
Sensoria Patterns

Matthias Hölzl, Nora Koch, Philip Mayer, and Martin Wirsing?

{hoelzl,koch,mayer,wirsing}@pst.ifi.lmu.de

Ludwig-Maximilians-Universität, München, Germany

Abstract. We describe the SENSORIA development approach using a pattern
language for augmenting service engineering with formal analysis, transforma-
tion and dynamicity. The pattern language is designed to help software develop-
ers choose appropriate tools and techniques to develop service-oriented systems
with support from formal methods; the full pattern catalog spans the whole de-
velopment process from the modeling stage to deployment activities. Some of the
patterns are specific to SENSORIA; other patterns are extensions or adaptations of
patterns presented by other authors.

1 Introduction

The SENSORIA project is investigating a broad range of issues related to engineering
service-oriented architectures, ranging from foundational research to practically usable
tools. SENSORIA proposes a model-driven approach in which services are first mod-
elled in a platform-independent notation such as UML4SOA [14]; these designs are then
transformed into formal models that can be analysed using tools based on mathemati-
cal methods. Afterwards, the design models can be used to generate code for different
service platforms.

The research results of SENSORIA are widely disseminated and well known in the
broader scientific community. However, scientific publications generally contain little
guidance for the practical software developer who seeks to apply them. To make re-
search results available in a way that is useful beyond the scientific community we
have developed a pattern catalog that enables software engineers to quickly determine
whether SENSORIA tools and techniques exist to address a particular development prob-
lem and, in the case of a positive answer, the recommended approach for employing
them.

Pattern-based approaches to presenting guidance for software developers has a well-
established history in computer science; patterns have been used to describe problems
and possible solutions in areas ranging from business processes to software design and
low-level implementation methods. Given the wide scope of SENSORIA it is not sur-
prising that the full catalog of SENSORIA patterns also encompasses a wide range of
abstraction levels, from implementation-oriented patterns in the spirit of [10] to archi-
tectural or process patterns. The pattern language is inspired by the “Pattern Language
for Pattern Writing” presented in [15], the pattern language used in [8] and the guidance
in [5]. For readers familiar with the pattern community, it should be noted that we use

? This work has been partially sponsored by the EU project SENSORIA (IST-2 005-016004).



the pattern format as an expository tool; our patterns are not necessarily obtained by
“mining” existing applications for patterns.

1.1 Overview of SENSORIA Patterns

The patterns presented in this section can be classified into three different categories:

– Patterns for new activities in the software development process that allow SENSO-
RIA methods to be introduced. For example, the pattern Functional Service Verifi-
cation presented in this chapter is of this kind: it introduces the formal verification
of services and details the benefits and costs of performing such analysis.

– Patterns that show how SENSORIA techniques change an activity that is commonly
performed when developing and deploying service-oriented architectures. The pat-
terns Service Modeling and Generate Implementation in this chapter are examples
of this type of pattern: while all model-driven approaches generate parts of the
implementation from models, the benefits and costs of doing so vary significantly
when tools based on formal models are employed in the course of software devel-
opment.

– Adaptations of patterns presented by other authors, in those cases where the tools
and techniques developed by SENSORIA contribute novel aspects to the proposed
solution or offer new solution possibilities. In these cases we include an extended
version of the existing pattern in the SENSORIA pattern language to document the
influence of our techniques on the proposed solution and to point developers to the
tools that can be employed when realizing the pattern. Tailoring patterns to specific
tools or circumstances has a long tradition in the pattern community, see, e.g., [1],
which shows how the patterns in [10] can be adapted to a particular programming
language.

1.2 The SENSORIA Pattern Language

The pattern language used in this chapter is a slight revision of the one first introduced
in [25]; it is based on principles described in [15,5] and similar to the one used in [8].

As usual, each pattern consists of mandatory and optional elements which are pre-
sented in a fairly rigid structure to simplify the process of selecting and applying suit-
able patterns. The elements that have to be present in each pattern are:

– A pattern name that provides a short and descriptive way to refer to the pattern.
– A context in which the pattern is applicable: most patterns are not “universal” so-

lutions but only apply in certain circumstances which are described by the context.
– A concise description of the problem solved by the pattern. This is different from

the context in that the problem is the design or implementation challenge that is
directly addressed by the pattern whereas the context describes conditions in which
the pattern is applicable but which are generally not influenced by an application of
the pattern.

– The forces that determine whether using the pattern is appropriate.



– The solution proposed and the consequences resulting from the use of the solu-
tion. The solution is the concrete description how the pattern is applied; the conse-
quences show how this influences the resulting system. There is a certain amount
of overlap between consequences and forces, but generally the forces are more ab-
stract, concise and less precise than the detailed consequences.

– Furthermore each pattern has to be accompanied by examples. In this chapter we
mostly refer the reader to other chapters that demonstrate the relevant pattern.

Several optional sections can be used to clarify the pattern, e.g., related patterns, exam-
ple code or models, or tools to support the pattern. For space reasons we have omitted
some elements appearing in the full pattern catalog from some of the patterns in this
chapter.

This chapter is structured as follows: the following section contains patterns that
outline a development process that allows SENSORIA techniques to be used to max-
imum effect. Afterwards, section 3 shows an example how patterns for developing
service-oriented architectures from Erl’s pattern catalog [8] can be enhanced by making
use of SENSORIA results. The final sections present related work and conclude.

