
Network of Excellence

Deliverable D2.4

Second Release of the Method
and Tool Evaluation

NESSoS - 256980 1

NESSoS - 256980 2

Project Number : 256980
Project Title : NESSoS
Deliverable Type : Report

Deliverable Number : D2.4
Title of Deliverable : Second Release of the Method and Tool Evaluation
Nature of Deliverable : R
Dissemination Level : Public
Internal Version Number : 3.0
Contractual Delivery Date : September 30 2013
Actual Delivery Date : October 31 2013
Contributing WPs : WP2
Editor(s) : Marianne Busch (LMU)

Nora Koch (LMU)
Author(s) : Alexander van den Berghe (KUL)

Marianne Busch (LMU)
Nora Koch (LMU)
Riccardo Scandariato (KUL)
Le Minh Sang Tran (UNITN)

Reviewer(s) : Benoit Baudry (INRIA)
Manuel Clavel (IMDEA)
Marina Egea (ATOS)
Marinella Petrocchi (CNR)

NESSoS - 256980 3

Abstract
This report describes the approach of the NESSoS project related to the evaluation and comparison
of security features, vulnerabilities, methods, notations and tools in the area of software engineering
for secure software and systems. The approach has been further developed since it was introduced
in deliverable D2.1. It is based on the CBK of WP5, which focuses on a knowledge base of existing
methods, notations and tools. Additionally, our approach, named SECEVAL, addresses the collection,
analysis and finer-grained representation of security-specific knowledge.
Getting an overview and collecting data of existing security engineering methods, notations and tools
is of major importance for security and software engineers, as it helps them to take decisions about
solutions for upcoming tasks. Security engineers usually rely on their experience and sometimes are
limited in their decisions to the development context and architecture. Nevertheless, more often than
not they would like to have access to compact information about security mechanisms in order to find
a more effective method, an appropriate notation, useful CASE tools for developing prototypes and
systems, and further tools needed in the Software Development Life Cycle (SDLC).
Thus, the objective is to further develop our strategy sketched in D2.1 for evaluating and comparing
methods, notations and tools; this time mainly focusing on evaluation. Our approach SECEVAL provides
an ontology, which comprises: (1) a security context model describing security features, methods,
notations and tools; (2) a data collection model, which records how data is collected when researchers
or practitioners search for an answer to a question they have; (3) a data analysis model specifying how
analysis, using previously collected data, is done.
SECEVAL was influenced by our prior works, an evaluation of approaches for secure software design
and an empirical validation of risk-based methods.
Thereby, we provide an evaluation approach targeting security engineers who may also have research
questions in mind which cannot be answered directly by the CBK and who want to use a sound, exten-
sible model to specify their research actions as well as research results. Consequently, our approach
is designed to ease the process of doing research in the area of security, no matter if the research
question aims at scientific or engineering issues.

Keyword List
Description of Security Mechanisms, Evaluation of Security Mechanisms, Security Methods, Security
Tools, Security Notations, Security Properties, Vulnerabilities, Threats

NESSoS - 256980 4

Document History

Version Type of Change Author(s)

0.1 Table of Contents Marianne Busch (LMU)
0.2 Questionnaire as appendix and first description of

model
Marianne Busch (LMU)

0.3 SecEval description of security context Marianne Busch (LMU)
0.4 SecEval description of data collection Marianne Busch (LMU)
0.5 SecEval description of data analysis Marianne Busch (LMU)
0.6 Chapters about guided interview Marianne Busch (LMU)
0.7 Abstract and conclusion Marianne Busch (LMU)
0.8 Introduction and spell-checking and improve-

ments of the models
Marianne Busch (LMU)

0.9 Improvements of the models Marianne Busch, Nora
Koch (LMU)

1.0 Proof reading, changes and comments Nora Koch (LMU)
1.1 Background chapter Marianne Busch (LMU)
1.2 Chapter about Empirical Validation of Security

Methods
Le Minh Sang Tran
(UNITN)

1.3 Literature review on secure software design Alexander van den
Berghe, Riccardo
Scandariato (KUL)

1.4 Chapter about case study Marianne Busch (LMU)
2.0 Improvements after internal reviews Marianne Busch and

Nora Koch(LMU)
3.0 Final version Marianne Busch and

Nora Koch(LMU)

NESSoS - 256980 5

NESSoS - 256980 6

Table of Contents
LIST OF FIGURES . 9

1 INTRODUCTION . 13

2 BACKGROUND . 15
2.1 General Evaluation Approaches. 15

2.2 Security-speci�c Evaluation Approaches . 16

3 EVALUATION APPROACH IN THE SECURITY DOMAIN: SECEVAL 17
3.1 Requirements . 17

3.2 Ontology . 18

3.2.1 Security Context. 20

3.2.2 Data Collection . 26

3.2.3 Data Analysis . 27

3.3 Gathering Expert Knowledge . 30

3.3.1 Guided Interview . 30

3.3.2 Results and Extensions . 31

4 CASE STUDY ON SECURITY TESTING OF WEB APPLICATIONS USING
SECEVAL . 35
4.1 Data Collection. 35

4.2 Data Analysis . 36

4.3 Security Context Model . 39

5 DOMAIN-SPECIFIC EVALUATION OF SECURITY MECHANISMS 41
5.1 Mapping Study on Secure Software Design. 41

5.1.1 Review method. 41

5.1.2 Discussion of the research questions . 43

5.1.3 Identi�ed Gaps . 44

5.1.4 Limitations of this study . 46

5.2 Empirical Validation of Risk-based Methods. 46

5.2.1 Research method . 48

5.2.2 Reports' Analysis . 52

5.2.3 Questionnaire Analysis. 56

5.2.4 Interviews' Analysis . 58

5.2.5 Discussion . 60

5.2.6 Threats to Validity. 60

6 CONCLUSION . 63

7 NESSOS THIRD-YEAR PUBLICATIONS. 65

BIBLIOGRAPHY . 67

A APPENDIX: QUESTIONNAIRE . 73
A.1 Security Engineering Method and Tool Evaluation. 73

A.2 Questions and Suggestions. 76

NESSoS - 256980 7

List of Acronyms

CASE Computer-Aided Software Engineering

CBK Common Body of Knowledge

CPU Central Processing Unit

GUI Graphical User Interface

KO Knowledge Object

NESSoS Network of Excellence on Engineering Secure Future Internet Software Services and Systems

OCL Object Constraint Language

OWASP Open Web Application Security Project

SDE Service Development Environment

SDLC Software Development Life Cycle

SLR Systematic Literature Review

SWRL Semantic Web Rule Language

UML Unified Modeling Language

URL Uniform Resource Locator

WP Work Package

XSS Cross-site scripting

NESSoS - 256980 8

List of Figures

Figure 1.1: Overview of SecEval's Evaluation Process . 14

Figure 3.1: Stakeholders and Use Cases . 17

Figure 3.2: Model Overview . 19

Figure 3.3: Security Context . 20

Figure 3.4: Security Context: Connections between Tools, Notations and Methods. 21

Figure 3.5: Security Context: Details of Methods. 23

Figure 3.6: Security Context: Details of Tools. 25

Figure 3.7: Data Collection . 27

Figure 3.8: SecEval's Evaluation Process. 28

Figure 3.9: Data Analysis . 29

Figure 3.10: Inclusion of basic risk evaluation approach . 32

Figure 3.11: Method extension using Moody's method evaluation approach . 32

Figure 4.1: Case Study: Data Collection . 36

Figure 4.2: Case Study: Data Analysis � Results . 37

Figure 4.3: Case Study: Data Analysis � Ratings . 38

Figure 4.4: Case Study: Data Analysis � Values . 38

Figure 4.5: Case Study: Instances of Context Model (excerpt) . 40

Figure 5.1: The security dimension classi�es each research work over what and how security properties
are supported. 43

Figure 5.2: The evaluation dimension classi�es each evaluation discussed in a research work over its
type, level of description, domain and provider. 44

Figure 5.3: Access control is supported by considerably more approaches than other security prop-
erties. 44

Figure 5.4: A majority of 12 approaches support only one security property. 46

Figure 5.5: Most approaches only support analysis for their security properties. 46

Figure 5.6: There is no signi�cant di�erence is amount of support between representation types.. 47

NESSoS - 256980 9

Figure 5.7: The large majority of evaluations found in literature are illustrative toy examples.. 47

Figure 5.8: Examples of Visual (CORAS) and Textual (SREP) Methods' Artefacts.. 49

Figure 5.9: Expert assessment. 53

Figure 5.10: Means of identi�ed threats in all groups (left) and good groups (right). 54

Figure 5.11: Means of identi�ed security requirements in all groups (left) and good groups (right). . . . 54

Figure 5.12: Scatter plot of identi�ed threats and security requirements for the two methods. 55

Figure 5.13: The distribution of identi�ed threats (left) and security requirements (right) within each
facet. 56

Figure A.1: Overview . 73

Figure A.2: Security Context . 74

Figure A.3: Security Context: Details of Tools . 75

Figure A.4: Security Context: Details of Methods . 75

NESSoS - 256980 10

Executive Summary
This report describes the approach of the NESSoS project related to the evaluation and comparison

of security features, vulnerabilities, methods, notations and tools in the area of software engineering
for secure software and systems. The approach has been further developed since it was introduced
in deliverable D2.1. It is based on the CBK of WP5, which focuses on a knowledge base of existing
methods, notations and tools, which are summarized by the term Knowledge Object (KO). Additionally,
our approach, named SECEVAL, addresses the collection, analysis and finer-grained representation of
security-specific knowledge.

Getting an overview and collecting data of existing security engineering methods, notations and tools is
of major importance for security and software engineers, as it helps them to take decisions about solutions
for upcoming tasks. Security engineers usually rely on their experience and sometimes are limited in their
decisions to the development context and architecture. Nevertheless, more often than not they would
like to have access to compact information about security mechanisms in order to find a more effective
method, an appropriate notation, useful CASE tools for developing prototypes and systems, and further
tools needed in the SDLC.

Thus, the objective is to further develop our strategy sketched in D2.1 for evaluating and comparing
methods, notations and tools; this time mainly focusing on evaluation. Our approach SECEVAL provides
an ontology, which comprises: (1) a security context model describing security features, methods, no-
tations and tools; (2) a data collection model, which records how data is collected when researchers
or practitioners do research to answer a question they have; (3) a data analysis model specifying how
analysis, using previously collected data, is done.

SECEVAL was influenced by our prior works, an evaluation of approaches for secure software design
and an empirical validation of risk-based methods.

Thereby, we provide an evaluation approach targeting security engineers who also have research
questions in mind which cannot be answered directly by the CBK and who want to use a sound, exten-
sible model to specify their research actions as well as research results. Consequently, our approach is
designed to ease the process of doing research in the area of security, no matter if the research question
aims at scientific or engineering issues.

With our evaluation approach, called SECEVAL, we do not claim to provide a one-fits-all ontology for
IT-security (which would horribly overload any model), but introduce an extensible basis. SECEVAL defines
an ontology which is represented using graphical models. It comprises:

• A security context model describing security properties, vulnerabilities and threats as well as meth-
ods, notations and tools.

• A data collection model, which records how data is collected when a researchers or practitioners do
research to answer a question.

• A data analysis model specifying, how analysis using previously collected data, is done.

To verify our approach, we used SECEVAL for a case study in the area of security testing of web
applications.

Prior to our work on SECEVAL, we performed two domain-specific evaluations of KOs: an evaluation
of approaches for secure software design and an empirical validation of risk-based methods. The former
is a study which provides an overview of the current state of the art regarding secure software design.
The latter study compares a textual method and a graphical method for identifying threats and possible
mitigations. Both works, beyond others, influenced the construction of SECEVAL.

After a short motivation, the deliverable starts describing the background of our evaluation approach,
especially the connection to the CBK in chapter 2. Chapter 3 presents our evaluation approach called
SECEVAL and a guided review with a questionnaire we used to improve it. Chapter 4 provides an example
of instantiation of our model in form of a case study about methods and tools from the area of security
testing. Chapter 5 introduces two examples of domain-specific KO evaluations. Finally, chapter 6 sum-
marizes and sketches future steps and chapter 7 lists the NESSoS publications that are relevant for this
work.

Note that the Service Development Environment (SDE) and its 20 integrated tools are not discussed in
this deliverable. For further information about the SDE, please refer to deliverables D1.4 [2] and D2.3 [11].

NESSoS - 256980 11

NESSoS - 256980 12

1 Introduction
Software and security engineers constantly make decisions about which technology should be used in

the different phases of the Software Development Life Cycle (SDLC). Therefore, a cost-benefit analysis
and a subsequent selection of appropriate Knowledge Objects (KOs) (i.e., methods, tools and notations)
for a specific task, play an important role. More often than not, there is no time to investigate on alterna-
tives to well-known ones used so far. Most of the questions which arise are not entirely new, but useful
scraps of knowledge are distributed in papers, books or the web, or just exist in the head of colleagues
working at another department. What makes it even worse is that engineers often have to start from
the very beginning by defining the process of evaluating KOs as well as the structure of the results from
scratch, i.e. without having a template for their domain.

To ease the tasks of recording own results and of getting an overview of existing KOs, we introduced
an ontology in deliverable D2.1 that works hand in hand with the Common Body of Knowledge (CBK) [13]
which was implemented as a semantic Wiki within the scope of WP5. In the conclusion of deliverable
D2.1 we stated that “it became apparent that comparisons can be drawn best for enumeration types” and
that we wanted to further develop the approach. As time passed, we gained further experience in working
with the CBK which raised three questions:

• How could our ontology be improved, so that security-related features become first-class citizens?

• How can we use our ontology for finding answers to research questions beyond comparing methods,
notations and tools?

• How is the process of data collection and data analysis specified, to make sure that emerging
research results are comprehensible and valid?

Evaluation in the area of cybersecurity does mean for us, e.g., to find out which authentication-related
threats can or cannot be mitigated by a method, for which tool-support is implemented. Furthermore,
it is advantageous to know which tools work together and can be used in a row and which notations
are supported as tool inputs. Up to now, these kinds of questions require researchers to document
their approaches and results in a self-made way. Consequently, other researchers, who want to build on
those results, have first to understand many different schemas documenting research processes and their
results. This is not only annoying and time-consuming, but also error-prone, as misunderstandings easily
occur.

