
Specification and Implementation of
Demonstrators for the Case Studies?

Jannis Elgner1, Stefania Gnesi2, Nora Koch3,4, and Philip Mayer3

1 S & N AG, Germany
jelgner@s-und-n.de

2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
ISTI–CNR, Pisa, Italy

gnesi@isti.cnr.it
3 Ludwig-Maximilians-Universität München, Germany

{kochn,mayer}@pst.ifi.lmu.de
4 Cirquent GmbH, Germany

Abstract. A main challenge in Sensoria has been the inclusion of case
studies from different industrial and academic application areas, namely
finance, automotive, telecommunications, and university administration.
The case studies, along with a short description of available scenarios,
have already been introduced in Chapter 0-3. In this chapter, we go
into more detail, presenting the (graphical) specifications for selected
scenarios by using the modeling approaches introduced in Sensoria.
Furthermore, we detail the implementation of demonstrators for some of
the case studies.

1 Introduction

The partners of the Sensoria project have used realistic case studies for feeding
and steering the research process according to the expectations of society and
its economy, discussing and communicating ideas among partners and communi-
cating research results to and getting feedback from the research community at
large. These case studies have already been shortly introduced in Chapter 0-3.
Each of the scenarios presented has been employed by different partners with
different requirements, methods, and tools as a test bed for demonstrating the
feasibility and effectiveness of the use of the Sensoria results.

In this chapter, we present some of the scenarios in more detail. We select
three scenarios from the case studies which have been extensively used in the
project with the application of research results and tools. For two of the scenarios,
namely finance and eUniversity, we provide an extended description by using the
graphical modeling languages used or introduced in Sensoria, namely the UML
extensions UML4SOA [3] and the upcoming OMG standard SoaML [4]. For the
automotive case study, we present a demonstrator, i.e., the software resulting
from applying the Sensoria development approach to the development of a
SOA system.
? This work has been partially sponsored by the project SENSORIA, IST-2005-016004.



The following three sections each present one of the scenarios; starting with
Finance, moving on to Automotive, and finally discussing eUniversity. We con-
clude in Sect. 5.

2 Finance Case Study: Credit Request Scenario

The CreditRequest scenario [1] from the finance domain models the loan approval
workflow of a bank: A customer intends to lend some money, i.e. request a credit.
During the process of approving or disapproving the credit request process, the
customer must provide some input (like balances and securities), and the bank
must either automatically or via human intervention approve or decline the
request. A risk rating determines most of the decisions during this process, for
example, whether a credit request is approved at all, and whether it can be
approved automatically.

This scenario has been modeled in Sensoria with a combination of SoaML
and UML4SOA elements, and has been implemented using model transforma-
tions to BPEL and WSDL code. In this section, we introduce parts of the model
for the CreditRequest scenario.

Fig. 1 shows the static system structure of the scenario. The main process,
shown in the middle and implemented as an orchestration, is the CreditRequest,
which provides its services through the CreditManagementService port. Rating
is another orchestration which the CreditRequest participant uses to calculate
the rating. The services of Rating itself are provided through the RatingService
port (left of the Rating participant).

The other participants are atomic services performing tasks like calculating
ratings, storing data, and interacting with the user.

– The Portal services, both provider and consumer, are services concerned
with user interaction. They are implemented as a set of web pages which
handle communication with the customer and the bank employees through
different frontends.

– The CustomerManagement service provides an interface to the customer
database for identifying customers.

– For analysing input data from the customer, the two services SecurityAnal-
ysis and BalanceAnalysis are used.

– Finally, the RatingCalculator service is used to calculate the actual risk
rating.

The entire workflow implemented in the CreditRequest and Rating orches-
trations has been defined with the help of the UML4SOA UML extension, and
used as input to verification tools and for generating code. Due to the size of the
process it is not possible to show every part here; we therefore have to content
ourself with the overview of the behavior of the CreditRequest process as shown
in Fig. 2.

The process is further subdivided into individual service activities which we
shall describe now.



Fig. 1. The Static Structure of the CreditRequestScenario.



– The Initialize service activity is used to bootstrap the service. A customer
logs into the website, which leads to a call from the portal to the CreditRe-
quest orchestration. The credentials of the customer are verified and, in the
positive case, he is logged in to the system.

– We are then entering a loop in which a credit may be requested more than
once by the same user with a changing amount of money or different secu-
rities and balances. The loop contains four activities: Creation, HandleBal-
ance&SecurityData, RatingCalculation, and Decision. During the execution,
an event may occur (Cancel), which aborts the process. Also, an exception
might be thrown which is handled in MainFault and also leads to termination
of the process.