2 SENSORIA Development Patterns

This section uses patterns to describe a development process that makes maximum use
of SENSORIA results: Service Modeling introduces a modeling process using SoaML
and UML4SOA; this pattern is a slight revision of the one presented in [25]. Having
models in UML is the basis for two more patterns presented in this chapter: Extract
Formal Models and Generate Implementation . Formal models are mainly useful as in-
put for analysis tools; this is described by pattern Analyze with Formal Methods. Most
development projects extend or replace existing legacy systems. The pattern Extract
Service Model enables the developer to use SENSORIA tools and techniques for these
systems as well.

2.1 Service Modeling

Systems built on SOAs add new layers of complexity to software engineering, as many
different artifacts must work together to create the sort of loosely coupled, adaptive,
fault-tolerant systems envisioned in the service domain. It is therefore important to ap-
ply best practices already in use for older programming paradigms to services as well;
in particular, modeling of systems on a higher level of abstraction should be used to get
a general idea of the solution space. Modeling services should be possible in a language
which is both familiar to software architects and thus easy to use, but also contains the
necessary elements for describing SOA systems in a straightforward way.

Context. You are designing a system which is based on a SOA. The system is intended
to offer services to multiple platforms and makes use of existing services and artifacts
on multiple hosts which must be integrated to work together in order to realise the
functionality of the system.



Problem. When designing SOA systems, it is easy to get lost in the detail of technical
specifications and implementations. Visualizing the planned service oriented architec-
ture is therefore crucial for effective task identification, separation, and communication.
Using a familiar, easy-to-understand, and descriptive language is a key success factor
in this context.

Forces.

– The amount of specifications and platforms in the SOA domain makes it difficult
to get a general idea of the solution space.

– Modeling the whole system in an abstract way gives a good overview of the tasks to
be done, but does not directly yield tangible results. For small systems and projects,
it is necessary to tailor this modeling task or even to skip it altogether.

– The model must be updated to reflect the architecture if it changes during imple-
mentation, or if new requirements appear.

– The model is platform independent, and may be used to generate significant parts
of the system. In case the system’s target platform is not fixed or may experience
changes, the workload involved in system re-implementation can be reduced con-
siderably.

– Having a global architectural view eases the task of understanding the SOA envi-
ronment. This fact is of major significance if the SOA environment is to be extended
by another team of software engineers or at a later date.

– The envisioned target platform(s) and language(s) should be supported by the mod-
eling approach such that code generation may be used.

Solution. Use a specialised (graphical) modeling language to model the system and em-
ploy these models as far as possible for generating the system implementation. There
are several languages which might be employed for this kind of task. One of the most
widespread modeling languages in the software engineering domain is the Unified Mod-
eling Language (UML). As UML itself does not offer specific constructs for modeling
service-oriented artifacts, it needs to be extended using its built-in profile mechanism.
SoaML [18] and UML4SOA [14] are two such profiles, which together enable model-
ing of both static and dynamic aspects of service-oriented systems. SoaML allows mod-
elling the static part of SOA systems and features specialised constructs for services,
service providers, and message types. UML4SOA complements SoaML with support
for the dynamic parts of SOA systems, featuring service interactions, long-running
transactions, and event handling. Models designed using SoaML and UML4SOA can
be used in a model driven development approach for SOA, MDD4SOA [14], which
offers tools for generating code.

Consequences. Pros: A positive result of modeling a service-oriented system in a high-
level way is that it gives a better idea of how the individual artifacts fit together. This is
of particular importance in larger projects and for communication between developers
and/or the customer. By using transformations, the models can also be employed for
generating skeletons to fill with the actual implementation. However, the effort involved
in creating readable models should not be underestimated. Also, care should be taken to



only model aspects relevant on the design level instead of implementing the complete
system on the modeling level.

Cons: Often the fully automated generation of implementations is not feasible; in-
stead only implementation fragments can be generated and their implementation has to
be completed manually. In this scenario model/implementation divergence may pose
a significant problem and special care has to be taken that models are kept consistent
with the implementation. This increases the cost of modeling and reduces the benefit of
model-driven development.

Tools. The use of a UML profile has the advantage that all UML CASE tools that
support the extension mechanisms of the UML can be used, i.e. there is no need for
the development of specific and proprietary tools. The SoaML and UML4SOA profiles
may be provided already for the UML tool of choice, or may be defined by the means
provided by the platform. In the SENSORIA project, the UML4SOA profile was defined
for the Rational Software Modeler (RSM) and MagicDraw; SoaML is available for
these platforms as well. MDD4SOA provides executable transformations for models
from both UML tools to code skeletons of various target platforms, including the Web
service platform and the Java platform. The transformers are integrated into the Eclipse
environment.

Examples. More detailed descriptions of languages for service modeling and their ap-
plications are given in Chapter 1-1 (UML Extensions for Service-Oriented Systems)
and Chapter 1-2 (The SENSORIA Reference Modelling Language); a model-driven ap-
proach to business processes is introduced in Chapter 1-3 (Model-Driven Development
of Adaptable Service-Oriented Business Processes). More detailed examples for models
can be found in the chapters on case studies, in particular Chapter 7-4 (The SENSORIA
Approach Applied to the Finance Case Study) and Chapter 7-2 (SENSORIA Results
Applied to the Case Studies).

Related Patterns. This pattern forms the basis for the approach described in this chap-
ter; it is a requirement for Extract Formal Models and Generate Implementation .