With our evaluation approach, called SECEVAL, we do not claim to provide a one-fits-all ontology for
IT-security (which would horribly overload any model), but introduce an extensible basis. SECEVAL defines
an ontology which is represented using graphical models. It comprises:

• A security context model describing security properties, vulnerabilities and threats as well as meth-
ods, notations and tools.

• A data collection model, which records how data is collected when researchers or practitioners do
research to answer a question.

• A data analysis model specifying, how analysis using previously collected data, is done.

A simplified example of the process of using SECEVAL for evaluation is depicted in Figure 1.1. Re-
search questions initiate the process of data collection, where sources (as papers, websites, . . .) are
gathered. These sources are then analyzed, which means to extract information, possibly process it and
record it using SECEVAL’s security context model.

To verify our approach, we used SECEVAL for a case study in the area of security testing of web
applications.

Prior to our work on SECEVAL, we performed two domain-specific evaluations of Knowledge Objects
(KOs): an evaluation of approaches for secure software design and an empirical validation of risk-based
methods. The former is a study which provides an overview of the current state of the art regarding secure
software design. The latter study compares a textual method and a graphical method for identifying threats
and possible mitigations. Both works, beyond others, influenced the construction of SECEVAL.

NESSoS - 256980 13

Figure 1.1: Overview of SECEVAL’s Evaluation Process

Background/Foreground. The background for this deliverable was described in deliverable D2.1 and
D5.4. More about the background of this work can be found in chapter 2.

Relations to other work packages. As written above, we introduced an ontology in deliverable D2.1
which works hand in hand with the CBK. The CBK was developed in WP5 and contains information about
163 security engineering methods, notations and tools, used and developed within the NESSoS project
as well as from outside the project.

Structure of the deliverable. Chapter 2 describes the background of our evaluation approach, espe-
cially the connection to the CBK. Chapter 3 presents our evaluation approach called SECEVAL and a
guided review with a questionnaire we used to improve it. Chapter 4 provides an example of instantiation
of our model in form of a case study about methods and tools from the area of security testing. Chapter 5
introduces two examples of domain-specific KO evaluations. Finally, chapter 6 summarizes and sketches
future steps and chapter 7 lists the NESSoS publications that are relevant for this work.

NESSoS - 256980 14

2 Background
In this chapter, we introduce related work in the area of evaluation of methods, notations, tools, vulner-

abilities, threats or security features. Evaluation approaches are often tailored to the needs of a specific
area. We start by introducing general approaches and continue with those which are security-specific.

2.1 General Evaluation Approaches

Kitchenham et al. [39] specify so called “Systematic Literature Reviews” (SLRs) in software engineering.
The aim is to answer research questions by systematically searching and extracting knowledge of existing
literature. The systematic literature review is executed in three main steps: first, the review is planned, then
it is conducted and finally results are reported (this process is depicted in deliverable D5.2 [5, Fig. 3.2]).
Our approach, SECEVAL, is based on their work. We focus on the use of arbitrary resources, as source
code or experiments which are carried out to answer a research question. Furthermore, we specify a
basic graphical structure for results (context model) which is security-specific. However, SECEVAL can
also be used for methods, notations and tools which are not especially related to security features or it
can be extended to also cover other areas of interest. In contrast to Kitchenham’s approach, the process
we define is generic and thus allows us to refine the way of searching while being in the phase of collecting
data. Refining the search means to collect data during several phases, e.g., to perform a breadth-search
before a concrete plan for a subsequent depth-search is made.

SIQinU (Strategy for understanding and Improving Quality in Use) [4] is a framework for evaluating
the quality of a product version which can then be improved. It uses the conceptual framework C-INCAMI
(Contextual-Information Need, Concept model, Attribute, Metric and Indicator), which specifies concepts
and relationships for measurement and evaluation. SIQinU defines a strategy using UML activity diagrams
whereas C-INCAMI is specified by a UML class diagram. C-INCAMI consists of six modules which are
modeled as UML packages:

• measurement and evaluation project definition

• nonfunctional requirements specification

• context specification

• measurement design and implementation

• evaluation design and implementation

• analysis and recommendation specification

For example, in the package “evaluation. . . ” they specify a decision criterion which defines thresholds
which are used to determine the need for action (i.e., improvement of quality in order to fulfill require-
ments). Although C-INCAMI is used for the domain of quality evaluation and not for the domain of security
Knowledge Objects (KOs), we recognized several properties we wanted to take care of in our own ap-
proach. UML class diagrams seem to be a sound way to represent concepts and relationships between
them. Separation of concerns can easily be implemented by using several packages; however the overall
size of the model should not get too big. We wondered why we found no paper that is depicting all six
C-INCAMI modules. This reduces the advantage of graphical models, which usually is to quickly provide
an overview. Besides, names for classes and their attributes have to be chosen with caution in order to
avoid permanent lookups in the specification.

Moody [51] proposes an evaluation approach which is based on experiments. Practitioners use meth-
ods and afterwards answer questions about perceived ease of use, perceived usefulness and intention to
use. Further details and how Moody’s approach can be integrated in SECEVAL are discussed in subsec-
tion 3.3.2.

The CBK (Common Body of Knowledge) [6] defines an ontology for software engineers to describe
Knowledge Objects (KOs), which are methods, techniques, notations, tools or standards. Techniques
are methods which do not specify activities for applying the method. Note that those activities do not
necessarily have to be supported by a tool. We use the CBK as a starting point for SECEVAL’s ontology,

NESSoS - 256980 15

although in our context model we do not focus on standards and we aggregate the concepts of technique
and method, as an instance model immediately shows whether actions (in our case called Steps) are
defined.

The CBK is implemented as a semantic Wiki [13] and serves as a knowledge base containing all
relevant information about existing KOs. At the moment it is primarily used and improved by security- and
software engineers who are related to NESSoS. Further information about the improvement process of
the CBK can be found in D5.3 [7, 6]. Unlike the CBK, SECEVAL is not implemented yet.

In deliverable D2.1 [10] we defined relations between KOs and exemplarily compared methods, nota-
tions and tools in a tabular way. SECEVAL is built on our experiences with the CBK and deliverable D2.1,
which lead to the three questions we asked in the previous chapter.

2.2 Security-specific Evaluation Approaches

We also have a look at existing evaluation approaches which are security-specific. To the best of our
knowledge, no framework exists which is as comprehensive as SECEVAL.

Frameworks which are more specific often consider concrete systems for their evaluation. An example
is the OWASP Risk Rating Methodology [22], where the risk for a concrete application or system is
estimated. As usual, estimation is based on factors for estimating likelihood and impact. Factors are
made up by questions with predefined answers, which are rated from 0 to 9. The overall severity of the
risk is then calculated by multiplying ratings of likelihood and impact.

For SECEVAL, we added vulnerability-dependent features of the OWASP model, as e.g., the difficulty
of detecting or exploiting a vulnerability. Features that are related to a concrete system and the rating of a
possible attack are introduced as an extension of SECEVAL in subsection 3.3.2.

The i* [66] metamodel is the basis of a vulnerability-centric requirements engineering framework in-
troduced in [20]. The extended, vulnerability-centric i* metamodel aims at analyzing security attacks,
countermeasures, and requirements based on vulnerabilities. The metamodel is represented using UML
class models. Instances of this metamodel use different i* notations which are not based on UML. Main
elements of the metamodel are: vulnerability, attack (which can exploit a vulnerability; executed by an
actor), effect and security impact (e.g., on a resource).

Another approach which is focused on vulnerabilities is described by Wang et al. [70] They come up
with a concept model which is less detailed than the i* metamodel. Their aim is not to describe reality by
using graphical models, but to create a knowledge base which can then be queried using a language for
the semantic web, called SWRL.

Moyano et al. [54] provide a Conceptual Framework for Trust Models which is also represented
using UML. As trust is an abstract concept, which emerges between communication partners, we do not
consider it in SECEVAL. However, strategies how to build a network of trust can be modeled in SECEVAL
using the concept of a “method”.

Generally, we prefer to represent evaluation structures in a graphical way, as it allows to quickly get
an overview of what is important for an evaluation. Additionally, a description should be provided so that
details can be looked up. For example, the C-INCAMI model uses UML to specify concepts as metrics,
indicators or decision criteria.

When it comes to recording evaluation results, we favor approaches that provide a basic structure, as
e.g., the CBK does. We do not think that this structure has to be graphical at any cost, as text- or table-
based versions also have their advantages, especially for huge amount of data. However, we provide a
graphical structure, because relation between several elements can be recognized at a first glance. In
case graphical instance models get bigger during the evaluation process, we suggest to use them only
for the main results in order to give an overview. More detailed information can then be provided using
tables or texts which are linked from the model. The best reusability of data seems to be given when the
structure is implemented in a semantic Wiki, as shown by the CBK. This allows that researchers can add
their knowledge in a more or less structured way.

NESSoS - 256980 16

3 Evaluation Approach in the Security Domain:
SECEVAL

Our aim is to provide an approach for the evaluation of methods, notations and tools for the engineering
of secure software systems. Evaluation should also be possible for security properties, vulnerabilities and
threats. In this chapter we first introduce our conceptual evaluation framework SECEVAL [12] which can
be used to collect and describe security-related data and metrics to analyze it. Second, we describe how
we gathered expert knowledge to verify the soundness of our approach. For the graphical representation
of concepts and relationships we selected the UML notation, as we think it fits our needs best.

3.1 Requirements

We start eliciting the requirements of such a framework, i.e. which stakeholders are involved, which con-
cepts play a role in secure software and evaluation of methods, tools and notations, and how those
concepts are related. Therefore, the first step is to name the common stakeholders for secure software:
security engineers (i.e. security designers and developers), normal users of the software and attackers.
In some cases, users can attack software without knowing it, e.g., when they have a virus installed. For
us, those users are also classified as attackers, as well as developers which are e.g. trying to smug-
gle malicious code in the software. Figure 3.1 depicts stakeholders and use cases in a UML Use Case
diagram.

Figure 3.1: Stakeholders and Use Cases

NESSoS - 256980 17

The Evaluation package at the top contains all use cases related to evaluation, whereas SDLC at the
bottom of the diagram refers to security-related tasks within the Software Development Life Cycle (SDLC).
From time to time, all tasks within the SDLC require evaluating possibilities, as for example, which tool
should be used for gathering security requirements or for designing secure web applications.

The «include» dependencies show the order of use cases in the SDLC: implementing secure software
requires having a design, and having a design implies that requirements were elicitated beforehand. Both,
the attacker and the security engineer can identify vulnerabilities, whereas the former usually attacks it
and the latter tries to patch it, which is modeled using an «extend» dependency. Those patches can then
be installed by users (which also might happen using an automatic update function). While designing
software, security requirements need to be identified by the designer or developer.

For security experts it is helpful to know common security methods and tools that support this method.
An umbrella term for methods, tools or notations and linked security properties, vulnerabilities and threats
is Knowledge Object (KO). Gathering knowledge usually starts with selecting an evaluation framework,
or by (re)inventing one. The framework should record the strategy for collecting and analyzing data in a
structured way and support the strategy with suitable means.

Collecting data means to access data, e.g., in papers and to record data, e.g., by conducting empiric
studies or executing benchmarks. Analyzing data includes comparing and transforming data as well as
the evaluation of risks. An example for a small evaluation is the question during the implementation which
library for authentication should be used. A more elaborated evaluation could be the evaluation of risks
for a concrete software system which is important in all SDLC phases.

3.2 Ontology

We first give an overview of SECEVAL, before going into detail about context model, data collection and
data analysis model in the following subsections.

SECEVAL provides a structure for data as well as a structure to perform a data analysis on the collected
data. The aim of analyzing data is to convert facts (e.g., tool A can do this) into context-related knowledge
(e.g., tools A and B support the same method, however tool B fulfills our requirements better than A
does). Security engineers or attackers thus can choose our evaluation framework SECEVAL in order to
evaluate KOs.

We depict the concepts and their relationships as a UML model, so that we can instantiate concrete
KOs.The use cases from our requirements analysis were a starting point to identify relevant concepts
related to security for using and evaluating methods, notations and tools in the software engineering
process. We grouped these concepts in three packages: Security Context, Data Collection and Data
Analysis. Figure 3.2 shows our ontology represented as a UML class diagram.

The Security Context package is used to specify the object-oriented data structure we use for describ-
ing methods and related security features, notations and tools. Within the Security Context package we
represent a security feature as a class element. The classes Method, Notation and Tool inherit general
attributes, as e.g., a problem description and whether or not it is based on standards, from the abstract
class Mechanism. Additionally, a tool can support methods and a notation can be used for several meth-
ods. In this document we also use the upper-case term “Mechanism” when referring to a method, a
notation or a tool.

Having a well-defined data structure which is extensible is one thing, collecting concrete data the other.
The package Data Collection contains the search process as well as research questions which should
be investigated.

Research questions define what is inside and outside the scope of research. Before specifying the
research questions, a basic understanding of the context is needed, therefore a dependency, stereotyped
«use», points from ResearchQuestion to the package SecurityContext. An example question would be “I
want to plan how authorization is implemented in my web application for online banking. Which methods
exist to support me in this task and which tools can support a secure implementation of authorization
issues?”. Queries can be defined accordingly. They are used to find matching sources containing data
which might help to answer the research questions. Research questions are questions that ask for results
from research and define as precisely as possible what should be in the scope (and what not). Please
note that for us the term “research question” does not have to refer to scientific research questions.

NESSoS - 256980 18

Figure 3.2: Model Overview

After collecting data, the source data may consist of, e.g., some papers, several websites or code.
The process of extracting information from the data is called Data Analysis. An analysis strategy defines
criteria which are important for answering the research question, like costs or preconditions. These criteria
are used to classify information which is extracted from the sources. Information can also be processed,
for example one could calculate annual costs for tools. The instructions used for those calculations are
referred to as AnalysisAlgorithm in Figure 3.2. Each piece of information (processed or not) can relate
to classes of the security context model, e.g., a tool can be described using information from the website
of the tool. Although, information does not have to be related to a context model’s class, as we might want
to express aggregated values as for example the average costs of testing tools on the market.

In practice this implicates that the basic ingredients for an evaluation are:

• a research question to answer,

• search terms as a basis for searching resources, as online data bases or terms for asking experts,

• promising sources after finishing a search process,

• an analysis strategy that describe which sorts of information should be extracted and how it can be
grouped by categories and eventually how they should be processed by an analysis algorithm,

• a set of information which can describe properties of methods, notations and tools (cf. security
context) with a criterion attached to each information which provides, e.g., a metric (which could
read “all costs should be given in Euros” or “percentages should be represented by −−, −, 0, + and
++” using a step size of 20%),

• data which is not assigned to Mechanism(s) or should be categorized additionally can also be ex-
pressed using the modeling elements Information and Criteria.