– The Creation scope deals with initializing the workflow: A request for a new
credit is received and the data initialized.

– HandleBalance&SecurityData handles the upload and storage of the balances
and securities of the user. The balances are stored in the BalanceService
and the securities are stored in the SecurityService for later retrieval by the
Rating orchestration.

– In RatingCalculation, the second orchestration Rating is invoked to provide
the main workflow with a risk rating, identifying the risk involved with the
requested credit. This rating implies whether the request can be accepted
automatically. If not, the rating implies whether the decision can be made
by a clerk or has to be escalated to a supervisor.

– The Decision activity handles the process of deciding first whether the bank
accepts the credit request, and second allows the customer to review, accept,
or reject the offer. The first part, if not done automatically, involves a call
to the portal which enables the corresponding bank employee to review the
credit request and give his input. The second also involves the portal; this
time the customer is notified and can review an offer on the website.

– If the customer has accepted an offer, or is no longer interested, the Finalize
activity cleans up and ends the process.

The CreditRequest scenario has been used as input for the formal verification
tools in Sensoria. This is described in detail in Chapter 7-4.

3 Automotive Case Study: On Road Assistance

In the OnRoadAssistance scenario from the automotive case study [2,5] the ve-
hicle reacts to a failure in the car engine. Such an event triggers the in-vehicle
diagnostic system to perform an analysis of the sensor values. The diagnostic
system reports e.g. a problem with the pressure in one cylinder head, indicating
that the driver will not be able to reach the planned destination. The necessary
reactions to this report are handled in a service-oriented way by means of an
orchestration.

Like the finance scenario from the last section, the OnRoadAssistance sce-
nario has been modeled with a combination of the SoaML and UML4SOA ex-
tensions to the UML. Fig. 3 shows the orchestration of services for the OnRoad-
Assistance participant. See Chapter 1-1 for further details of both the static



Fig. 2. The behavioral specification of the CreditRequest scenario.



structure and the dynamic behavior of this scenario, which we will not repeat
here. Instead, we discuss the implementation of a demonstrator for the scenario
on the technical basis of web services, which is achieved by means of automated
model transformations based on other results of the Sensoria project.

The main goal of the automotive demonstrator [5] is to show the power of the
Sensoria development approach based on the application of model-driven ar-
chitecture (MDA) principles in the area of service-oriented computing. Following
the model-driven approach, an implementation is created by the construction of
models and model transformations. The demonstrator shows how this model-
driven development process which automatically generates and deploys a service
based on a model of the composition of services works in practice.

The automotive demonstrator for the OnRoadAssistance scenario is built as a
web application: On the client side, only a fully JavaScript enabled web browser
is needed. The business logic, specified as a service orchestration, is deployed
on the server side. On the server, the application uses the following three tier
architecture (see also Fig. 4).

Presentation Layer. The ViewManager in the presentation layer is a compo-
nent developed to parse the client request, to call the service orchestration and
generate web pages for the client.

Business Logic Layer. The business logic is located in the second layer. The main
component is a BPEL process which is in charge of the service orchestration.
Several local or remote web services can be called by the BPEL process. A special
service is used for the invocation of a broker for dynamically identifying partner
services (we use the broker Dino, which has been developed within Sensoria).

Database Layer. A database lies in the third layer, i.e., the persistence layer.
The database contains all data needed by the services.

The Automotive Demonstrator implements the OnRoadAssistance scenario [2].
In order to keep the scenario simple, the demonstrator is limited to localizing
garage and rental car station services, but this can be easily extended e.g. to
identify as well a towing service, providing the GPS data of the stranded vehicle
in case the vehicle is no longer drivable.

The services involved in the implementation of the OnRoadAssistance are
the following:

– A Position Service providing the GPS data of the stranded vehicle
– A Bank Service for charging a credit card
– Garage Services for localizing and selecting garages
– Rental Car Services for localizing and selecting car rental stations

For demonstration purposes, two models of the same process are built, show-
ing the benefits of the model-driven approach by later switching between them.

The first model is built as the sequential orchestration of the required services
for a) determining the car position, b) finding garages in the vicinity of the car



Academic Use Only

<<serviceActivity>>
Main

<<serviceActivity>>
findAssistance

<<send&receive>>
selectBestRentCarStation

rentalCarList

rentalCarStationselectRentalCarService

<<send&receive>>
findGarages

carLocation

garageList

f indGaragesService <<send&receive>>
findRentalCarStations

carLocation

rentalCarListf indRentalCarStationsService

<<send&receive>>
selectBestGarage

garageList

garage

selectGarageService

<<raiseException>>
noAssistancecancel

<<serviceActivity>>
cancelation

<<send>>
cancelCreditCharge

creditChargeData

creditChargeService

<<serviceActivity>>

<<send&receive>>
chargeCredit

creditChargeData

userData creditChargeService

<<send&receive>>
getPosition

carLocation

userData

locationService

<<serviceActivity>>
 : NoAssistance

cancel

<<receive>>
startAssistant() client

 [else]

 [garageList.size == 0 or rentalCarList.size == 0]

<<compensation>>

Fig. 3. UML4SOA activity diagram showing the OnRoadAssistance participant.