2.2 Extract Formal Models

Context. You have modeled a part of the system using UML4SOA and want to ensure
that the model satisfies certain properties.

Problem. Many properties of models in UML4SOA cannot be directly analyzed. Man-
ually building models for formal analysis has several disadvantages: (1) The manually
created models may not faithfully represent the UML4SOA model. (2) Manually build-
ing models is a time-intensive process. (3) The model has to be manually kept in sync
with changes made to the UML4SOA model.

Forces.

– Extraction of formal models allows the UML4SOA model to be analyzed without
manually creating additional models.



– The extracted model faithfully represents the UML4SOA model if the extractor is
correct.

– The extracted model may be more complicated than a manually created model and
contain details that are unnecessary for the desired analysis. This may significantly
increase the complexity of the analysis step.

– The UML4SOA model has to be elaborated in detail to contain enough information
for model extraction.

Solution. Use tools to automatically extract formal models from the UML4SOA mod-
els. The kind of models that should be extracted depend on the analysis that is to be
performed.

Consequences. Pros: Manually building formal models is expensive and not econom-
ically feasible for most large systems. Additionally, a manual extraction process may
introduce errors not present in the original model, or fail to correctly specify all sub-
tleties of the original model. If a tool that automatically extracts the required models
exists, analysis with formal methods becomes more reliable and significantly cheaper.
SENSORIA provides a number of model transformations from UML4SOA into pro-
cess calculi and orchestration languages – for example, the process calculi COWS and
PEPA, or the language BPEL. These tools can be integrated into the build process of
the system such that the availability of up-to-date formal models is ensured.

Cons: Automatically generated models often contain details that are not relevant to
the performed analyses. Since many tools based on formal methods suffer from “state
explosion” problems, the increased size of the extracted model can impede analysis
efforts.

Tools. SENSORIA provides various tools for transforming UML models (and in partic-
ular, SoaML and UML4SOA models). The model transformer Hugo/RT [12] translates
UML specifications into input languages for the well-known model checkers UPPAAL
and SPIN. The SRMC/UML bridge translates UML4SOA activities into the process
calculus PEPA [23]. The VENUS tool allows converting UML4SOA activities into the
process calculus COWS [13]. Furthermore, the MDD4SOA transformer suite [14] trans-
lates UML4SOA diagrams to Java, the orchestration language Jolie, and WS-BPEL; the
latter can be used as input for the verification tool WS-Engineer [9].

Examples. A detailed example of how the pattern Extract Formal Models can be used
in the software development process can be found in Chapter 6-1 (Methodologies for
Model-Driven Development and Deployment: an Overview); more details about trans-
formations is contained in Chapter 6-2 (Advances in Model Transformations by Graph
Transformation: Specification, Analysis and Execution).

Related Patterns. The pattern Extract Formal Models is closely related to Analyze with
Formal Methods since model extraction often precedes formal analysis. It is also related
to Generate Implementation since the additional modeling effort required for formal
analysis can better be recouped if the model also serves as input to code generation.



2.3 Analyze with Formal Methods

While models are often at a higher level of abstraction than code, they nevertheless are
susceptible to the same problems: they may not satisfy certain properties that the mod-
eler expects them to have; different models may specify the same part of the system in
contradictory ways, etc. Unless the models are executable and therefore relatively low-
level, these defects may remain undetected until the system is actually implemented.
This negates one of the main benefits that modeling is supposed to provide.

Context. You have either extracted or manually specified formal models of the system.

Problem. You want to verify that the formal models satisfy certain properties, e.g., a
given service should always be available to accept new requests or the overall system
should be free from deadlocks.

Forces.
– Formal models of the components under consideration exist or can be extracted.
– The desired properties can be formally specified.
– Developers have to be qualified to decide which analysis tools are adequate for the

given problem, be able to use the tools, and in some cases interpret their output.

Solution. Use tools based on formal methods such as model checkers or the perfor-
mance analysis tools for Pepa [6,11] to analyze whether the desired properties hold.

Consequences. Pros: Tools based on formal methods can verify that the system satis-
fies certain properties that are difficult to check otherwise, or that the system exhibits
certain performance characteristics. If the tools can be applied at an early stage of sys-
tem development it is possible to find design and modeling errors long before the system
is implemented and therefore reduce the development cost. Furthermore, certain kinds
of errors that are well-suited to formal analysis, such as deadlocks or unintended inter-
actions that divulge secret information to third parties, are notoriously difficult to find
using traditional approaches.

Cons: On the other hand the use of analysis tools based on formal methods requires
a lot of experience on the part of the users: even when using hidden formal methods
the user has to be able to determine which properties of the system are amenable to
formal analysis, which tools are appropriate, and how the desired properties can be en-
coded. This can, to a certain extent, be ameliorated by new developments such as Venus
[22], but it is unlikely that the use of formal methods will be completely transparent
to the developer in the foreseeable future. Furthermore, many tools based on formal
methods require a detailed specification of the complete system behavior and therefore
necessitate comprehensive models of all system components, even ones that are not di-
rectly involved in the behavior under consideration. Related to this last point is another
weakness of some formal methods: they cannot work on open systems and results can
therefore only be obtained for “closed approximations” of the specified system. This is,
in general, not problematic when the existence of undesirable behavior is demonstrated
by the formal analysis, e.g., when deadlocks or traces which validate system invariants
are found. But it is often not clear that positive results, e.g., the absence of invalid traces,
can be transferred from a closed approximation to the open system.