In the following, going into more detail describing the three aspects of our conceptual ontology: security
context, data collection and data analysis.

NESSoS - 256980 19

3.2.1 Security Context
Figure 3.3 shows the data structure of the Security Context package. The aim of this package is to provide
a sound structure to be able to classify security-related methods, notations and tools together with security
properties, vulnerabilities and threats. We introduce an abstract class Mechanism from which the classes
Method, Notation and Tool inherit the common attributes such as goals, costs, basedOnStandards,
etc. Once Mechanisms are described using this description model, it should be easy to get an overview
of existing security-related methods, tools and notations for a certain area. Furthermore, the package
should serve as a flexible basis and starting point for an evaluation, which means that it can be adopted
to fit the needs of the researcher to examine a concrete research question.

In Figure 3.3, for convenience enumerations’ texts are grey and the background of classes which can
directly be instantiated is colored. All attributes and roles are typed; however the types are not shown
in the figures due to brevity. Many types are obvious to be boolean (can.., has.., is..) as binary answers
(true, false) can quickly give an overview of the main characteristics of a Mechanism. For a concrete
implementation we suggest to use the values true, false and undefined to make clear whether or not an
attribute is set. Generally, enumerations should be extensible when it comes to an implementation of our
model. The CBK implements this behavior by providing a suggestion field for additional enumeration item.
If the same enumeration item is suggested many times, it will become part of the default enumeration.
The full MagicDraw 17.01 model can be downloaded from the Web.2

Explanations of the security context packages’ elements are given one by one in the following.

Figure 3.3: Security Context

As mentioned above, a MECHANISM is an abstract notation for a method, notation or tool. It can be
1MagicDraw. http://magicdraw.com/
2SecEval Project. http://www.pst.ifi.lmu.de/~busch/SecEval/SecEval.mdzip

NESSoS - 256980 20

http://magicdraw.com/
http://www.pst.ifi.lmu.de/~busch/SecEval/SecEval.mdzip

described by a problem statement, by the goals it strives for, by its costs and by the consequences it
implies. Mechanisms can be based on standards or be standardized themselves. They can have arbitrary
many creators, as companies, inventors or developers. Before applying a Mechanism, the preconditions
that are necessary to use it have to be fulfilled. Furthermore, an estimation regarding technical maturity
and adoption in practice should be given. We also like to generally express whether or not the mechanism
has a special focus on security, because in practice many mechanisms can also be used for security pur-
poses, but do not directly focus them. Several levels of usability can be stated according to the experience
a user needs to use a mechanism, e.g., a certain mechanism should best be used by trained users and
experts. The kind of user can be specified by selecting roles which are proposed to use the Mechanism.

A METHOD has some general attributes, which are used to describe the method at a high level of
abstraction, as input, output and if it is model-driven. For more extensive methods, each step of the
method can also be described in detail, if necessary. A method or step can be supported by notations or
tools.

An advantage of our model is that it can easily be extended. If someone needs a more detailed
approach, further elements can be added. For example the steps to be taken while using certain method
can be described by more attributes, like a step number, or a boolean which indicates if the step can be
repeated iteratively, etc. Further details about methods are provided in the description on page 22.

For a NOTATION, we consider characteristics such as whether the notation is graphical, textual or based
on a tabular representation. We also added a level of formality, which ranges from informal to formal.

For us, the description of a TOOL comprises the information of languages it is written in, of operating
systems it supports, of frameworks it uses and of technical requirements, which have to be fulfilled in
order to use it. The tool (or its parts) are released under certain licenses. Additionally, the needed time
for installation and configuration can be provided. Booleans are used to describe if the tool can be used
interactively or autonomously, if it has start parameters, a GUI or a text-based user interface. Further
details about tools are provided in the description on page 25.

As seen before, a tool supports a certain method. However, we have not yet defined the quality of this
support. Does the tool fully support the method? Does it partially support the method and which parts are
not supported?

Figure 3.4: Security Context: Connections between Tools, Notations and Methods

We add this information using the association class ToolSupportedMethod, as depicted in Figure 3.4
with a dotted line. The association class itself is inherited from the class Method, thus can redefine
attributes. For instance, a design tool can partly support a model-driven method (e.g., by facilitating the
modeling process), although it cannot generate artifacts. In this case, DesignM.canGenerateArtifacts
would be set to false (cf. p. 22).

A method can extends on other methods, which means it might also change them. In case the role
extendedMethods should be further specified, we recommend adding an association class which inherits
from the class Method (similar to the association between method and tool). In this way, it can be exactly
described if and how the original methods are modified. It is also possible that other methods are used
without changes (role usesMethods).

NESSoS - 256980 21

A tool can be based on other tools, which is especially the case when libraries are used or when
plugins are written. Notations can also be based on other notations, for example many context-specific
extensions for UML exist.

In addition, we adopted the abstract KNOWLEDGEOBJECT (KO) which was used in previous work
to record most information of elements which are described. For SECEVAL, we applied separation of
concerns so that only very general descriptions remain as attributes in a KO, which can be applied to all
elements. Therefore, the class KnowledgeObject has names, tags and related sources, which could be
any kinds of sources, as publications or URLs. A description and examples allow to quickly learn about a
specific KO.

Security properties, vulnerabilities and mechanisms are kinds of KOs. The relationship “X is a kind of
KnowledgeObject” is modeled by a UML inheritance.

We consider a SECURITY PROPERTY to represent basic concepts of security. A security property can
be, e.g., authorization, authentication, integrity, etc. The attribute SecurityGoal denotes a string and
describes the goal of the property, for instance authentication “is the act of confirming the truth of an
attribute of a datum or entity”3. Security properties can also be based on other security properties, as
authorization is based on authentication.

A VULNERABILITY is “a weakness which allows an attacker to reduce a system’s information assur-
ance”4. Thus, it endangers security properties. Examples are XSS, SQL Injection, Buffer Overflows, etc.
Methods can detect such vulnerabilities or shield them from being exploited by a threat. Every vulner-
ability is located at least in one location (which is modeled as a UML enumeration). Furthermore, we
include the categorization scheme from OWASP TOP 10 [23] (which is adapted from the OWASP Risk
Rating Methodology [22]) using exploitability, prevalence, detectability and impact levels. The difficulty
theoretical means that it is practically impossible to detect or exploit a vulnerability.

A THREAT is a “possible danger”5 that may exploit vulnerabilities. We treat a threat as a kind of method
which is vicious. At least one vulnerability has to be affected, otherwise a threat is not malicious (and
the other way around), which is denoted by the multiplicity [1..*]. Additionally, threats can be mitigated by
other methods.

Methods in the Context of the SDLC

In Figure 3.6 resp. 3.5, the classes Tool and Method are refined according to their usage in the SDLC,
because the attributes which are used to describe a method or tool are related to the SDLC phases it
covers. The phases of the SDLC are those we have chosen to classify tools and methods in D2.1 [10]: re-
quirements, design, implementation, testing, assurance, risk & cost, service composition and deployment.
We added the phase “runtime” as a category to distinguish methods and tools that operate at the runtime
of a system without being plain testing tools. Examples are attack tools. Notations were not associated
with phases of the SDLC as they are located in the same phase than the method they support and as far
as we know, no phase-related attributes are needed to describe features of notations.

Figure 3.5 again depicts our class Method. The abstract class MAreasOfDev is a wildcard for detailed
information about the method. As mentioned above, we group attributes according to the phases of the
SDLC. This means that a method can support several development phases. For example a method can
be used to design a secure application and the method also describes how to build an implementation
accordingly. In this case, the attributes of the classes DesignM and ImplementationM would be used to
describe the method.

The meaning of the attributes is described in the following:

RequirementsM.comprisesElicitation is set to true if a method is used for requirement elicitation.

RequirementsM.comprisesAnalysis is set to true if a method comprises the analysis of requirements.

RequirementsM.comprisesSpecification is set to true if a requirements specification is part of a method.

RequirementsM.comprisesManagement is set to true if the management of requirements is defined by a method.

RequirementsM.levelOfDetail describes how detailed the method’s requirements features are. As this is a subjec-
tive value, we recommend adding a short explanation.

3Wikipedia – Authentication. https://en.wikipedia.org/wiki/Authentication
4Wikipedia – Vulnerability. https://en.wikipedia.org/wiki/Vulnerability_(computing)
5Wikipedia – Threat. https://en.wikipedia.org/wiki/Threat_(computer)

NESSoS - 256980 22

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Threat_(computer)

Figure 3.5: Security Context: Details of Methods

DesignM.isUsedForCommunication is set to true if a design method is also used for communication purposes, as
e.g., UML.

DesignM.canGenerateArtifacts is set to true if the method specifies the generation of artifacts (code, configuration
files, . . .) out of the design of an application.

ImplementationM.supportedLanguageTypes the types of languages which are supported by a method. An exam-
ple would be: “functional programming languages” are supported by a method which auto-completes fragments
of code.

ImplementationM.inspectsArtifacts is true if the method relies on read access to artifacts, as e.g., program code.

ImplementationM.writesArtifacts is true if the method writes artifacts, as in the above-mentioned example of code
completion.

ImplementationM.changesArtifacts is true if the methods changes existing artifacts.

ImplementationM.completesArtifacts is true if the method completes already existing artifacts. An example is the
auto completion used in development environments.

ImplementationM.givesSecurityAdvice is true if security-related hints are provided during the implementation.

TestingM.isTestingWebApp is true if a method describes how to test web applications.

TestingM.isTestingNetwork (same with network-related testing)

TestingM.isTestingSystem (same with system-related testing; the system refers to a soft- or hardware system)

TestingM.isWhiteboxTest is true if the method is based on white-box tests, which means that the tester has full
access to all internal details of a system.

TestingM.isBlackboxTest is true if the method is based on black-box tests, which means that code and other internal
details cannot be accessed by a tester.

TestingM.isGreyboxTest is true if the method uses tests that are a mixture of white-box and black-box tests, which
means that the tester can access some internal details of the system, but not all.

DeploymentM.versionTrackingApproach describes the approach which is used for tracking available versions of a
piece of software.

DeploymentM.adaptionProcessToNewEnv describes the process which is specified for adapting software to a
changed environment, e.g., if hardware is changed.

NESSoS - 256980 23

DeploymentM.updateProcess describes the process for updating software.

AssuranceM.usedFormalisms lists the formal methods that are used by an assurance-related method. This is a
shortcut in case we do not want to model those formalisms as a method on its own.

AssuranceM.assuranceCriteria gives the criteria the assurance process relies on.

AssuranceM.canProvideCounterExample. In case formal methods are applied, it often makes sense to provide a
counter example. The attribute is true in case the method can give at least one.

AssuranceM.canProvideProof is true if a formal proof for a certain criterion can be given.

ProtocolVerification.usedAdversaryModels. Protocol verification is an example how to go into more detail without
changing the core of SECEVAL: e.g., the used adversary models can be specified with this attribute.

ProtocolVerification.usedEquation describes the equation which is used.

ProtocolVerification.usesFixedProperties is true if fixed properties are used for the protocol verification.

RiskAndCostM.usedIndicators names the indicators used to analyze security-related risks and costs.

RiskAndCostM.supportsRiskIdentification is true if the method gives advice how to identify risks.

RiskAndCostM.supportsRiskAssessment is true if the method supports risk assessment approaches.

RuntimeM.worksWithLanguages lists programming languages on which the method can be applied. Usually, meth-
ods which define techniques related to the runtime behavior of the targeted system are rather language-specific.

RuntimeM.canDamageSystem is true if the method describes how to damage a running system. This applies
especially for attack-related methods.

RuntimeM.canInsertData is true if the method allows data to be inserted into the running system so that the system
uses it.

RuntimeM.canAlterData is true if the method comprises changing data.

RuntimeM.canStealData is true if the method defines how to steal data.

RuntimeM.canInspectData is true if the method assumes that inspecting data is possible. This does not include
that data can also be transferred outside of the system, which would be stealing.

RuntimeM.canInspectFlow is true if the flow of data can be inspected.

RuntimeM.canGenerateFlow is true if a data flow chart can be generated.

RuntimeM.canBlockFunctionCalls is true if the method specifies how to block function calls.

ServiceCompositionM.supporedTypesOfServices names services which are eligible to be composed.

ServiceCompositionM.securesServiceComposition is true if the method describes how to secure a service com-
position.

ServiceCompositionM.knowsAvailableServices is true if the concept is to know available services.

ServiceCompositionM.isCentralized is true if the method anticipates a centralized instance for being applied.

Please notice that the value “true” for attributes, as e.g., “RiskAndCostM.supportsRiskIdentification”
can also mean that the risk identification strategy is “foreign”; i.e., the method does not support it itself, but
the method comprises another method which supports risk identification. (Reminder: comprising another
method is modeled using the role Method.reusedMethods or Method.extendedMethods.)

When implementing the security context model in a similar way than the CBK, it might be helpful to add
axioms to our ontology. Axioms state assertions which have to be true. In our case, we could think about
rules to describe dependencies between attributes, as e.g., that isWhiteboxTest and isGreyboxTest

cannot be true at the same time, or that extendedMethods should not point to the same method. In
UML those axioms are usually expressed using the Object Constraint Language (OCL) [56] statements.
However, we want to keep our model as simple as possible, especially because OCL statements quickly
get cryptic and overload the model.

NESSoS - 256980 24

Figure 3.6: Security Context: Details of Tools

Tools in the Context of the SDLC

Figure 3.6 shows the class Tool and gives additional information about features of a tool. Usually, a tool
can execute more than one functionality; very often they are grouped by purpose. For functionalities input
and output can be specified and they can be used to build tool chains, using the output from one tool as
input for another tool, as implemented in a tool workbench, namely the SDE. For further information about
the SDE see deliverable D2.3 [11].

Similar to methods, tools and their functionalities can be described according to the areas of develop-
ment they cover:

RequirementsT.supportsHandwrittenSketches is true if handwritten sketches can be managed with the tool.

DesignT.generatedArtifacts lists artifacts (like code) that can be generated by the tool.

ImplementationT.worksWithLanguages names languages which are supported by the tool. Examples are tools
which perform auto-completion on the code. The related method might be called “auto-completion on imperative
languages” and a tool could support Java.

