"bookingService". Note that a partner can be a service requester, or a service provider to
this activity. In this case, as this is a send&receive, bookingService is a provider. In case of a
receive or receive&send, it is a requester.

SendPin

Description

A SendPin is used in send actions to denote the data to be sent to an external service.

Generalizes

 InputPin

Associations

 (inherited association from supertype) : MessageType[1...1]
 {subsets type}

 (inherited association from supertype) : PrimitiveType[1...1]
 {subsets type}

 (inherited association from supertype) : DataType[1...1]
 {subsets type}

Semantics

A SendPin must either a) specify a UML variable holding the data, or b) a constant value.

Constraints

The type must be a subtype of either MessageType, PrimitiveType, or DataType. Also, the
SendPin must have the correct type for the operation and partner invoked.

Notation

The SendPin must be stereotyped with «snd», or with the corresponding icon ("snd").
Furthermore, it needs to be annotated with the information about data to be sent (either
variables, or constants).

Examples

This example shows the use of a SendPin. The send pin contains the message to be sent to a
partner. In most cases, this is a variable, but a constant value may be specified as well.

ReceivePin

Description

A ReceivePin is used in receive actions to denote the data to be received from an external
service.

Generalizes

 OutputPin

Associations

 (inherited association from supertype) : MessageType[1...1]
 {subsets type}

 (inherited association from supertype) : PrimitiveType[1...1]
 {subsets type}

 (inherited association from supertype) : DataType[1...1]
 {subsets type}

Semantics

A ReceivePin must specify a UML Variable holding the data. The variable must be typed with
either a) a MessageType or b) a ServiceValueType.

Constraints

The type must be a subtype of either MessageType, PrimitiveType, or DataType. Also, the
ReceivePin must have the correct type for the operation and partner invoked.

Notation

The ReceivePin must be stereotyped with «rcv», or with the corresponding icon ("rcv").
Furthermore, it needs to be annotated with the information about data to be received
(variable name).

Examples

This example shows the use of a ReceivePin. The receive pin contains the target where the
message received will be stored, i.e. the variable name.

Compensation&Events

Overview

Metaclass Stereotype UML Base
Classes

Description Used In

CompensationEdge «compensation» ActivityEdge CompensationEdge is an edge
connecting a ServiceElement to be
compensated with the one
specifying a compensation.

Activity
Diagram

EventEdge «event» ActivityEdge EventEdge is an edge connecting
event handlers with a
ServiceElement during which the
event may occur.

Activity
Diagram

CompensateAction «compensate» Action
ServiceElement

The CompensateAction invokes the
compensation handler for a
particular ServiceActivityNode.

Activity
Diagram

CompensateAllAction «compensateAll» Action
ServiceElement

The CompensateAllAction invokes
all installed compensation handlers
which are nested in the current
ServiceActivityNode.

Activity
Diagram

CompensationEdge

Description

CompensationEdge is an edge connecting a ServiceElement to be compensated with the one
specifying a compensation.

Generalizes

 ActivityEdge

Associations

 compensatedElement : ServiceElement[1...1]
 The element to be compensated.

Semantics

Execution of a compensation handler is triggered with a CompensateAction or a
CompensateAllAction. Exceptions thrown during a compensation handler must be handled in
the invoking ServiceActivityNode, or in a handler attached to the compensation handler.

Constraints

The compensatedElement MUST have this element as a compensationHandler.

Notation

The edge is annotated with the stereotype «compensation».

Examples

This example shows the use of a <>-typed compensation handler. A (normal) <> performs a
booking. Later on, if the booking needs to be compensated, the compensation handler is
invoked to undo the work.

EventEdge

Description

EventEdge is an edge connecting event handlers with a ServiceElement during which the
event may occur.

Generalizes

 ActivityEdge

Associations

 eventBaseElement : ServiceElement[1...1]
 The element during which this event may occur.

Semantics

Execution of a event handler is triggered externally by means of a message, or a timed event.

Constraints

The eventBaseElement MUST have this element as an eventHandler.

Notation

The edge is annotated with the stereotype «event».