Tools. SENSORIA provides several tools for formal analysis and verification. WS-
Engineer [9] is a verification tool for performing model-based verification of web ser-
vice compositions. The SRMC/PEPA tool [23] covers steady-state analysis of the un-
derlying Markov chain of SRMC descriptions. CMC and UMC are model checkers and
analysers for systems defined by interacting UML statecharts [21]. The sCOWS Model
Checker [20] allows to perform statistical model checking on sCOWS, a stochastic
extension of COWS. Finally, the LySA tool is a static analyzer for security protocols
defined in the LYSA process calculus [4].

Examples. Parts 2, 4 and 5 of this book contain many examples for formal analy-
sis methods; in particular, examples for qualitative analysis techniques can be found
in Chapter 2-3 (Static Analysis Techniques for Session-Oriented Calculi), Chapter
4-1 (Analysing the Protocol Stack for Services), Chapter 4-2 (An Abstract, On-
The-Fly Framework for the Verification of Service Oriented Systems), Chapter 4-3
(Tools and Verification), and Chapter 4-4 (Specification and Analysis of Dynamically-
Reconfigurable Service Architectures); examples for quantitative analysis techniques
are given in Chapter 5-1 (SoSL: Service Oriented Stochastic logics), Chapter 5-2 (Eval-
uating Service Level Agreements using Observational Probes), Chapter 5-3 (Scaling
Performance Analysis using Fluid-Flow Approximation), Chapter 5-4 (Passage-End
Analysis for Analysing Robot Movement) and Chapter 5-5 (Quantitative Analysis of
Services).

Related Patterns. The formal models for analysis can often be extracted as described
in the pattern Extract Formal Models. The detailed system model needed for formal
analysis often contains many of the same model refinements that are needed to employ
the Generate Implementation pattern.

2.4 Generate Implementation

Generating implementations from models is the key characteristic of model-driven de-
velopment. The SENSORIA approach for formally supported software development sup-
ports such generation with multiple tools.

Context. You are deciding which development approach to apply to a software system,
or you have already developed (UML/UML4SOA) models for the system. You want to
implement the system on one or more platforms.

Problem. While UML models are a useful development tool, many models do not
specify executable behavior, and even for behavioral models there is no widely used
execution platform that can directly operate on UML models.

Forces.

– UML models can be specified at various levels of abstraction ranging from very
abstract structural views of a system to detailed behavioral descriptions.

– Even behavioral specifications are often not detailed enough to completely describe
the intended behavior of the system.



– The amount of work to fully specify all system behaviors is significant when com-
pared to the commonly used level of abstraction for models.

– Implementations can be obtained in various ways: manual implementation of the
model, partial code-generation by a CASE tool, or generation of the complete ap-
plication.

– Some parts of an application are not easily specified using UML, e.g., user inter-
faces.

Solution. Fully specify the important behavior of the system (that implements the busi-
ness process) in the model, generate code from this implementation, and manually im-
plement parts of the code that are difficult to model and verify.

Consequences. Pros: By generating the implementation from models, the correctness
of the implementation relative to the model depends only on the quality of the trans-
formation from models to code. Once a mature code generator has been developed, the
consistency of model and implementation can be assumed. Changes to the model can
immediately be reflected in the implementation without incurring additional implemen-
tation costs.

Generating implementations for different execution platforms is easy if model trans-
formations into all platforms exist. Only the manually written parts of the code have to
be rewritten when supporting an new platform or transitioning to a new platform. Nec-
essary deployment artifacts can automatically generated.

Neutral: By manually implementing those parts of the system which are difficult to
express in UML and for which no formal verification is necessary, the modeling effort
can be reduced, at the cost of an increase in platform dependencies and implementation
costs.

Cons: The required detail of the models increases significantly, thereby making the
modeling step more time consuming and increasing the difficulty of changes to the
models. If no model transformation into the desired target platform is available it has to
be developed, often at significant cost. In some cases, manually generated code can be
smaller and more efficient than automatically generated code; in particular if the code
generator is not sophisticated enough to perform static analysis and optimization. This
may be particularly significant when developing software for embedded or otherwise
resource-constrained systems. Furthermore, debugging of generated implementations
often has to be performed at the source-code level since no back-translation from code
to model elements is available in the debugger. This can make debugging of generated
implementations difficult.

Tools. SENSORIA provides both a generic model transformation tool for writing and
executing arbitrary transformations and specific tools tailored towards a single use
case. The former tool is Viatra2 [24], a framework which provides general-purpose
support for the entire life-cycle of engineering model transformations including the
specification, design, execution, validation and maintenance of transformations within
and between various modeling languages and domains. The latter are provided by
multiple tools. The first two are written in VIATRA2: The SOA2WSDL transforma-
tion takes high level UML4SOA models and produces WSDL output, whereas the



UML2Axis transformations take high level UML4OA models and produce WSDL,
WS-ReliableMessaging, WS-Security and Apache Axis-specific configuration files as
output. The tool suite MDD4SOA [14] already mentioned above transforms SoaML
and UML4SOA models to BPEL, WSDL, and XSD as well as Java and Jolie. Finally,
the Modes Parser and Browser [9] generates broker requirements for Dino from UML2
Modes models.