TestingT.targetLanguages lists languages the target system can be written in so that the testing-related tool can be
applied.

TestingT.targetArchitectures describes how the system architecture has to look like in order to test it with the tool.

TestingT.targetFrameworks names target frameworks that are supported by the tool.

TestingT.usedExploitDatabases refers to databases containing up-to-date exploits.

DeploymentT.canInstallSoftware is true if tool is able to install software.

DeploymentT.canConfigureSoftware is true if tool is able to configure software.

DeploymentT.canAdaptSoftwareToChangedEnv is true if the tool can adapt software to a changed environment,
e.g., a changed hardware environment or a changed server configuration.

DeploymentT.canUpdateSoftware is true if the tool can update software.

DeploymentT.canUninstallSoftware is true if the tool can uninstall software.

DeploymentT.hasVersionManagement is true if the tool can track versions of software, which means it manages
which versions of different software can be used together.

DeploymentT.canCheckSecureInstallation is true if the tool can make sure that software was installed correctly so
that security requirements are fulfilled.

NESSoS - 256980 25

DeploymentT.canCheckCorrectInstallation is true if the tool can make sure that software was installed correctly.

DeploymentT.isConnectedToConfigurationMngt is true if the tool is connected to or implements a configuration
management system.

AssuranceT.canExportLaTeXproof is true if a proof is part of the assurance-related method and it can be exported
as LaTeX formulae.

AssuranceT.canVisualizeAttacks is true if attacks can be visualized using graphical models.

RiskAndCostT.usedManagementInterfaces lists management interfaces used by the tool, e.g., an interface to an
Enterprise Resource Planning (ERP) system.

RuntimeT.isInstalledOnTargetSystem is true if the tool is installed on the same system where the target software
is installed which is accessed at runtime.

RuntimeT.canCoverOwnTraces is true if the tool is able to cover the own traces, as e.g., logfile entries or additional
files that were downloaded. This usually applies to tools that are used for attacks.

RuntimeT.usedExploitDatabases lists databases containing known exploits.

ServiceCompositionT.supportsOfflineServices is true if the tool supports services which run offline, i.e., are not
running at a server.

ServiceCompositionT.supportsOnlineServices is true if the tool supports services which run online, i.e., are run-
ning at a server (which is usually not the host where the service composition tool is installed).

As shown, the security context model can easily be extended or even mapped to another domain by
adding and removing elements. In fact, even non-security tools, as e.g., Eclipse6 can be described without
changing the model. In this case, neither SecurityProperty nor Vulnerability is instantiated (which is
possible due to the multiplicity “∗”) and the role typeOfSecurityMethod should be set to none.

Two extensions of the context model, one for concrete risk evaluation and one for method evaluation
including testing participant’s feedback are detailed in subsection 3.3.2.

3.2.2 Data Collection

High-quality data is the basis for an evaluation, as the best analysis strategy cannot make up for low-
quality data. Our aim is to create a schema which describes properties that have to be defined before
starting collecting data. This is particularly needed, if the data collection has to be systematic as usual for
scientific approaches (cf. use cases SpecifyDataCollection and CollectData section 3.2). Therefore,
we base our approach on Kitchenham’s systematic literature review [39]. However, we do not restrict
our evaluation approach to reviewing literature, as we also include information about tools which cannot
always be found in papers, but on websites and information which is extracted from experience, e.g., data
gathered by benchmarks.

In order to collect data, it is common to define a search process (c.f. Figure 3.7) which specifies
several steps called process phases. Each phase may follow another approach, e.g., the search can
be automated or not, or it can be a depth-first or a breadth-first search. Depth-first means, that the aim
of a search is to extract a lot of detail information about a relatively small topic, whereas a breadth-first
search is good to get an overview of a broader topic. We noticed that Kitchenham et al. do not use more
than one search phase. This might be the case because they prefer to not be biased by findings from a
previous phase. The advantage of more than one search phase is that resources can be added which
were considered interesting in a previous phase, such as further contributions from conferences or from
authors which seemed promising.

Similar to Kitchenham’s literature review, research questions are used to define the corner stones and
the goals of the search. Queries can be derived from the research questions. They are then used and
refined in the phases of the search process. As different search engines support different types of queries,
concrete queries are specific for each resource, e.g., Google Scholar7. Thus, concrete queries document
what was searched for in a certain resource so that results remain as repeatable and comprehensible
as possible. At the same time, concrete queries belong to one query which generally defines what was
searched for. Search expressions can contain keywords as well as special characters like “-” to exclude

6Eclipse. http://eclipse.org/
7Google Scholar. http://scholar.google.com/

NESSoS - 256980 26

http://eclipse.org/
http://scholar.google.com/

Figure 3.7: Data Collection

a keyword, “˜” to search for similar keywords or quotes or group words that have to appear exactly in the
given order. Queries can also refer to questions which are used as a basis for experiments (cf. chapter 4).

It is important to choose resources that will serve as data sources for the evaluation. It is worth to no-
tice that resources can not only be scientific papers but also the web or measured data, code repositories
or persons. For contacting a person, the concrete query expression is used as a question, which is asked.
When measuring data or providing a “proof of concept”, the source’s exclusion criteria have to be empty
or specified in a way that the result is not distorted. The use of an association class for ConcreteQuery
(depicted by a dashed line) denotes that for each pair of ProcessPhase and UsedResource, the class
ConcreteQuery is instantiated. The concrete search expression is derived from a general search expres-
sion.

For example the general search expression could be “recent approaches in Security Engineering” and
we want to ask Google Scholar and a popular researcher. For Google Scholar we could use “"Security
Engineering" 2012..2013” as a concrete search expression and the concrete expression for asking a
researcher could read: “I’m interested in Security Engineering. Which recent approaches in Security
Engineering do you know?”.

If a concrete query matches sources, as papers, websites or personal answers, we classify the source
at least by author and description (as an abstract) and provide information about the type of source and
at least one reference where to find it.

Process phases can use the matching sources to get an idea how to define more appropriate queries,
which is especially useful for depth-first search phases.

Figure 3.8 depicts the process of working with SECEVAL as a UML activity diagram. It details Fig-
ure 1.1, which was shown in the introduction. Used and produced artifacts can be found on the right.
Notice that this process has to be adapted (and usually simplified) for each evaluation. Writing down
the exact process might not always be necessary, as many activities can be executed in parallel or in
any order, which is indicated by the black, horizontal bars. Artifacts used by the analysis process will be
explained in the following.

3.2.3 Data Analysis
We do not only want to collect data in order to know a brief description, but we want to analyze it in order to
answer research questions. This is why data analysis is applied. According to Kitchenham, the procedure
how to collect as well as analyze data belongs to the “review protocol” and has always to be specified in
the first place.

Figure 3.9 depicts what is needed for analyzing data. First, we have to specify which type of strategy

NESSoS - 256980 27

Figure 3.8: SECEVAL’s Evaluation Process

NESSoS - 256980 28

we want to use. Do we only use quantitative analysis or do we mainly use qualitative analysis? Accord-
ingly, one can later refer to Kitchenham’s checklists for quantitative and qualitative studies [39, table 5 and
6] to ensure the quality of the own answers to the research questions.

Figure 3.9: Data Analysis

The analysis strategy determines the used categories & criteria, analysis algorithms and filters ac-
cording to the research question. Criteria can be grouped by categories. Whether or not a criterion is
grouped by categories depends on the kind of information which should be associated to the criterion:
information with a single value, as “costs” do not have to be grouped, whereas it makes sense to group
boolean information if a testing method is testing web applications, networks or systems to a category
called “type of testing target”.

A CRITERION gives more information about data values as it defines the data type (string, list of
booleans, ..) and the metric (milliseconds, ..). Additionally, the priority can be defined which is useful
when Mechanisms should be compared. We suggest prioritizing using integer values from 0 (unimpor-
tant) to 10 (very important).

Information can be extracted from the sources which were found in the data collection phase (see
«use» dependency starting from ExtractedInfo in Figure 3.2), or they can be processed using an ANAL-
YSIS ALGORITHM. This algorithm does not have to be executable on a computer. The analysis strategy
defines which algorithm is used and makes sure that the result of the algorithm fits to a criterion regarding
meaning and metric. The algorithm may, of course, be implemented by tool in the sense of a Tool of the
security context model. However, we do not want to overload the model at this point.

The relations we presented in deliverable D2.1 [10, section 3.2] can be seen as instances of analysis
algorithms. For instance, the relation IsCompatible_NxN_ToolIO expresses that “two notations are com-
patible if there exists a tool chain that can transform the first given notation into the second one” [10, p. 22].
In this case, the algorithm might contain the depth-first search for a tool-chain consisting of tools where
the output of one tool serves as input for the second one. We experienced that automating this algorithm
is challenging, because in- and output of tools are usually described by strings and are influenced by
many factors like the tool’s functions which are used.

Besides, a FILTER can be defined to disqualify results according to certain criteria as costs or quality.
This filter is finer grained than the exclusionCriteria used in the data collection (class UsedResource),
which only can use obvious criteria, as e.g., the language the source is written in. In addition to this, the

NESSoS - 256980 29

filter for data analysis accesses information as well as criteria and thus can exclude, e.g., Mechanisms
from the evaluation which do not meet a high-priority requirement.

A valid question is how information, criteria and the security context model fit together. This was shown
in Figure 3.2: information can be stored in an instance of our security context model. Consequently, the
attributes name and dataType of Criterion can be left blank when information is stored in an instance
of our model, as attributes have a name and are typed. However, these attributes are needed when
describing information which is not directly related to an instance of a knowledge object.

In summary it can be said that neither the collection of data nor the data analysis are security specific
and thus can be applied equally to other domains within computer science. An example how we collected
and analyzed data in the area of security testing can be found in chapter 4.

3.3 Gathering Expert Knowledge

Coming up with a broad evaluation ontology for security KOs is challenging, because many different areas
of expertise are needed. Fortunately, NESSoS (associated) partners encompass the broad area of secure
software development, e.g.:

• Security Requirements Engineering

• Model-driven Security

• Trust and Reputation

• Verification

• Security Monitoring

• Vulnerability Testing

• Risk and Cost

• Privacy requirements engineering

• Access Control

• Security Protocols

• Empirical methods for security

• Secure Booting

• Javascript Sandboxing

The easiest way to tap into each other’s know-how was to come up with a basic structure of an eval-
uation approach and to discuss it. The basic structure we used was based on our experience from
deliverable D2.1 [10] and inspired by the model of the CBK [6, Figure 2.1].

3.3.1 Guided Interview
A Guided Interview is “a one-on-one directed conversation with an individual that uses a pre-determined,
consistent set of questions but allows for follow-up questions and variation in question wording and order.”8

We used this kind of interview in a slightly modified way: first we explained our basic model (especially
the basic Security Context Model) at the NESSoS plenary meeting in Malaga. Second, we handed out
a description and a questionnaire, which can be found in Appendix A. Third, we were around while
(associated) partners were filling in the questionnaire, answered questions, explained the model in further
detail and discussed feedback which went beyond the questionnaire.

The discussions were very fruitful and they helped us, as well as the detailed answers to the ques-
tionnaire. We like to thank again all 14 (associated) partners who contributed with their ideas to the
improvement of our evaluation approach.

8Education dictionary. http://www.mondofacto.com/facts/dictionary?guided+interview

NESSoS - 256980 30

3.3.2 Results and Extensions
The resulting evaluation approach SECEVAL is described in the previous section (3.2). Some changes
due to the guided interviews are discussed in the following:

• “Maturity Level could be split into TechnicalMaturity and Adoption.” This is a good point, because
there are some Mechanisms which are technical mature, but not very adopted in practice.

• Denote if there is an “interactive or batch” mode for tools. We implemented this using the attributes
canBeUsedInteractively and canBeUsedAutonomously.

• Threats can be mitigated by another method. For example the method of a firewall can be used to
mitigate the threat by an attacker from outside.

• “Can it be represented that a tool is based on another tool?” We first thought it might be enough to
base a method upon another method, but it turned out that tools are often based on other tools which
are supporting the same method. We therefore added an association with the role basedOnTools.

• To make it possible to describe functionalities of a tool, two classes, called Functionality and
FunctionalitySet were introduced.

• The class ProtocolVerification was added. First, because protocol verification is a common
task regarding security. Second, it demonstrates how to easily extend the context model using
inheritance.

• The difference between methods and tools sometimes did not become clear immediately. There-
fore, we moved all attributes that describe a method and also can describe a tool to the heirs of
MAreasOfDev and added the possibility that a tool can partially support a method and thus redefine
attributes, which is depicted in Figure 3.4.

• It was suggested to extend the enumeration Location of vulnerability so that operating systems
and humans (i.e., human behavior) can be specified as the location of a vulnerability. We liked
this suggestion, because in this way we can also model non-technical vulnerabilities and tag them
accordingly.

In order to keep the model as simple as possible, we decided not to implement all suggestions for
changes, especially when they were at a high level of detail, which could be added when adapting our
security context model to a concrete scenario. An example is the description of detailed asset, risk and
attacker models which of course needs more attributes to describe complex relations. Furthermore, the
basis of SECEVAL is used for general information which should not be too specific. When evaluating risks,
the risks are usually evaluated for a concrete system. We modeled an extension to show how SECEVAL
can be enhanced using OWASP’s Risk Rating Methodology [22]. Figure 3.10 depicts the extended model
whereby added connections use thick line linkings.

The class Threat, known from the basic context model, inherits its features to a concrete Attack.
The severity of the risk (which is an attribute of Threat) can be calculated by likelihood multiplied with
impact. The likelihood is derived from the factors which describe the vulnerabilities and the threat agents,
whereas the impact is determined by the concrete technical and business-related impact. Therefore,
each enumerations’ literal is mapped to a likelihood rating from 0 to 9. For more information the interested
reader is referred to [22].

Another point we omitted is, to detail the costs for using a Mechanism, as the most convenient level of
detail has to be defined individually for a set of research questions: sometimes, the overall costs should
be recorded, sometimes it is necessary to split the costs into cost to train personal, yearly license costs
for using proprietary tools and so on.