Fig. 4. Architecture of the automotive demonstrator.

and selecting the most convenient garage, and c) finding rental car stations
nearby and selecting one. The orchestration process finishes with the credit card
charge service. Using a chain of model transformations, the model is transformed
to an executable service implemented in BPEL and deployed to an appropriate
application server. Model transformations and deployment are performed in a
fully automatic way.

The automotive demonstrator is designed in such a way that the invocation
of each service is visualized in a web browser and expects a user interaction,
almost all just a click on a continue button. In fact, the position of the car, asset of
garages and car rentals nearby the car position, and then the selected garage and
car rental station are visualized using the Google maps API (see Fig. 5). For the
implementation of the interactions and the visualisation, dynamically generated
web pages are associated to each service, and the BPEL process is enriched with
additional interactive features by a complementary model transformation.

The power of the model-driven development approach is shown by a second
run of the generation that consists of changing the orchestration model shown
in Fig. 3. The changes are twofold: First, the credit charge service is invoked at
the beginning of the process instead of at the end, and second, the localisation



Fig. 5. Screenshot of the Automotive Demonstrator.

of garages and rental car stations as well as the selection of the most appropriate
garage and rental car station are parallelized (see Fig. 5).

The process of generating the automotive demonstrator was implemented us-
ing the Sensoria Development Environment (SDE), which is an Eclipse-based
framework for the integration and use of the tools developed in the project for
the analysis and development of service-oriented software. The model transfor-
mations and deployment are performed automatically with the same tool chain
that was implemented for this purpose in the SDE (see Fig. 6). For further details
on SDE the reader is referred to Chapter 6-5.

The basic transformation from SoaML and UML4SOA to BPEL and WSDL
is performed by using a first transformer from the MDD4SOA suite [3]. Addi-
tional model-to-model and model-to-code transformers of MDD4SOA have been
introduced to handle user interactions and automatic deployment of a web appli-
cation onto a web application server. The first additional model transformation
is needed to provide BPEL and WSDL code that is executable by a specific
BPEL engine (in our case, ActiveBPEL). The second model transformation is
needed to allow user interactions and to visualize results step by step during the
demonstration. The third one is used to deploy the resulting web application.
Note that the model transformations are independent of the scenario, even more



Fig. 6. SDE tool chain for the model-driven development.

they are independent of the BPEL/WSDL application, i.e. they are generic and
reusable for other services modeled as orchestration of other services.

4 eUniversity Case Study: Student Application

In the StudentApplication scenario of the eUniversity case study, students may
apply for a certain course of studies at a university online, providing the nec-
essary documents and certificates via a website. The functionality for handling
applications is provided by service orchestrations which make use of a number
of atomic services like the student office service, an admission checking service,
and a service for the upload of documents to perform their task.

In the following, we detail the model of the StudentApplication scenario.
Again, we employ the UML modeling language with the additional profiles
SoaML [4] and UML4SOA [3] presented in Chapter 1-1. Like the other sce-
narios presented in the last sections, the student application scenario has been
used as input for verification tools in Sensoria and has been implemented on
the basis of Web Service technology.

The components of the eUniversity case study which are relevant for the
student application scenario are shown in Fig. 7. The figure shows the overall



Fig. 7. The eUniversity StudentApplication scenario.



composition of the SOA system modeled as a UML class diagram using SoaML
model elements. Each of our two orchestrations offers or requires multiple ser-
vices: The ApplicationCreator is invoked by the client for the creation of a new
application, but invokes several other services as well, such as the ValidationSer-
vice and the StatusService. The objective of the ApplicationValidator is to verify
whether the application follows the policies of the university. The actual imple-
mentation of the two orchestrations further refines the behaviour of this scenario.
The other services, including the client service, are atomic and implemented in
a standard programming language (for example, in Java).