Examples. The chapters on the SENSORIA case studies contain examples for the gen-
eration of implementations, see in particular Chapter 7-4 (The SENSORIA Approach
Applied to the Finance Case Study) and Chapter 7-2 (SENSORIA Results Applied to
the Case Studies).

Related Patterns. This pattern enjoys a synergistic relationship with Extract Formal
Models , since a more detailed UML model can enable both extraction of formal models
and generating the implementation. This can significantly alter the cost/benefit balance
of detailed modeling.

2.5 Extract Service Model

Service-oriented architectures are generally not developed from scratch; in most cases
the functionality of existing business-critical legacy systems has to be integrated or re-
placed. A number of patterns for integrating legacy software into a service-oriented
architecture exist, with different trade-offs. For example, in [8] the Legacy Wrapper
pattern is introduced which wraps the legacy system with a service façade. While this
is a relatively quick and cheap solution it often poses difficulties for long-term main-
tenance and deployment. As SENSORIA has developed the powerful, model-based re-
engineering tool CareStudio the Extract Service Model pattern is a viable alternative
with higher up-front investments but better long-term maintainability.

Context. You have a legacy application that performs a vital business function, possibly
with complex business logic integrated into the code. You want to integrate the legacy
application into a service-oriented infrastructure.

Problem. Often service-oriented systems are introduced to supersede existing legacy
technologies. In these cases it is usually not feasible to re-implement the functionality
of the legacy system; therefore, its functionality is wrapped by a service binding. If
the legacy system is hidden behind a thin service layer, the interface of the wrapper is
largely pre-determined by the capabilities and interfaces of the existing solution which
are often at the wrong level of abstraction or granularity for a service-oriented archi-
tecture. This leads to non-standard service contracts that expose details of the legacy
system’s implementation and technology. Writing a thick wrapper that exposes a clean
service-oriented interface is often difficult as many legacy systems do not expose a clean
separation between user interface, domain logic and storage backend.



Forces.

– A legacy application performing vital functionality exists.
– It is not economically feasible or desirable to develop replacements for the legacy

systems from scratch. Therefore the legacy application should be integrated into a
service-oriented architecture.

– The resulting software is not only supposed to facilitate transition to another sys-
tem.

– The new system should exhibit clean service contracts between its components to
be maintainable and extensible for future requirements.

Solution. Use the SENSORIA re-engineering approach which consists in annotating the
original source code, extracting a service model from the annotated source code, and
generating a new, service-oriented implementation from the annotated code.

Consequences. Pros: By creating a service model and a truly service-oriented imple-
mentation the long-term maintainability and extensibility is ensured. Often integration
into a service-oriented architecture can be more seamless than wrapper-based solutions;
the extracted service-oriented implementation can make use of standard infrastructure
services provided by the environment and therefore profit from enhancements made to
the overall system.

Cons: For re-engineering purposes the source code of the legacy system has to
be available, which is often not the case. The legacy code has to be annotated which
makes it necessary that developers that understand the old code base are available or
that developers familiarize themselves with the old code base.

Neutral: The up-front cost of re-engineering can be significantly higher than the cost
of wrapping a legacy system, althogh this will often be offset by reduced deployment
and operational costs and better future extensibility of the system.

Tools. This pattern is supported by a set of SENSORIA tools grouped around CareStudio
[2] which allow transformations to be applied to source code, with a focus on achieving
SOA-compliant code. The tool uses a model transformation approach to the migration
and includes emitters for source code.

Examples. A comprehensive description of the Extract Service Model pattern is con-
tained in Chapter 6-4 (Legacy Transformations for Extracting Service Components).

Related Patterns. When following this pattern, a service model is extracted and then
used for code generation. The pattern is therefore closely related to Service Modeling
and Generate Implementation. The extracted model can be used to formally validate
properties of the system using patterns Extract Formal Models and Analyze with Formal
Methods .

3 Enhancing SOA Patterns

This section describes how existing patterns for SOA development can be extended with
SENSORIA tools and methods, contributing novel aspects to the proposed solution and



offering new solution possibilities. We present extensions of two patterns from Thomas
Erl’s “SOA Design Patterns” [8], Concurrent Contracts and Trusted Subsystem .

3.1 Concurrent Contracts

Contracts between client and service and interfaces offered by services play an impor-
tant role in the development of service-oriented architectures. The following pattern
shows how techniques developed as part of SENSORIA can help service providers to
offer suitable interfaces for different classes of clients, and clients to find and utilize
the most appropriate contract offered by a provider. It is an extension of the Concur-
rent Contracts pattern from Thomas Erl’s “SOA Design Patterns” [8] with SENSORIA-
specific material. The pattern as originally described deals only with contracts; we have
extended the pattern to also take into account services that offer multiple interfaces
backed by the same implementation.

Context. Services often have to serve different customers which have slightly differ-
ent needs and permissions, and which may be of unknown provenience and therefore
trusted to different degrees. Exposing the same interface and service contract to all
clients may therefore not be feasible; on the other hand having different services for
closely related and largely overlapping functionality is not desirable.

Problem. Often services are described as exposing a single interface or contract that
the service fulfills. This simple view does not adequately reflect the situation encoun-
tered when building service-oriented architectures: often different clients have many
overlapping requirements but also significant differences. For example, several clients
may request personnel data from a company’s “personnel service,” but there may be
differences in that

– they may be trusted to different degrees, e.g., services operated by the company
itself may enjoy higher trust than services operated by clients or partners of the
company;

– some clients may be allowed to see protected data, e.g. services operated by the
accounting department may have access to salary information which is not available
to other services;

– some clients may be allowed to issue more powerful queries, e.g., the statistics de-
partment may be allowed to issue queries that aggregate data whereas other clients
may only be able to query individual employees.