A comment on the question why a researcher would not use the proposed evaluation framework was:
“I would go for an experimental approach. I would run a set of comparative experiments where the par-
ticipants apply the methods on a real case. To compare the methods I would use the method evaluation
model proposed by Moody. [51]. In this model you have several constructs like actual efficiency, actual
effectiveness, perceived ease of use, perceived usefulness, intention to use, actual usage.” We welcome

NESSoS - 256980 31

Figure 3.10: Inclusion of basic risk evaluation approach

the use of experimental approaches and SECEVAL is easy to extend, as shown in Figure 3.11: we intro-
duce a Test class that is connected to at least one method and vice versa. The test uses the method on
at least one example and is executed by TestingParticipants. Each participant assesses the method
using Moody’s evaluation criteria:

Figure 3.11: Method extension using Moody’s method evaluation approach

• “Actual Efficiency: the effort required to apply a method.

• Actual Effectiveness: the degree to which a method achieves its objectives.

• Perceived Ease of Use: the degree to which a person believes that using a particular method would
be free of effort.

• Perceived Usefulness: the degree to which a person believes that a particular method will be effec-
tive in achieving its intended objectives.

NESSoS - 256980 32

• Intention to Use: the extent to which a person intends to use a particular method.

• Actual Usage: the extent to which a method is used in practice” [51, page 5].

Usually, the average value of the participants’ results is used as final evaluation result for the method
under test.

Some misunderstandings occurred due to the brevity of the description that comes with the question-
naire, e.g., it was not clear to some partners that more than one phase of the SDLC can apply to a method
or tool, using our context model. Furthermore, it was not pointed out explicitly in the questionnaire that
a notation does not need attributes that are related to phases of the SDLC. These misunderstandings
showed that it was good to be available personally at Malaga while the questionnaire was filled in.

As a proof of concept, we additionally use a case study in chapter 4.

NESSoS - 256980 33

NESSoS - 256980 34

4 Case Study on Security Testing of Web Applica-
tions using SECEVAL

Web applications came especially under fire in recent years, as they are available, and thus attackable,
24 hours a day from all regions over the world. With 27% of breaches within hacking, web applications of
larger companies are a worthwhile target for hackers [69, p. 35].

An approach to harden web applications is to test for security flaws. Methods as “penetration testing”
or “vulnerability scanning” are supported by many tools. Some tools are commercial, but also open-source
and trial versions exist. In this chapter, we use our SECEVAL approach to evaluate vulnerability scanners
for web applications. An excerpt of the data was collected as part of two student theses [60, 44].

4.1 Data Collection

First, we have to define what we want to know and how we plan to collect data, as shown in Figure 4.1.
It depicts instances of the classes we have already defined in Figure 3.7, e.g., instances of the class
ResearchQuestion define our two research questions, a high-level and a concrete one. We used identical
background colors for instances of the same class and omitted name attributes in case an instance name
(e.g., p3) is given in the header.

Research question q1 is very general. Examples for methods which were selected in the first process
phase and where more information was gathered in the second process phase are: vulnerability scanning,
penetration testing, fuzzing and the classification into black- grey- and white-box testing. Examples for
tools are WSFuzzer, X-Create and WS-Taxi, just to mention a few. As we already added most of the found
methods and tools to the CBK [13], we focus on q2 in this chapter.

Query instances could record the terms we used while searching the Web. We defined queries in
the beginning of our research, but for such a broad question, as q1, we soon stopped recording concrete
queries, as the overhead got too high in relation to the advantage of being able to reconstruct the search
procedure at a later date. For recording our information sources, we used a table which contains the name
of a method / tool and URLs from which information should be extracted in the data analysis phase.

Research question q2 is a typical question which could be asked by security engineers working in a
company. The “sources” (i.e., tools) we selected for analysis were (cf. [44]):

a) Acunetix Web Vulnerability Scanner1

b) Mavituna Security - Netsparker2

c) Burp Scanner3

d) Wapiti4

e) Arachni5

f) Nessus6

g) Nexpose7

h) Nikto8

1Acunetix. http://www.acunetix.com/
2Netsparker. https://www.mavitunasecurity.com/netsparker/
3Burp Scanner. http://portswigger.net/burp/scanner.html
4Wapiti. http://www.ict-romulus.eu/web/wapiti
5Arachni. http://www.arachni-scanner.com/
6Nessus. http://www.tenable.com/de/products/nessus
7Nexpose. https://www.rapid7.com/products/nexpose/
8Nikto. http://www.cirt.net/Nikto2

NESSoS - 256980 35

http://www.acunetix.com/
https://www.mavitunasecurity.com/netsparker/
http://portswigger.net/burp/scanner.html
http://www.ict-romulus.eu/web/wapiti
http://www.arachni-scanner.com/
http://www.tenable.com/de/products/nessus
https://www.rapid7.com/products/nexpose/
http://www.cirt.net/Nikto2

Figure 4.1: Case Study: Data Collection

The instance experienceWithTestScenario (cf. Figure 3.7) describes how the data collection is per-
formed by testing the vulnerability scanners. Please note that SECEVAL does not impose the completion
of the data collection phase before the data is analyzed. This means that the tests were partly executed
on tools which were later classified as inappropriate. This becomes clear when we think of how evaluation
works in practice: sometimes we have to collect a bunch of data before we observe information which,
e.g., leads to the exclusion of a tool from the result set. Ideally, the already collected data is then also
contributed to a knowledge base like the CBK (or a future implementation of SECEVAL’s context model).

4.2 Data Analysis

For analyzing collected data we define an analysis strategy and select a filter which enforces the require-
ments (limitations) defined for question q2. Figure 4.2 depicts instances of the data analysis model we
defined in Figure 3.9. The background colors of the instances are used to quickly recognize the type of
an instance.

Before we go into detail about particular results of our experiments, we first take a look at the overall
result regarding our research question q2. Figure 4.2 thus depicts an instance of the class ProcessedInfo,

NESSoS - 256980 36

Figure 4.2: Case Study: Data Analysis – Results

which is called weightedResultValues. Only four tools passed our filter: Arachni and Nikto, which provide
command-line interfaces and Nessus and Nexpose, which also use web interfaces. From our list of tools
from above, the trial of a) only allows to scan predefined sites. Tools b) and c) do not support a command
line or web interface in the versions that are free. A run of tool d) on our test target Multidae9 took six
hours.

Apart from information we gathered online, we experimented with the tools that passed the filter, in
order to obtain data for our tool evaluation (q2). Additionally to the instance queryForTestScenario, we
describe what we test in more detail in the following (from [44]):

• Installation simplicity
Do any problems occur during the installation?

• Costs
How much do the tools cost? Is it a one-time payment or an annual license?

• Processor load
How high is the CPU load while running the tool?

• Clarity and intuitiveness
Is the tool easy to understand, clearly structured and user-friendly?

• Run duration
How long does a scan take?

• Quality of the report
How detailed is the report of the scan? Which information does it contain?

• Detected vulnerabilities
How many vulnerabilities does the tool detect on our test environment?

As we can see in Figure 4.2, an algorithm is involved, which calculates results according to a rating.
The rating is depicted in Figure 4.3. Lower factors of a criterions’ priority denote that we consider the
criterion less important. The data used for the rankings result from our test and is not further processed,
therefore we do not need an algorithm (that is why we use instances of the class extractedInfo).

Additionally, we show how intermediate values of our tests could be described in our data analysis
model in Figure 4.4, as e.g., the costs of the tools or the operating systems it runs on. Concrete instances
of Information classes are not depicted; the interested reader is referred to [44].

To sum up, Table 4.1 gives an overview of our results. It contains the ranking of the tools as well as
average10 and weighted11 results.

9NOWASP (Mutillidae). http://sourceforge.net/projects/mutillidae/
10AVG: average
11WAVG: weighted average according to ratings

NESSoS - 256980 37

http://sourceforge.net/projects/mutillidae/

Figure 4.3: Case Study: Data Analysis – Ratings

Figure 4.4: Case Study: Data Analysis – Values

NESSoS - 256980 38

Tool Inst. Costs CPU Clarity Time Vuln. Report AVG10 WAVG11

Nessus 1 2 2 1 4 1 2 1,86 1,86
Arachni 1 1 4 4 2 1 3 2,29 2,42
Nexpose 4 4 1 2 3 3 1 2,57 2,10

Nikto 1 1 3 4 1 4 4 2,57 3,19

Table 4.1: Case Study: Final Tool Ranking (adapted from [44])

4.3 Security Context Model

To allow security engineers to easily access the data we collected, we added entries for Nessus, Arachni,
Nexpose and Nikto to the CBK [13]. Besides, we integrated all four tools into the NESSoS tool workbench,
called SDE [11]. If they are executed from within the SDE, URL and port of the web application under
test have to be provided by the user. To try out the vulnerability scanners it is possible to use Multidae
as a target, as we did above. Multidae comes with Metasploitable12, an intentionally vulnerable Linux
virtual machine. Therefore, the default configuration for the integrated SDE tools point to a local Multidae
instance, but can be changed at any time.

However, the CBK does not provide fine-grained categories for entering security-specific information.
As SECEVAL’s context model is more detailed, we modeled the context of vulnerability scanning of web
applications and two of the tested tools: Nessus and Nikto. Figure 4.5 shows an instance diagram of the
context model, which we have already depicted in Figure 3.3.

Connections between vulnerability and security property instances are not depicted, but stored in the
model, which can be downloaded from the Web.13 The three vulnerabilities that are modeled are the
top 3 from OWASP’s top 10 project 2013. [23] Of course, the shown method is not the only one which is
supported by the tools, as e.g., Nessus also supports vulnerability scans on networks and not only on web
applications. This would be the main advantage of an implementation of SECEVAL, similar to the CBK:
connections to elements (as methods) which exist, but are not important for the current research, could
be added without much effort so that future researchers can build upon them.

We based our case study on the non-extended version of SECEVAL. For the tools’ examples, we saw
that it would be nice to extend the model to represent further attributes, as run duration or processor
load. We recommend using additional classes for those extensions, e.g., a class to detail a test run. Our
experience using SECEVAL and the UML CASE tool MagicDraw was that modeling is easy, but that the
layout is not inviting to read the containing information. This is mainly because the order of instances
attributes cannot be changed and because the font remains pixelated. Consequently, we are looking
forward to a future implementation of SECEVAL as a kind of semantic wiki.

12Metasploitable. http://www.offensive-security.com/metasploit-unleashed/Metasploitable
13SecEval: Modeling Example (Testing). http://www.pst.ifi.lmu.de/~busch/SecEval/SecEval.mdzip

NESSoS - 256980 39

http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.pst.ifi.lmu.de/~busch/SecEval/SecEval.mdzip

Figure 4.5: Case Study: Instances of Context Model (excerpt)

NESSoS - 256980 40

5 Domain-specific Evaluation of Security Mecha-
nisms

Our evaluation framework SECEVAL is brand-new. The following two evaluations in the domains of se-
curity design [67] and risk [42, 43] are previous works. Therefore, they do not explicitly use our approach,
but have influenced the construction of SECEVAL.

The first evaluation is a mapping study on secure software design. It aims at getting an overview of
existing approaches to secure software design and at comparing their properties. A mapping study [58] is
a kind of systematic literature review [39] where publications are categorized so that the coverage of the
chosen research area can be depicted.

The second evaluation compares two risk-based methods: visual methods, represented by CORAS [45]
and textual methods, represented by SREP [48]. The study is based on the systematic literature review
by Kitchenham et al. and the experiment uses, beyond others, Moody’s approach [51] for recording effec-
tiveness, perceived ease of use, perceived usefulness and intention to use.

5.1 Mapping Study on Secure Software Design

The incorporation of security concerns in software design has become a popular research topic over the
last decade. Numerous researchers have proposed a wide variety of approaches to secure software
design. Unfortunately these approaches have been developed mostly independent from each other. This
results in a complex tangle of different approaches.

In this section we report on a mapping study (a type of systematic literature review) we performed to
disentangle the domain of secure software design. [67] The main goals of this study are first to provide an
overview of the current state of the art. Second, identify gaps in current research, leading to interesting
research opportunities.

5.1.1 Review method

Our study has been designed following the guidelines of Kitchenham and Charters [39]. The following
paragraphs shortly describe the most important aspects of the study.

Research questions

In this mapping study we address the following research questions.

RQ1: What approaches to secure software design exist?

RQ2: What security properties are supported during software design?

RQ3: What type of support is provided for the security properties?

RQ3.1: Is a representation supported?

RQ3.2: Is an analysis supported?

RQ4: What evaluation is provided for the approaches?

Software design refers to both architectural and detailed design. Security properties are properties
as, for example confidentiality and authentication. The full set of properties used in this study is shown
later. A representation includes each explicit modeling, graphically or textually, of a security property.
Analysis includes each verification of security properties against the security requirements of the system
under design. An evaluation includes every application of an approach with the purpose of demonstrating
and/or proving its use.

NESSoS - 256980 41

Selection criteria

There is a need to define which research will (not) be used to answer the above research questions.
Research works are included if they satisfy the following inclusion criteria.

• The research work models security properties in software design or

• analyzes security properties in software design or

• models attacks or threats in software design or

• evaluates a proposal described in an included research work.

Research works are excluded if they satisfy the following exclusion criteria.

• The research work does not satisfy the inclusion criteria or

• is not published as a book or A-tier1 publication or

• only mentions security as a general introductory term or

• is not available as a full version, only an extended abstract or presentation, or

• is a duplicate of an included research work or

• is superseded by an included research work or

• is published more then ten years ago.

We limited the included research works to books and A-tier publications because of the sheer number
of research works available in this domain. Reading and analyzing all available research works was not
considered feasible due to time and resource constraints.

In the case of duplicate research works only the most extensive or most recent, when they are all
equally extensive, research work is included. We limited the scope to ten years since older research
works either have been developed further, and are thus included by later research works, or have become
too outdated for current technology.

Data extraction

The data extracted from the research works to answer the research questions can be divided in two main
dimensions. First the security dimension classifies each research work over the security properties it
supports and how they are supported (Figure 5.1).

The security properties are divided in two groups. On one hand the declarative properties which are
the known CIAA security concerns. On the other hand the operational mechanisms are those mechanisms
used to achieve the declarative properties.

The support for security concerns is divided in two aspects. A representation is constructive if it is
actively used (e.g., used to generate implementation logic) further on in the development cycle. Otherwise
it is a documentation representation. Analysis is precise if no expert security knowledge is needed to use
it, otherwise it is imprecise. A white hat analysis proves a positive fact, for example a policy ensures
confidentiality. A black hat analysis proves a negative fact, for example a system is not vulnerable to a
certain attack.

Second the evaluation dimension classifies each evaluation discussed in the research works (Fig-
ure 5.2).