Examples

This example shows the use of a <>-typed event handler. The event handler is installed in
parallel to SomeActivity. If a message is received from a client (getStatus()), a partner is
invoked to retrieve the statusInformation, which is then returned to the client. This happens
in parallel to SomeActivity.

CompensateAction

Description

The CompensateAction invokes the compensation handler for a particular
ServiceActivityNode.

Generalizes

 Action
 ServiceElement

Associations

 compensationTarget : ServiceActivityNode[1...1]
 The ServiceActivityNode to be compensated.

Semantics

A CompensateAction may only be invoked from an exception or compensation handler. The
referenced ServiceActivityNode must be successfully completed. After the compensation
handler has been executed, the execution resumes normally.

Constraints

a) The CompensateAction may ONLY be used within a compensation or exception handler.

b) The compensationTarget MUST be a ServiceActivityNode which has a compensation
handler, and that ServiceActivityNode MUST be nested within the ServiceActivityNode in
which the compensation action is invoked.

Notation

Annotation with stereotype «compensate». The target name is given inside the action.

Examples

This example shows the use of the compensate action. In this example, we assume that the
compensation handler of FlightBooking is not called from the outside, but instead the
compensation handler of HotelBooking also compensates the FlightBooking.

CompensateAllAction

Description

The CompensateAllAction invokes all installed compensation handlers which are nested in
the current ServiceActivityNode.

Generalizes

 Action
 ServiceElement

Associations

None.

Semantics

A CompensateAllAction may only be invoked from an exception or compensation handler.
After the compensation handlers have been executed, the execution resumes normally.

Constraints

The CompensateAllAction may ONLY be used within a compensation or exception handler.

Notation

Annotation with stereotype «compensateAll». The target name is given inside the action.

Extensions

Overview

Metaclass Stereotype UML Base
Classes

Description Used In

MessageType None Class
DataType

A message type is a class (without behaviour) or a
datatype whose instances are intended to be
transmitted as a messages between services.

Class
Diagram

RequestPoint None Port A request point is a port which is used by a
participant to request services through interfaces.

Class
Diagram

ServicePoint None Port A service point is a port which is used by a
participant to provide services through interfaces.

Class
Diagram

MessageType

Description

A message type is a class (without behaviour) or a datatype whose instances are intended to
be transmitted as a messages between services.

Generalizes

 Class
 DataType

Associations

None.

Semantics

This class is a placeholder for a message type. In a concrete behavioural specification, use a
stereotype from a profile for structural service specifications.

Constraints

No additional constraints.

Notation

None.

RequestPoint

Description

A request point is a port which is used by a participant to request services through
interfaces.

Generalizes

 Port

Associations

None.

Semantics

None.

Constraints

No additional constraints.

Notation

None.

ServicePoint

Description

A service point is a port which is used by a participant to provide services through interfaces.

Generalizes

 Port

Associations

None.

Semantics

None.

Constraints

No additional constraints.

Notation

None.

Protocol State Machine

Overview

Metaclass Stereotype UML Base Classes Description Used In

ReceiveTransition None ProtocolTransition A specialized transition
indicating a message receive.

Protocol State
Machine Diagram

ReplyTransition None ProtocolTransition A specialized transition
indicating a message send.

Protocol State
Machine Diagram

SendTransition None ProtocolTransition A specialized transition
indicating a message send.

Protocol State
Machine Diagram

ReceiveTransition

Description

A specialized transition indicating a message receive.

Generalizes

 ProtocolTransition

Associations

None.

Semantics

No additional semantics.

Constraints

The trigger of this transition must be a ReceiveOperationEvent.

Notation

Annotation with stereotype «receive».

Examples

This is an example for using a receive transition.

ReplyTransition

Description

A specialized transition indicating a message send.

Generalizes

 ProtocolTransition

Associations

None.

Semantics

No additional semantics.

Constraints

The trigger of this transition must be a SendOperationEvent.

Notation

Annotation with stereotype «reply».

Examples

This is an example for using a reply transition.

SendTransition

Description

A specialized transition indicating a message send.

Generalizes

 ProtocolTransition

Associations

None.

Semantics

No additional semantics.

Constraints

The trigger of this transition must be a SendOperationEvent.

Notation

Annotation with stereotype «send».

Examples

This is an example for using a send transition.

Stereotypes