To avoid undue multiplication of services it seems desirable to have a single service
that handles all clients; on the other hand the differences in the clients may make it
difficult or even impossible to define a single service interface or contract that satisfies
the needs of all clients. Furthermore such an interface will expose unneeded complexity
to clients that do not need advanced capabilities and the definition of a single policy that
covers all the different clients is often difficult and poses governance and administration
problems.



Forces.

– The service has to accommodate different types of consumers with important simi-
larities but significant differences. For example, some customers may be less trusted
than others.

– It is desirable to limit the number of deployed services and to avoid duplicated
functionality in several services.

– Defining a single interface and a single contract that satisfy the needs of all clients
is difficult or impossible.

– Exposing several contracts and interfaces for a service may increase the complexity
of the system and make it more difficult for clients to choose an appropriate service.

Solution. The same underlying service implementation may expose several different
interfaces or contracts. Each exposed interface or contract can be optimized for the
needs of one customer or several customers with similar needs and trustworthiness.
Each contract can be versioned and governed individually, thereby simplifying deploy-
ment and governance of individual contracts; interfaces are generally more closely tied
to the service implementation than contracts, but by using a model-driven approach
and carefully separating interfaces and implementation during design time a certain de-
gree of independent versioning and governance can be ensured for interfaces as well;
in particular it is often possible to maintain backward-compatible interfaces when the
implementation of a service is upgraded.

On the other hand, having to provide the functionality for several contracts places
additional burden on the implementation and evolution of the service itself. Care has
to be taken that changes to the implementation do not violate the guarantees of any
exposed interface or contract. This effect can be ameliorated by employing the formal
methods developed as part of the SENSORIA project to verify that the implementation
is faithful to the guarantees of each exposed interface or contract.

Similar situations exists for consumption and provisioning of the service: By provid-
ing multiple interfaces each client has to choose the most appropriate one; this increases
the time a developer needs to understand the system and diminishes the positive effect
of having specialized interfaces for the needs of several clients. For the service provider,
multiplying the number of contracts and interfaces may increase the governance effort
and deployment complexity of the whole system, even though they are reduced for each
individual service interface. In both cases techniques developed by SENSORIA, in par-
ticular “call-by-contract” as provided by λreq and the dynamic selection of available
service interfaces and contracts by Dino [16], can help ameliorate these problems.

Consequences. Pros: Introducing new interfaces and contracts that are closely matched
to the requirements of a group of clients can greatly simplify the development of clients
as well as governance and deployment. Providing several interfaces can reduce the need
for different services that provide closely related functionality.

Cons: Adding new interfaces to a service has similar governance and management
overhead to adding completely new services. Indeterminate application of the Con-
current Contracts Pattern can therefore lead to a overly large service inventory that is
difficult to use, maintain and develop.



Tools. By using UML4SOA in an early development stage, as for example with the
application of the Service Modeling pattern, you can simplify the application of Con-
current Contracts . Service providers can also use UML4SOA during deployment to
formulate the capabilities and potential consumers of each service contract.

When formal methods are used to verify the contracts with respect to their im-
plementation, the model transformations and tools corresponding to the chosen verifi-
cation method can be used. Particularly applicable tools for this pattern are PEPA or
SMRC to analyze whether the performance characteristics of the provided contracts
match the needs of the clients, see Chapter 5-3 (Scaling Performance Analysis using
Fluid-Flow Approximation) and Chapter 5-5 (Quantitative Analysis of Services). Fur-
thermore, λreq enables requirements-based selection of service contracts, see Chapter
2-4 (Call-by-Contract for Service Discovery, Orchestration and Recovery). Dino can be
used to provide semantic matching of services and interfaces at run time, see Chapter 6-
3 (Runtime Support for Dynamic and Adaptive Service Composition). Process-calculus
based static analysis methods can be used to verify the correctness of the provided con-
tracts with respect to their implementation; see pattern Analyze with Formal Methods
for more details.

Examples. Examples for the application of the Concurrent Contracts pattern can be
found in Erl [8]; more detailed examples of the application of the SENSORIA meth-
ods are described in the chapters of this volume mentioned in the previous section. In
addition Chapter 3-2 (Advanced Mechanisms for Service Composition, Query and Dis-
covery) and Chapter 6-3 (Runtime Support for Dynamic and Adaptive Service Compo-
sition) provide information about dynamic discovery of appropriate service contracts.

Related Patterns. For Concurrent Contracts to be applied, the service contract itself
should ideally be fully decoupled from the underlying service implementation; often a
façade that supports multiple contracts without the need for redundant service logic can
be used to implement this. See the patterns Decoupled Contract and Service Façade
described in Erl [8] for further information about this topic. Other patterns that support
different clients for a service are Contract Denormalization and Validation Abstraction,
also described in Erl [8]. However, when using Concurrent Contracts the need for con-
tract denormalization may be reduced since the capabilities required by different clients
could be exposed by separate contracts.

Application of the Concurrent Contracts pattern can often be simplified by using the
Service Modeling pattern to model the contracts and the shared implementation arte-
facts. After the Concurrent Contracts pattern has been applied, the Analyze with Formal
Methods pattern can be used to ensure that the functional and non-functional properties
of the resulting service satisfy the requirements of the contracts and interfaces.