An industrial application is any evaluation in an industrial sized project. A researcher or student study
is an evaluation in which researchers or students apply the approach to a test case. Toy examples are
evaluations used to illustrate an approach.

Case studies are evaluations described in high level of detail, usually containing a thorough analysis
of good and bad aspects, and a lesson learned element. Illustrations are evaluation described limited to
the actual use of the approach, lacking any in-depth analysis. Mentioned evaluations lack any detail in
their description.

1See the Excellence in Research for Australia (ERA) 2010 initiative (http://www.arc.gov.au/era/era_2010/archive/era_
journal_list.htm) for more information on this ranking.

NESSoS - 256980 42

http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm
http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm

Security

Declarative
properties

Confidentiality
Integrity

Availability
Auditability

Privacy

Operational
mechanisms

Access control
Authentication

Logging
Cryptography

Representation
Documentation
Construction
None

Possible values

Analysis

Precise
Imprecise
None

Black hat
White hat
None

Figure 5.1: The security dimension classifies each research work over what and how security
properties are supported.

5.1.2 Discussion of the research questions

This following paragraphs provide answers to the research question based on the data extracted according
to the dimensions described above.

RQ1: What approaches to secure software design exist?

A total of 21 different approaches were discovered in the included research works. Table 5.1 shows an
overview of the approaches and corresponding research works. Approaches for which the original authors
did not specify a name were named after the main author combined with a suffix.

RQ2: What security properties are supported during software design?

Looking at what security properties are supported by each approach we see there is a strong focus on
access control (Figure 5.3). Other security properties are considerably less supported and some are not
supported at all.

A possible explanation for the popularity of access control the existence of well-known standards such
as role-based access control (RBAC) to achieve this specific property. Such standards make it more
straightforward to develop approaches supporting access control.

Looking at the number of security properties supported per each approach we see 12 out of 21 ap-
proaches, support only a single security property (Figure 5.4). Of these 12 approaches 10 support only
access control. At most five security protocols are supported by an approach. This indicates a strong
specialization among approaches.

RQ3: What type of support is provided for the security properties?

Most approaches limit their support to a representation of security properties. Only a minority (also)
support analysis of their security properties (Figure 5.5).

Taking the type of representation into consideration shows that there is no significant difference in
amount of support (Figure 5.6). Approaches do stick to one kind of representation for all supported
properties, this is likely related to the fact the supported number of security properties is rather low.

Looking at the types of analysis the most significant is that most approaches support a precise analy-
sis. A precise analysis requires no expert security knowledge making it considerably more practical.

NESSoS - 256980 43

Evaluation

Description
Case study
Illustration
Mentioned

Type
Industrial application
Researcher or student study
Toy example

Domain
E-Commerce
E-Health
. . .

Provider
Authors
Third party
Both

Figure 5.2: The evaluation dimension classifies each evaluation discussed in a research work over
its type, level of description, domain and provider.

Cryptography

Logging

Authentication

Access Control

Privacy

Auditability

Availability

Integrity

Confidentiality

5

2

6

16

0

2

0

6

4

Number of supporting approaches

Security
property

Figure 5.3: Access control is supported by considerably more approaches than other security
properties.

RQ4: What evaluation is provided for the approaches?

The research works describe a total of 42 evaluations, most of which are illustrative toy examples (Fig-
ure 5.7). Only ten industrial applications have encountered, of which only 2 are described as case studies.
Researcher or student studies are, despite the growing popularity of empirical research, still very rare.

Looking from the perspective of the approaches we can see that most approaches only provide toy
examples as evaluation (Table 5.3). Only five approaches describe, in varying levels of detail, other types
of evaluations. Furthermore there is one approach (Sohr-AC) that does not provide any evaluation. It
should also be noted that seven out of ten industrial applications belong to a single approach (UMLsec).

Furthermore, all but three evaluations are provided by the authors of the approach. The three ex-
ceptions are industrial applications belonging to the same approach (UMLsec) and are provided by the
authors in collaboration with an industrial partner.

5.1.3 Identified Gaps

Based on the above answers to the research questions a number of gaps can be identified. Each gap
offers one or more research opportunities.

NESSoS - 256980 44

Approach Research works

Abramov-AC [1]
ADM-RBAC [19]
Breu-WS [29]
FDAF [15, 16]
Georg-AO [25, 24]
Giordano-AC [26]
Gomaa-UML [28]
Kim-AC [38]
Koch-AC [40]
Medina-DB [21]
Nakamura-DB [55, 59]
RBAC-WS-BPEL [8]
SecureSOA [49, 50]
SecureUML-MDS [3]
SoaML4Security [41]
Sohr-AC [62]
UMLS-UMLsProfile [30]
UMLsec [34, 36, 35, 9, 37]
Vela-DB-XML [68]
Wolter-BP [72]
Xu-Petri [73]

Table 5.1: Overview of the 21 approaches discovered in the literature.

Analysis White hat Black hat Total

Precise 2 3 5
Imprecise 1 0 1
Total 3 3 6

Table 5.2: Most approaches provide a precises analysis, whereas an imprecise’ analysis is not
often encountered.

Security property coverage

The gap in security property coverage can be seen in two ways. First, a number of security properties are
barely or not supported. Second, most approaches only support a limited number of security properties.
Both views give rise to the fact that no single approach, or combination of approaches, can be used
to incorporate all security properties in software design. This offers the research opportunity to extend
existing approaches to more (unsupported) security properties or define more generally applicable (i.e.,
support for all or most security properties) approaches.

Analysis support

Only a minority of the approaches support analysis of their security properties. Therefore, designers
often cannot verify whether their design meets the security requirements and must delay this verification
until the implementation or deployment phases, where correcting errors is much more costly. Obviously,
this is a research opportunity for extending approaches with analysis support or developing new analysis
methods.

Evaluation

Most approaches are evaluated by the authors themselves using illustrative toy examples. Since toy
examples are typically small and, to a certain degree, designed to fit well, they provide limited information

NESSoS - 256980 45

1

2

3

4

5

6

7

8

9

12

3

2

3

1

0

0

0

0

Number of approaches

Number of
supported
properties

Figure 5.4: A majority of 12 approaches support only one security property.

Analysis

Representation
and analysis

Representation

1

5

15

Number of supporting approaches

Type of
support

Figure 5.5: Most approaches only support analysis for their security properties.

on the practical usability of an approach.
Unfortunately performing an evaluation on an industrial application is often difficult. Empirical studies

can fill this gap by providing more thorough evaluations.

5.1.4 Limitations of this study

The main limitation of this study is that only books and A-tier publications are considered. This leads to
a substantial amount of research works left uncovered. This can result in possibly biased answers to the
research questions.

Since we explicitly choose the top-level research works we believe the selection contains the more
mature and advanced approaches available. The major gaps observed in this study (i.e., lack of a gen-
erally applicable approach and lack of thorough evaluation) are not likely to be solved by less mature or
advanced approaches. Furthermore it is our observation, based on a partial analysis, that approaches
described in the other research works tends to follow the same lines as those included.

5.2 Empirical Validation of Risk-based Methods

Several methods have been proposed to address security concerns during the early phases of the system
development life cycle [48, 45, 53, 27, 18, 61]. However, there has been little empirical evaluation that
shows how effective these methods are in practice. With few exceptions [57, 46, 52, 47], security methods
are evaluated by the same researchers who have proposed them. As a consequence, security practition-
ers are not motivated to adopt new security methods, while researchers do not know how to improve their
methods. To address this problem, there is thus the pressing need of conducting empirical evaluations to
investigate which methods work better to identify threats and mitigations (i.e., security requirements for
later phases) and why.

In this section, we report a controlled experiment that we conducted to compare two classes of risk-
based methods [42, 43]: visual methods and textual methods. As instances of these classes of methods,

NESSoS - 256980 46

Documentation
and Construction

None

Documentation

Construction

0

1

9

11

Number of supporting approaches

Type of
representation

Figure 5.6: There is no significant difference is amount of support between representation types.

Unknown

Toy example

Researcher or
student study

Industrial
application

0

0

1

2

0

26

0

4

3

2

0

4

Number of provided evaluations

Evaluation
type

Case study
Illustration
Mentioned

Figure 5.7: The large majority of evaluations found in literature are illustrative toy examples.

we have selected CORAS [45] and SREP [48]. CORAS is a visual method whose analysis is supported
by a set of diagrams that represent assets, threats, risks and treatments. In contrast, SREP is a textual
method whose artifacts are specified in natural language or in tabular form.

The goal of the experiment was to evaluate the effectiveness of visual and textual based methods, and
the participants’ perception of the methods, according to Moody [51]. Hence, the dependent variables
were the effectiveness of the methods measured as number of threats and security requirements and
the participants’ perceived ease of use, perceived usefulness and intention to use of the two methods.
The independent variable was the method. The experiment involved 28 participants: 16 students of the
master in Computer Science and 12 students of the EIT ICT LAB master in Security and Privacy. They
were divided into 16 groups using a randomized block design. Each group applied the two methods to
identify threats and security requirements for different facets of a Smart Grid application scenario (ranging
from security management to database security). The experiment was complemented with participants’
interviews to gain insights on why the methods are effective or they are not.

The main findings are that the visual method yields to identify more threats than textual one, while
the textual one is slightly better to identify security requirements. The difference in the number of threats
identified with the two methods is statistically significant and participants’ interviews suggest that this is
due to the difference in the artifacts used to model threats. The visual method uses diagrams to represent
threats while the textual method uses tables: diagrams help brainstorming on threats and thus yield
participants to identify more threats. On the contrary, the difference in the number of security requirements
identified with the two methods is not statistically significant. The textual method identified a slightly higher
number of security requirements but this is not statistically significant. A possible explanation emerging
from the interviews is that process supported by the textual method offers a systematic approach to
identify security requirements. In addition, the visual method’s overall perception and intention to use are
higher than for the textual method.

NESSoS - 256980 47

Approach
Industrial

application
Researcher or
student study

Toy
Example

C I M C I M C I M

Abramov-AC 0 0 1 0 0 0 0 1 0
ADM-RBAC 0 0 0 1 0 0 0 1 0
Breu-WS 0 0 0 0 0 0 0 1 0
FDAF 0 0 0 0 0 0 0 2 0
Georg-AO 0 0 0 0 0 0 0 2 0
Giordano-AC 0 1 0 0 0 0 0 0 0
Gomaa-UML 0 0 0 0 0 0 0 1 0
Kim-AC 0 0 0 0 0 0 0 2 0
Koch-AC 0 0 0 0 0 0 0 1 0
Medina-DB 0 0 0 0 0 0 0 1 0
Nakamura-SOA 0 0 0 0 0 0 0 2 0
RBAC-WS-BPEL 0 0 0 0 0 0 0 1 0
SecureSOA 0 0 0 0 0 0 0 1 1
SecureUML-MDS 0 0 0 0 0 0 0 1 1
SoaML4Security 0 1 0 0 0 0 0 0 0
Sohr-AC 0 0 0 0 0 0 0 0 0
UMLS-UMLsProfile 0 0 0 0 0 0 0 1 0
UMLsec 2 2 3 0 0 0 0 4 1
Vela-DB-XML 0 0 0 0 0 0 0 1 0
Wolter-BP 0 0 0 0 0 0 0 1 0
Xu-Petri 0 0 0 0 0 0 0 1 0

C = Case study, I = Illustration, M = Mentioned

Table 5.3: Most of the approaches are limited to toy examples as evaluation. Seven out of ten
industrial applications belong to the same approach.

5.2.1 Research method

This section describes the design of the performed experiment, following the guidelines by Wohlin et
al. [71].

Selection of methods

CORAS is a visual method which consists of three tightly integrated parts, namely, a method for risk
analysis, a language for risk modeling, and a tool to support the risk analysis process. The risk analysis in
CORAS is a structured and systematic process which use diagrams (see Figure 5.8(a)) to document the
result of the execution of each step. The steps are based on the international standard ISO 31000 [31] for
risk management: context establishment, risk analysis (that identifies assets, unwanted incidents, threats
and vulnerabilities), and risk treatments.

The Security Requirements Engineering Process (SREP) is an asset-based and risk-driven method
for the establishment of security requirements in the development of secure Information Systems. SREP
supports a micro-process, consisting of nine steps: agree on definitions, identify critical assets, identify
security objectives, identify threats and develop artifacts, risk assessment, elicit security requirements,
categorize and prioritize security requirements, requirements inspection, and repository improvement.
The result of the execution of each step of the process is represented using tables or natural language
(see Figure 5.8(b)). SREP is compliant with international standards ISO/IEC 27002 [33] and ISO/IEC
15408[32] within the scope of requirements engineering and security management.

For additional details about CORAS and SREP we refer the reader to [45, Chap. 3] and [48]. Note that,
in the rest of the paper, we denote with “security requirements” both the concepts “treatments” in CORAS
and “security requirements” in SREP because they have the same semantic: they are both defined as a

NESSoS - 256980 48

(a) CORAS - Threat Diagram

Name of Misuse Case: Spoof of information

ID 1

Summary: the attacker gains access to the message exchange between the SM and SNN and
disclose the secret exchange of information
Probability: Frequent
Preconditions:
1) The attacker have access to the communication channel between SM and SNN

User Interactions Misuser interactions System Interaction
The SM sends the information
about power consumption

 The attacker reads the
information

 The SSN receives the
information without
knowing that someone
have read the message

Postconditions:
1) The attacker knows personal information about the power consumption of the
customer!!!!

(b) SREP - Threat Specification using misuse cases

Figure 5.8: Examples of Visual (CORAS) and Textual (SREP) Methods’ Artefacts.

means to reduce the risk level associated with a threat.

NESSoS - 256980 49

Research approach

The goal of the experiment was to evaluate and compare two types of risk-driven methods, namely, visual
methods (CORAS) and textual methods (SREP) with respect to their effectiveness in identifying threats
and security requirements, and the participants’ perception of the two methods. Hence, visual and textual
methods were the two treatments that we have considered in the experiment. We want to investigate the
following research questions:

RQ1 Is the effectiveness of the methods significantly different between the two type of methods?

RQ2 Does the effectiveness of the methods vary with the assigned tasks?

RQ3 Is the participants’ preference of the method significantly different between the two type of methods?

RQ4 Is the participants’ perceived ease of use of the method significantly different between the two type
of methods?

RQ5 Is the participants’ perceived usefulness of the method significantly different between the two type
of methods?