Overall, the scenario works as follows: A student uses the website to apply
for a certain course of studies. The website (not shown) contacts the Applica-
tionCreator through its creationService service port. The ApplicationCreator, in
turn, calls other entities through the uploadService, the officeService, and the
statusService ports. Last but not least, it also contacts the ApplicationValidator
through the validationService port for checking the student data and setting
the status of the application. Being implemented as an orchestration itself, the
ApplicationValidator works with other entities too – through the officeService
(again), the admissionService, and finally the decisionService ports – to carry
out the validation task. After a review of the application by the various services,
the student is notified whether he was accepted at the university.

The two processes ApplicationCreator and ApplicationValidator from Fig. 7
are modeled as UML4SOA orchestrations. The first one is shown in Fig. 8. It
illustrates how the creator interacts with its partners through ports. It starts with
a receipt of the call newApplication through the creationService service port,
receiving the application. After the receipt of this call, the StatusService and
the UploadService are initialized, and the initial call is returned. Completing the
initialisation phase, the startValidation call is sent to the ApplicationValidator
to request the start of the validation. After having done so, the process waits for
another call from the client. The student will either press the button to complete
the application, or another one to cancel it.

If a cancelApplication call is received, the validation service is instructed to
cancel the validation, and the status service is notified that the application has
been canceled. If, on the other hand, the student chose to complete the applica-
tion, the uploaded documents are retrieved from the uploadService and a final
validation is requested from the ApplicationValidator, using the completeValida-
tion call. If the result is okay, the student is registered at the StudentOffice with
registerStudent. In any case, the initial call is replied to.

Besides the normal flow of the activity, the diagram also shows a second
structured activity node – a compensation handler. The actions defined within
CompensationHandler are executed if the main activity has been completed suc-
cessfully, but needs to be undone. This functionality can be triggered externally
after the orchestration has been completed. If the application has been com-
pleted successfully before, the student is removed from the list of applicants by
using a deregisterStudent call on the OfficeService.



Fig. 8. UML4SOA activity diagram showing the ApplicationCreator.



Fig. 9. UML4SOA activity diagram showing the ApplicationValidator.

The second activity diagram, modeling the ApplicationValidator, is shown
in Fig. 9. This service acts as supplier to the creation service, starting with
the receipt of the startValidation call from the ApplicationCreator through the
validationService port. Afterwards, both the OfficeService and the Admission-
Service are contacted simultaneously to check admission of the student, and to
check the student data. Subsequently, the process waits for the completeValida-
tion call from the ApplicationCreator. After it is received, all the information
gathered so far is checked with the help of the DecisionService, and the result is
returned to the ApplicationCreator.

5 Conclusions

This chapter has discussed three of the scenarios of the Sensoria case studies
in detail, presenting graphical models of structure and behavior as well as the
implementation of a demonstrator.



Firstly, the CreditRequest scenario of the Finance case study has been dis-
cussed. This scenario has been used as a test bed for demonstrating the feasibility
and effectiveness of the use of the Sensoria process calculi and some of their
related analysis techniques and tools. Moreover, it has been used to provide an
effective implementation of (part of) the Sensoria approach, specifically mod-
eling and formal analysis of service-oriented software based on mathematically
founded techniques. Chapter 7-4 further details the use of formal analysis tools
on the credit request scenario.

The Automotive case study scenarios and in particular, the OnRoadAssis-
tance scenario, have been widely used by the project partners to illustrate the
approaches they implemented with easily understandable examples. The demon-
strator explained in this chapter has shown how the Sensoria techniques can
be employed for a reaching a fully automated, model-driven approach to SOA
development.

Finally, the eUniversity case study has taken concepts from familiar ground
for researchers, providing an ideal playground for testing new approaches, meth-
ods, and tools for the support of service-oriented architectures. The StudentAp-
plication scenario which has been presented in detail in the previous section
has been used for qualitative and quantitative analysis integrated with model-
driven development and the generation of a running system based on web service
technology.

All three case study scenarios are available for download from the Sensoria
web site (http://www.sensoria-ist.eu).

References

1. M. Alessandrini and D. Dost. Finance Case Study: Requirements, Specification
and Modelling of Selected Scenarios (D8.3.a). Technical report, S&N AG, 2007.

2. N. Koch and D. Berndl. Requirements Modelling and Analysis of Selected Scenarios:
Automotive Case Study (D8.2.a). Technical report, FAST GmbH, 2007.

3. P. Mayer, A. Schroeder, and N. Koch. MDD4SOA: Model-Driven Service Orches-
tration. In The 12th IEEE International EDOC Conference (EDOC 2008), pages
203–212, Munich, Germany, 2008. IEEE Computer Society.

4. OMG. Service Oriented Architecture Modelling Language Beta 1. http://www.

soaml.org/, 2009.
5. R. Xie and N. Koch. Automotive CASE Study: Demonstrator. Technical report,

Cirquent GmbH, 2009.