3.2 Trusted Subsystem

As more and more critical data is stored in and processed by service-oriented systems,
ensuring their availability while securing them against unauthorized access and mali-
cious attacks has become a priority. A large number of tools and techniques have been
developed to address these issues. Here we focus on one possible design pattern, the



Trusted Subsystem . Our description is an adaptation and extension of some important
points presented in Thomas Erl’s “SOA Design Patterns”; the full description of the
pattern with examples and discussion of useful technologies can be found there.

Context. You are designing a service-oriented system that processes critical or confi-
dential data. In this system, some services are exposed to clients that do not have access
rights. You want to protect the data and make it easy and transparent to grant and revoke
authorizations.

Problem. Granting clients direct access to services containing important data poses
many security problem and complicates the management of authorizations. Further-
more it poses problems of transitive trust: if service A calls service B on behalf of
client C, who is responsible for checking that the call is authorized?

Forces.

– Services should be protected from unauthorized access.
– Management of authorizations should be easy and transparent.

Solution. The services containing critical or confidential data can only be accessed via
another service that is responsible for verifying the client’s authorizations. This trusted
front-end service always uses its own credentials to access the protected resources.
Client authorizations are not passed on by the front-end to the protected resources, but
a client identifier may be included in the calls to the protected resources. The trusted
subsystem is responsible for verifying that all accesses to the resources are performed
only by authorized clients and that clients cannot pass counterfeit identifiers to services.
The front-end service thus establishes a trust boundary. When applying this pattern to
several front-end services acting on the same resources it is possible to establish nested
or overlapping trust boundaries.

Consequences. Pros: The front-end service is responsible for enforcing the trust
boundary for the protected subsystems. Therefore there is a single point where access
policy can be implemented, monitored and authored. Since credentials are established
by the client for complete transactions there is no problem with transitive trust relation-
ships. Services inside the trusted boundary can have very simple security mechanisms
since they only have to authenticate the trusted subsystem.

Cons: The trusted subsystem is a single point of failure and also a potential perfor-
mance bottleneck since it must process every interaction with the protected resources.
Security breaches of the front-end can have devastating consequences for the whole sys-
tem as a compromise of this subsystem can be used to exploit all downstream resources
in its trust boundaries. It is therefore a prime target for attackers.

Neutral: SENSORIA methods can achieve a particularly good relationship between
cost and effectiveness when they are applied to the trusted subsystem: by validating the
security properties of this service using qualitative methods a high degree of trust in
the security of the whole system inside the trust boundary can be established; by using
qualitative analysis to analyze the performance characteristics of the system bottlenecks
can be discovered and prevented during early design stages.



Tools. Essentially, the whole range of SENSORIA modeling and analysis methods can
be gainfully employed to model and analyze the trusted subsystem. In particular, λreq

can often be used to validate the contracts of the trusted subsystems, and Lysa [3], the
corresponding LysaTool [26,4] and CryptoKlaim [17] can be employed to establish the
security of the protocols between clients and the trusted service as well as inside the
trust boundary. Qualitative analysis of arbitrary properties including security is also
supported by the SENSORIA model checkers WS-Engineer [9], CMC and UMC [21],
and sCOWS [20]. Finally, the SRMC/PEPA tool [23] covers the performance side of
the analysis with steady-state analysis of the underlying Markov chain of SRMC de-
scriptions.

Examples. Examples for trusted subsystems can be found in Erl [8]. Qualitative anal-
ysis including verification of security properties is discussed in Chapter 4-2 (An Ab-
stract, On-The-Fly Framework for the Verification of Service Oriented Systems), and
Chapter 4-3 (Tools and Verification). See Chapter 4-1 (Analysing the Protocol Stack
for Services) for an example of applying the LysaTool. Quantitative, and in particular
performance analysis is discussed in Chapter 5-5 (Quantitative Analysis of Services).

Related Patterns. Since the Trusted Subsystem pattern identifies services which are
particularly worthwhile targets for the SENSORIA tools and methods, it is related to
most of the other patterns presented in this section: Service Modeling of the trusted
subsystem can enable the use of other patterns, such as Extract Formal Models , Analyze
with Formal Methods , or Generate Implementation .

4 Related Work

The idea of using patterns to describe common problems in software design and de-
velopment was popularised by the so-called “Gang of Four” book [10]. Since its pub-
lication a wide range of patterns and pattern languages for many areas of software
development has been published, see e.g. the Pattern Languages of Programs (PLoP)
conferences and the associated Pattern Languages of Program Design volumes, or the
LNCS Transactions on Pattern Languages of Programming.

The area of patterns for SOA has recently gained a lot of attention, and several
collections of design patterns for SOA have been published or announced [8,19]. The
article [7] provides a short introduction. However, these patterns address more general
problems of SOA, while our patterns are focused on the formally supported techniques
provided by SENSORIA. Therefore, our patterns can serve as an extension of, rather
than as a replacement for, other pattern catalogues.

5 Conclusions and Further Work

In this chapter, we have presented some results of the IST-FET EU project SENSORIA
in the form of a pattern language. The patterns address a broad range of issues, such



Service Modeling

Extract Service Model

Extract Formal Model

Analyze with Formal Methods

Generate Implementation

Concurrent Contracts

Trusted Subsystem

modeled with

modeled with

reuse existing code

implement usingenable analysis with

use for should precede

Fig. 1. SENSORIA Pattern Relationships

as modelling, specification, analysis, verification, orchestration, and deployment of ser-
vices. As a final treat, the relationships between the patterns introduced in this chapter
is shown in the above figure.