RQ6 Is the participants’ intention to use the method significantly different between the two type of meth-
ods?

To answer the first two research questions we have measured effectiveness by counting the number
of threats and the number of security requirements as the main outcomes of the methods’ application (as
done in [57, 65]). Research questions RQ3− RQ6 have been answered by measuring perception-based
variables perceived usefulness (PU), perceived ease of use (PEOU), intention to use (ITU) with a post-
task questionnaire. In order to gain a better understanding of why a method is effective (or more effective
than another) we also carried out individual interviews with the participants.

Hypotheses

We have translated research questions RQ1−RQ6 into a list of null hypotheses to be statistically tested.
Due to the lack of space we report here only the main alternative hypotheses to the null ones denoted as
HnA where n specifies the research question to which the hypothesis is related and the index A specifies
that is an alternative hypothesis.

H1.1A There will be a difference in the number of threats found with the visual method and with the textual
method

H1.2A There will be a difference in the number of security requirements found with the visual method and
with the textual method

H2.1A There will be a difference in the number of threats found with the visual and the textual method
within each facet

H2.2A There will be a difference in the number of security requirements found with the visual and the
textual method within each facet

H3A There will be a difference in the participants preference for the visual and the textual method

H4A There will be a difference in the participants perceived ease of use for the visual and the textual
method

H5A There will be a difference in the participants perceived usefulness for the visual and the textual
method

H6A There will be a difference in the participants intention to use for the visual and the textual method

NESSoS - 256980 50

Facet/Method Visual Textual
Mgmnt 6 10
App/DB 9 7
Net/Teleco 9 7
Mobile 8 8

Table 5.4: Experimental design

Hypotheses H1.1A-H1.2A are related to RQ1 and suppose that there will be a difference in the ef-
fectiveness of the methods. H2.1A-H2.2A assume a possible relation between the effectiveness of the
methods and the facets on which the methods is applied (RQ2). Hypothesis H3A assumes there will be
a difference in the participants’ overall preference for the methods (RQ3). H4A-H6A assume that the
participants’ perceived ease of use, perceived usefulness, and intention to use variables will differ for the
two methods (RQ4-RQ6).

Experimental design

Participants for the experiments were recruited among master students enrolled in the Security Engineer-
ing course at the University of Trento. The participants had no previous knowledge of the methods under
evaluation. A within-subject design where all participants apply both methods was chosen to ensure a
sufficient number of observations to produce significant conclusions. In order to avoid learning effects,
the participants had to identify threats and mitigations for different types of security facets of a Smart Grid
application scenario. The Smart Grid is an electricity network that can integrate in a cost-efficient manner
the behavior and actions of all users connected to it like generators, and consumers. They use information
and communication technologies to optimize the transmission and distribution of electricity from suppliers
to consumers.

The tasks differ in the security facets for which the groups had to identify threats and security re-
quirements. The security facets included Security Management (Mgmnt), Application/Database Security
(App/DB), Network/Telecommunication Security (Net/Teleco), and Mobile Security (Mobile). For exam-
ple, in the App/DB facet, groups had to identify application and database security threats like cross-site
scripting or aggregation attacks and propose mitigations.

The participants were divided into 16 groups so that each group would apply the visual method
(CORAS) to exactly two facets and the textual method (SREP) to the remaining two facets. For each
facet, the method to be applied by the groups was randomly determined. Table 5.4 shows for each facet
the number of groups assigned to visual and textual methods.

Experimental Procedure

The experiment was performed during the Security Engineering course held at University of Trento from
September 2012 to January 2013. The experiment was organized in three main phases:

• Training. Participants were given a tutorial on the Smart Grid application scenario and a tutorial
on visual and textual methods of the duration of two hours each. The Smart Grid scenario focused
on the gathering of metering information from the smart meters and their transmission to the util-
ity services for billing purposes. Then, participants were administered a questionnaire to collect
information about their background and their previous knowledge of other methods and they were
divided into groups based on the experimental design.

• Application. Once trained on the Smart Grid scenario and the methods, the groups had to repeat
the application of the methods on four different facets: Security Management, Application/Database
Security, Network Security and Mobile Security. For each facet, the groups:

- Attended a two hours lecture on the threats and possible mitigations specific for the facet but
not concretely applied to the case study.

NESSoS - 256980 51

- Had one week to apply the assigned method to identify threats and security requirements
specific for the facet.

- Gave a short presentation about the preliminary results of the method application and received
feedback.

- Had one week to deliver an intermediate report to get feedback.

At the end of the course in mid-January 2013, each group submitted a final report documenting the
application of the methods on the four facets.

• Evaluation. In this phase, the experimenters (the authors of this paper) assessed participants’ final
reports while the participants evaluated the method through questionnaires and interviews. First,
each group gave a presentation summarizing their work in front of the experimenters and of the
expert. The expert evaluated the quality of the threats and the mitigations proposed for the Smart
Grid application scenario. Then, participants were administered the post-task questionnaire to be
filled in online. Last, each participant was interviewed for half an hour by one of the experimenters
to investigate which are the advantages and disadvantages of the methods.

The interview guide contained open questions about the overall opinion of the methods, their advantages
and disadvantages, the difficulties encountered during the application of the methods and the main differ-
ences among them. The interview questions were the same for all the interviewees even though some
specific questions were added for some of the participants when their answers to the questionnaire were
contradictory.

The questionnaire was adapted from the questionnaire reported in [57] which was inspired to the Tech-
nology Acceptance Model (TAM) [17]. The questionnaire consisted of 22 questions which were formulated
in an opposite statements (positive statement on the right and negative statement on the left) format with
answers on a 5-point Likert scale. The questions were formulated as follows: Q1: Whether the method
was easy or hard to use; Q2: The method made the security analysis easier or harder than an ad hoc
approach; Q3: The method was easy or difficult to master; Q4: Intention to use the method to identify
threats and security requirements in a future project course; Q5: The method is better in identifying threats
and security requirements than using common sense; Q6: Intention to use the method to identify threats
and security requirements in a future project at work; Q7: Confusion about how to apply the method to
the problem; Q8: Whether the method made the search for threats and security requirements more or
less systematic; Q9: Intention to use the method if suggested by someone at work; Q10: Whether the
method would be easy or hard to remember; Q11: Whether the method makes more or less productive in
identifying threats and security requirements; Q12: Intention to use the method in a discussion with a cus-
tomer; Q13: Whether the process of the method is well or not well detailed; Q14-Q15: A catalog of threats
and security requirements makes easier or harder the security analysis with the method; Q16-Q17: The
method helps or not helps in brainstorming on the threats and the security requirements; Q18: Whether
the tool is easy or hard to use (asked just for the visual method because it had tool support); Q19-Q22:
Difficulties of facets. To avoid that the participants answered on “auto-pilot”, some of the questions (e.g.,
Q2, Q10, Q13) were given with the most positive response on the left and the most negative on the right.

5.2.2 Reports’ Analysis

Coding

To assess the effectiveness of visual and textual methods, the final reports delivered by the groups were
coded by the authors of this paper to count the number of threats and security requirements. An expert on
security of the Smart Grid was asked to assess the quality of the threats and security requirements. The
level of quality was evaluated on a four item scale: Unclear (1), Generic (2), Specific (3) and Valuable (4).

Based on this scale, the groups who have got an assessment Valuable or Specific were classified
as good groups because they have produced threats and security requirements of good quality. On
the contrary, the groups who were assessed Generic or Unclear were considered as not so good (bad)
groups.

NESSoS - 256980 52

Expert Assessment on Threats

E
xp

er
t A

ss
es

sm
en

t o
n

R
eq

ui
re

m
en

ts

1 (Unclear) 2 (Generic) 3 (Specific) 4 (Valuable)

1
(U

nc
le

ar
)

2
(G

en
er

ic
)

3
(S

pe
ci

fic
)

4
(V

al
ua

bl
e)

12

4

4

16 12

8

4

4

Figure 5.9: Expert assessment.

Figure 5.9 reports the expert assessment of all groups for all facets. In total we had 64 method appli-
cations because each of the 16 groups has applied one of the methods on the four facets. The number
inside each bubble denotes the number of method applications which got a given expert’s assessment for
threats (reported on x-axis) and security requirements (reported on y-axis). There were 48 (75%) method
applications that generated some clear threats (meaning threats evaluated generic, specific and valuable
by the expert) while 28 (44%) method applications were specific to the scenario and appreciated by the
expert. In contrast, the quality of produced security requirements was slightly lower than for threats: 48
(75%) method applications produced clear security requirements but more than half (36) were generic. In
general, we can conclude that the overall quality of the outcomes of method applications was satisfactory.

Number of threats and security requirements

To test the effectiveness of visual and textual methods with respect to the number of identified threats
and security requirements, we applied the ANOVA statistical test with a significance level α of 0.05. The
ANOVA tables are not reported due to lack of space. Before the application of the test, we verified whether
the dependent variables were normally distributed with Shapiro-Wilk test (returned p-values are 0.17, 0.68
for requirements and threats respectively). We also checked the homogeneity of variance with the Fligner-
Killeen test (returned p-values are 0.45 for requirements, and 0.64 for threats). So we have no evidence to
reject either assumptions.

We first analyzed the differences in the number of threats identified with visual and textual methods.
As shown in Figure 5.10 (left), if we consider all groups, the visual method is more effective in identifying
threats than the textual one. This result is also confirmed if we consider only the groups who have
produced good quality threats as shown in Figure 5.10 (right). The ANOVA test shows that the effect
of the applied methods on the number of identified threats is statistically significant for all groups (F =
18.49, p-value = 1.03 · 10−4) and good groups (F = 26.10, p-value = 1.59 · 10−4).

Similarly, Figure 5.11 represents the means of the number of security requirements identified with
the visual and the textual method by all groups (left) and by good groups (right). The figure shows that
both for all groups and for good groups, the textual method is slightly better than the visual method in
identifying security requirements. However, the ANOVA test shows that the difference in the security
requirements identified with the textual and visual method is not statistically significant for all groups
(F = 1.18, p-value = 0.28) and good groups (F = 1.98, p-value = 0.23).

Figure 5.12 confirms the results shown in Figure 5.10 and Figure 5.11. The figure reports a scatter

NESSoS - 256980 53

8
10

12
14

16
18

All Groups

M
ea

n
nu

m
be

rs
 o

f i
de

nt
ifi

ed
 th

re
at

s

G1

G10

G11

G12
G15

G17

G19

G2

G20G3

G4

G5

G6

G7

G8
G9

Textual

Visual

Group Method

8
10

12
14

16
18

Good Groups

M
ea

n
nu

m
be

r
of

 id
en

tif
ie

d
th

re
at

s

G1

G12
G15

G17

G2

G4

G8

Textual

Visual

Group Method

Figure 5.10: Means of identified threats in all groups (left) and good groups (right).

5
10

15
20

All Groups

M
ea

n
nu

m
be

rs
 o

f i
de

nt
ifi

ed
 s

ec
ur

ity
 r

eq
ui

re
m

en
ts

G1

G10G11

G12

G15

G17

G19

G2

G20G3

G4G5

G6

G7

G8

G9

Textual
Visual

Group Method

5
10

15
20

Good Groups

M
ea

n
nu

m
be

rs
 o

f i
de

nt
ifi

ed
 s

ec
ur

ity
 r

eq
ui

re
m

en
ts

G12

G2

G8

Textual

Visual

Group Method

Figure 5.11: Means of identified security requirements in all groups (left) and good groups (right).

NESSoS - 256980 54

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●

5 10 15 20 25

0
5

10
15

20
25

Identified Threats

Id
en

tif
ie

d
R

eq
ui

re
m

en
ts

●

All Groups

Visual
Textual

Figure 5.12: Scatter plot of identified threats and security requirements for the two methods.

view of the distribution of identified security requirements, and identified threats for the groups which
have applied the visual method (circles) and the one which have applied the textual method (triangles).
The groups which applied the visual method tend to identify more threats, but less security requirements
than groups which applied the textual method. The linear regression models on security requirements
and threats show that the textual method is slightly better than the visual one in terms of the number of
identified security requirements given the number of identified threats, but with no statistical significance.

We have also investigated the differences in the number of threats and security requirements identified
with the visual and the textual method within each facet. The boxplots in Figure 5.13 (left) show that the
distribution of the visual method is always above the distribution of textual method. This means that using
the visual method produces more threats than using the textual method in all four facets. This difference
is less marked for the facet Net/Teleco (facet 3) but it is not statistically significant. If we consider only
the facets Mgmnt, App/DB, and Mobile, the difference in the number of threats identified with the visual
and the textual method is statistically significant because the ANOVA test returned a p-value 2.78 · 10−3

(F = 9.95) which is less than 0.05. If we consider all facets, the difference is also statistically significant
because the p-value returned by the ANOVA test is equal to 1.79·10−3 (F = 10.66). Thus, we can conclude
that across all facets the visual method is globally better than the textual method in identifying threats.

Figure 5.13 (right) reports the number of security requirements identified with the visual and the textual
method within each facet. The boxplots show that textual method is slightly better than the visual one in
identifying security requirements in the first three facets. In particular, in facet Net/Teleco the difference
is higher than in the facets Mgmnt and App/DB. However, the ANOVA test given the facet Net/Teleco
returned F = 3.37, p-value = 0.09, which means visual and textual methods distributions are different but
the difference is not statistically significant. In the last facet Mobile, the situation is inverted and the visual
method is better than the textual one in identifying security requirements. Given all facets, the ANOVA test
returned F = 0.57, p-value = 0.45 which means the difference in the number of security requirements is
not statistically significant.

NESSoS - 256980 55

Methods Performance on the 4 facets

Id
en

tif
ie

d
T

hr
ea

ts

5

10

15

20

25

Textual Visual

●
●

●

Net/Teleco

Textual Visual

●
●

Mobile

●

●

●

Mgmnt

5

10

15

20

25

●

●

App/DB

Methods Performance on the 4 facets

Id
en

tif
ie

d
S

ec
ur

ity
 R

eq
ui

rm
en

ts

0

5

10

15

20

25

Textual Visual

●
●

●

●

Net/Teleco

Textual Visual

●
●

●

Mobile

●
●

●

Mgmnt

0

5

10

15

20

25

●
●

●

App/DB

Figure 5.13: The distribution of identified threats (left) and security requirements (right) within
each facet.