We are currently working on systematising and extending the collection of patterns
in these areas, and we will also be developing patterns for areas which are not currently
addressed, e.g., business process analysis and modelling.

This pattern catalogue is a useful guide to the research results of the SENSORIA
project: as already mentioned in the introduction, we are investigating a broad range of
subjects and without some guidance it may not be easy for software developers to find
the appropriate tools or techniques.

References

1. S. Alpert, K. Brown, and B. Woolf. The Design Patterns Smalltalk Companion. Addison-
Wesley Professional, 1998.

2. ATX Technologies. Modernizing Software and Increasing Business Values. http://www.
atxtechnologies.co.uk/.

3. C. Bodei, P. Degano, H. Gao, and H. Nielson. Detecting Replay Attacks by Freshness An-
notations. In Proceedings of WITS’07, Informatics and Mathematical Modelling, Technical
University, April 2007. Dipartimento di Informatica.

4. M. Buchholtz and H. R. Nielson. LySaTool. http://www.imm.dtu.dk/English/
Research/Language-Based_Technology/Software/LySaTool/.



5. F. Buschmann, K. Henney, and D. C. Schmidt. Pattern Oriented Software Architecture Vol-
ume 5: On Patterns and Pattern Languages. Wiley, June 2007.

6. A. Clark, S. Gilmore, J. Hillston, and M. Tribastone. Formal Methods for Performance
Evaluation: the 7th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007, volume 4486, chapter Stochastic Process
Algebras, pages 132–179. Springer-Verlag, Bertinoro, Italy, May–June 2007.

7. T. Erl. Introducing soa design patterns. SOA World Magazine, 8(6), June 2008.
8. T. Erl. SOA Design Patterns. Prentice Hall/Pearson PTR, 2008.
9. H. Foster, S. Uchitel, J. Kramer, and J. Magee. WS-Engineer: A Tool for Model-Based Veri-

fication of Web Service Compositions and Choreography. In IEEE International Conference
on Software Engineering (ICSE 2006), Shanghai, China, May 2006., 2006.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Co., Inc., Boston, MA, USA, 1995.

11. J. Hillston. Fluid Flow Approximation of PEPA models. In Proc. 2nd Int. Conf. Quantitative
Evaluation of Systems (QEST 2005), IEEE, 2005.

12. A. Knapp. A formal approach to object-oriented software engineering. Softwaretechnik-
Trends, 21(3), 2001.

13. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services.
In R. D. Nicola, editor, Proc. of 16th European Symposium on Programming (ESOP’07),
volume 4421 of LNCS, pages 33–47. Springer, 2007.

14. P. Mayer, A. Schroeder, and N. Koch. A Model-Driven Approach to Service Orchestration.
In Proceedings of the IEEE International Conference on Services Computing (SCC 2008),
IEEE. IEEE, 2008.

15. G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern writing, 1996.
16. A. Mukhija, A. Dingwall-Smith, and D. Rosenblum. QoS-Aware Service Composition in

Dino. In Proceedings of the 5th European Conference on Web Services (ECOWS 2007),
Halle, Germany, Halle, Germany, 2007. IEEE Computer Society.

17. C. Nielsen, F. Nielson, and H. Nielson. CryptoKlaim. Work in progress., 2006.
18. OMG. Service Oriented Architecture Modelling Language Beta 1. http://www.soaml.

org.
19. A. Rotem-Gal-Oz. SOA Patterns. Manning, 2009. To appear.
20. S. Schivo. sCOWS Model Checker. http://sites.google.com/site/sschivo/

scows-model-checker.
21. M. H. ter Beek, F. Mazzanti, and S. Gnesi. Cmc-umc: a framework for the verification of

abstract service-oriented properties. In S. Y. Shin and S. Ossowski, editors, SAC, pages
2111–2117. ACM, 2009.

22. F. Tiezzi. Venus: A Verification ENvironment for UML models of Services. http://rap.
dsi.unifi.it/cows/.

23. M. Tribastone. The PEPA Plug-in Project. In Fourth International Conference on the Quan-
titative Evaluation of Systems, pages 53–54, UK, September 2007. IEEE Computer Society.

24. VIATRA2 Project. VIATRA2 (VIsual Automated model TRAnsformations). http:
//dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/
VIATRA2/index.html.

25. M. Wirsing, M. M. Hölzl, L. Acciai, F. Banti, A. Clark, A. Fantechi, S. Gilmore, S. Gnesi,
L. Gönczy, N. Koch, A. Lapadula, P. Mayer, F. Mazzanti, R. Pugliese, A. Schroeder, F. Tiezzi,
M. Tribastone, and D. Varró. SENSORIA Patterns: Augmenting Service Engineering with
Formal Analysis, Transformation and Dynamicity. In T. Margaria and B. Steffen, editors,
ISoLA, volume 17 of Communications in Computer and Information Science, pages 170–
190. Springer, 2008.

26. E. Yüksel, H. Nielson, C. Nielsen, and M. Örencik. A Secure Simplification of the PKMv2
Protocol in IEEE 802.16e-2005. FCS-ARSPA’07, 2007. Informal Proceedings.