5.2.3 Questionnaire Analysis
We have analyzed the responses to the post-task questionnaire to determine if there is a difference in the
participants’ perception of visual and textual methods. When reporting the results all answers have been
realigned to 5 being the best. As the responses were paired, in general not normally distributed, and our
samples had ties, we have used the exact Wilcoxon signed-ranks test with Wilcoxon method for handling
ties [14]. We set the significance level α to 0.05. As mentioned, for some of the questions (e.g., Q2 or
Q10), we had to invert the order of negative and positive responses so that for all questions all negative
responses were on the right and positive responses were on the left.

The results are summarized and compared in Table 5.5. For each question, the table reports to
which perception variable the question refers to (PEOU, PU, ITU), the mean of the answers by all and
by good participants (the one who were part of groups that produced good quality threats and security
requirements based on expert’s assessment), and the level of statistical significance based on the p-value
returned by the Wilcoxon test. The level of statistical significance is specified by • (p<0.1), or * (* p<0.05,
** p<0.01, *** p<0.001). The table also reports the average responses for each perception variable and
for all questions related to perception (Q1-Q12).

The results show that for some aspects the difference in the perception of visual (CORAS) and textual
method (SREP) is statistically significant (p<0.05) or has minimum 10% significance level:

Q1 All participants prefer visual method over the textual one for easy of use but the difference in per-
ception is not statistically significant. Instead, for good participants the difference is statistically
significant.

Q2 Visual method is better than textual approach with respect to making the security analysis easier
than an ad hoc approach. All participants prefer visual method with statistical significance. This
is also true for good participants but the difference in participants’ perception is not statistically
significant.

Q5 When considering finding threats and security requirements more quickly than using common sense

NESSoS - 256980 56

All subjects Good subjects
Q Type Mean Z Mean Z

Textual Visual Textual Visual
1 PEOU 3.0 3.3 -0.9 2.8 3.8 -2.1 *
2 PU 3.1 3.6 -2.1 * 3.3 3.5 -0.6
3 PEOU 3.3 3.1 0.4 3.5 3.8 -0.7
4 ITU 3.0 3.1 -0.2 2.8 3.4 -1.5
5 PU 3.1 3.0 0.3 2.9 3.6 -2.3 *
6 ITU 2.9 2.9 0.0 2.5 3.0 -1.3
7 PEOU 3.0 3.1 -0.2 3.2 3.2 0.0
8 PU 3.6 3.5 0.4 3.8 3.8 0.0
9 ITU 3.2 3.4 -0.9 3.2 3.5 -1.3
10 PEOU 3.5 3.7 -0.5 3.8 3.9 0.2
11 PU 3.1 3.2 -0.4 2.8 3.2 -1.0
12 ITU 3.0 3.3 -0.8 2.9 3.3 -1.0
13 Control 3.8 3.8 -0.2 3.5 4.2 -1.7
14 Control 4.4 3.9 3.1 *** 4.5 3.8 2.3 *
15 Control 4.3 4.2 0.9 4.5 4.3 1.3
16 Control 3.0 3.6 -2.5 * 2.9 3.7 -1.8
17 Control 3.1 3.5 -1.7 3.2 3.8 -2.3 *
PEOU 3.2 3.3 -0.7 3.3 3.7 -1.7 •
PU 3.2 3.4 -1.0 3.2 3.5 -2.0 •
ITU 3.0 3.2 -1.0 2.8 3.3 -2.5 *
Total 3.2 3.3 -1.6 • 3.1 3.5 -3.5 ***
• - p-value <0.1, * - p-value <0.05, ** - p-value <0.01, *** - p-value <0.001

Table 5.5: Wilcoxon signed-ranks test of responses

the results are not clear. The results show a small preference for textual method by all participants
which is not statistically significant. In contrast, good participants show a statistically significant
preference for visual method.

Q14 Both all participants and good participants with statistical significance believe that a catalog of
threats would be more needed by textual method than the visual one.

Q16 Visual method is better than textual one with respect to helping brainstorming on the threats. This
holds across all participants and the difference of preference is statistically significant. This is also
true for good participants but with no statistical significance.

Q17 Visual method is better than the textual one with respect to helping brainstorming on the security
requirements. This holds across all participants but it is not statistically significant. This is also true
for good participants and it is statistically significant.

PEOU Visual method is better than the textual method with respect to overall PEOU across all participants
but the preference is not statistically significant. Good participants show a small preference for visual
method with 10% significance level.

PU Visual method is better than the textual one with respect to overall PU across all participants but
the preference is not statistically significant. Good participants show a small preference for visual
method with 10% significance level.

ITU Visual method is better than the textual one with respect to overall ITU across all participants but the
preference is not statistically significant. Good participants show a statistically significant preference
for visual method.

NESSoS - 256980 57

The average responses to Q1-Q12 show a small preference for visual method by all participants with
10% significance level. For good participants, instead the preference for visual method is statistically
significant.

5.2.4 Interviews’ Analysis
For a better understanding of which features influence visual and textual methods effectiveness, we com-
plemented our experiment by interviewing each participant for half an hour.

Table 5.6: Frequency of reported aspects of the methods

Advantages Visual Textual Total
Clear process 12 16 28
Help in brainstorming threats 21 15 36
Help in brainstorming security requirements 12 24 36
Easy to use and remember 17 11 28
Help to understand interdependencies 6 7 13
Support visual summary 24 0 24
No time consuming 0 4 4
Total 92 77
Disadvantages
No clear process 2 11 14
Do not support interdependencies 2 3 5
No help in brainstorming threats 3 3 6
No help in brainstorming security requirements 9 1 10
Primitive tool 20 0 20
No support visual summary 1 6 7
Visual summary does not scale 10 0 10
Too time consuming 11 9 20
No easy to use and remember 0 2 2
Total 58 35
Improvements
Have security resource repository 0 5 5
Have visual summary 0 2 2
Support automatic risk level computation 1 0 1
Support diagram creation 1 0 1
Total 2 7

The interviews were analyzed with a content analysis technique called coding [63]. The analysis
consists of the following steps: 1) we transcribed and analyzed to identify recurring themes, which
serve as the basis to build categories that explain why visual and textual methods work in practice or
not; 2) we identified a set of recurring participants’ statements in the interviews and we classified them
in advantages, disadvantages and improvements of the methods; 3) for each group of statements, we
coded and classified them into iteratively emerging categories; 4) we counted the frequency of statements
in each category as an indication of their relative importance. Table 5.6 presents the categories and the
frequency of statements in each category made by the participants.

The main advantage of visual method that participants indicated is that it provides a visual summary
of the results of the security analysis (89%). Indeed, the diagrams give an overview of the assets and
the possible threats scenarios and treatments. A typical statement made by the participants referring to
this advantage was: “Diagrams are useful. You have an overview of the possible threat scenarios and
you can find links among the scenarios”. Another noteworthy advantage of visual method reported by
the 82% of the participants was that it helps brainstorming on the threats. As the participants indicated,
diagrams play a key role in helping to brainstorm on threats: “Yes it helped to identify which are the
threats. In CORAS method everything is visualized. The diagrams helped brainstorming on threats." The
next advantage refers to perceived ease of use. The 60% of the participants reported that visual method

NESSoS - 256980 58

Table 5.7: Results of hypothesis testing

H1.1A Difference in the number of threats found with
visual and with textual method

YES (More threats were found with visual
method than with textual method)

H1.2A Difference in the number of security require-
ments found with visual and with textual
method

NO (Slightly more security requirements were
found with textual method than with the visual
one but the difference is not statistically sig-
nificant)

H2.1A Difference in the number of threats found with
visual and with textual method within each
facet

YES (For each facet more threats were found
with visual than with textual method)

H2.2A Difference in the number of security require-
ments found with visual and with textual
method within each facet

NO (For each facet slightly more security re-
quirements were found with textual than with
visual method but the difference is not statis-
tically significant)

H3A Difference in the participants preference for
visual and textual method

YES (Overall visual method is preferred to the
textual one)

H4A Difference in the participants perceived ease
of use for visual and textual method

MAY BE (Visual method is perceived as eas-
ier to use than textual approach with 10% sig-
nificance level)

H5A Difference in the participants perceived use-
fulness for visual and textual method

MAY BE (Visual method is perceived as more
useful than the textual method with 10% sig-
nificance level)

H6A Difference in the participants intention to use
for visual and textual method

YES (Participants intend to use the visual
method more than the textual one)

is a “good methodology, not difficult to use. It is much clear to understand the security case there".

The main advantage of textual method according to the 96% participants was that the method helps in
identifying security requirements. Typical statements in this category were: “SREP helped in brainstorm-
ing. The steps were pretty much defined. Step by step helped to discover more” and “SREP helped in
brainstorming. The order of the steps helped to identify security requirements”. The second advantage of
textual method is that it has a clear process to follow (60%): “Well defined steps. Clear process to follow.”
is an example of typical statement made by the participants for this category.

With respect to methods’ disadvantages and improvements, the statements were fewer than the ones
about advantages. The most indicated disadvantage of visual method was that visual notation does not
scale well for complex scenarios. Typical statements in this category were: “The diagrams are not scalable
when there are too many links” and “For big systems the diagrams would be very large. Even with the
support of the computer it would be difficult to see them. In addition, 75% of the participants complained
about the tool. The major problems reported were the tool bad memory usage that makes the tool too
slow and the modeling feature of the tool that does not provide automatic support for the generation of the
diagrams (e.g., generating a treatment diagram from a threat diagram). Examples of typical statements
for this category were: “The tool is not difficult to use but it is very slow. It is impossible to copy a diagram
from a type of diagram to another. Objects have no references between the diagrams. Changes on an
object in a diagram are not reflected on the same object in other diagrams.” and “The tool takes too much
to arrange things. Drawing assets and threats is not easy. When the diagrams are too large, the tool
occupies too much memory ”. Instead, textual method has two main drawbacks. First, it is unclear how
to perform some of the steps of the textual method process: risk assessment, requirements inspection
and repository improvement. Second, the use of tables to represent threats makes it difficult to show the
link among assets, threats and security requirements, and thus to give a summary of the results of the
security analysis. As reported by the participants “It is not easy to represent what you think because there
are a lot of tables. If you are project manager and you want to show the results of the security analysis to
your boss it is difficult because you use tables”.

NESSoS - 256980 59

5.2.5 Discussion

In this section we present the main findings regarding each of the research questions and possible expla-
nations for the findings. A summary of the findings is shown in Table 5.7.

Methods’ effectiveness

As shown in the previous sections, visual method is more effective in identifying threats than textual
method. This result is also confirmed if we consider the number of threats identified with visual and
textual methods across the task assigned to the groups. Since the difference in the number of threats
identified with the two methods is statistically significant, we can accept the alternative hypotheses H1.1A
and H2.1A of difference between the number of threats identified with the two methods. Instead, with
respect to number of security requirements, textual method is slightly more effective than the visual one
in identifying security requirements but the difference is not statistically significant across all groups and
tasks. The alternative hypotheses H1.2A and H2.2A of difference in the number of security requirements
can therefore be rejected.

Methods’ perception

Participants’ overall preference is higher for visual than for textual method. Among all the groups the dif-
ference has 10% significance level, while for the participants who were part of groups who produced good
quality threats and security requirements, the difference in the overall preference is statistically significant.
The conclusion is that the alternative hypothesis H3A of difference in the overall preference of the two
methods is upheld. Similarly, for all participants there is no statistically significant difference in perceived
ease of use and usefulness, while for “good” participants the difference has a 10% significance level. For
this reason, there is no evidence that the null hypotheses H40 of no difference in the perceived ease of
use and H50 of no difference in perceived usefulness do not hold. Thus, the alternative hypotheses H4A
and H5A cannot be rejected or accepted. With respect to intention to use, “good” participants intend to
use more visual than textual method and the difference in participants’ perception is statistically signifi-
cant. The alternative hypothesis H6A of difference in the intention to use for the two methods can thus be
accepted.

Qualitative Explanation

The different number of threats and security requirements identified with visual and textual methods can
be likely explained by the differences between the two methods indicated by the participants during the
interviews. Diagrams in visual method help brainstorming on the threats because they give an overview of
the possible threats (who initiate the threats), the threat scenarios (possible attacks) and the assets, while
the identification of threats in textual method is not facilitated by the use of tables because it is difficult to
keep the link between assets and threats. As suggested by the answers to question Q14 in the post-task
questionnaire, the identification of threats in textual method could be made easier if a catalog of common
threats was available. In addition, during the interviews some of the participants indicated that a visual
representation for threats would be better than a tabular one.

Textual method is slightly more effective in eliciting security requirements than visual approach be-
cause the order of steps in textual method process guides the analyst in the identification of security
requirements, while the same it seems not to hold for the visual method’s process.

5.2.6 Threats to Validity

We discuss the four main types of threats to validity [71] in what follows.

Conclusion validity Conclusion validity is concerned with issues that affect the ability to draw the cor-
rect conclusion about the relations between the treatment and the outcome of the experiment. There are
three main threats to conclusion validity relevant for our experiment:

NESSoS - 256980 60

• Low statistical power. An important threat to validity is related to the sample size that must be big
enough to come to correct conclusions. We conducted a post-hoc power analysis for the ANOVA
test and Wilcoxon signed-rank test (with G*Power 3 tool2) for participants from good groups. For
Wilcoxon signed-rank test, we obtained a power (1-β) equal to 0.86 setting as parameter the effect
size ES = 0.71, the total sample size N = 24, and α = 0.05. For the ANOVA test, we have instead a
power of 0.89 with 32 observations for each method and between variance at least 16 observations
are needed to have an effect size of 2 like in our experiment. We thus have enough observations
to conclude that our results on the relation between the methods applied and their performance in
terms of number of threats and security requirements and with responses to the post-task question-
naire are correct.

• Violated assumptions of statistical tests. Before running the ANOVA and Wilcoxon signed rank tests
we have checked with Shapiro-Wilk and Flinger-Killeen tests that their assumptions are not violated.
For example, before applying ANOVA to test the effect that the method has on the number of assets,
threats, and security requirements, we have checked the assumption about the homogeneity of the
variance using the Flinger-Killeen test which in all three cases reported a p-value greater than 0.05.
Thus, we are sure that the assumptions of statistical tests were not violated and that our results are
correct.

• Heterogeneity of subjects. If groups in the sample are too heterogeneous, the variation due to
individual differences may be larger than due to treatment. We have reduced this threat by running
the experiment with master students who had similar knowledge and background.

Internal validity Internal validity is concerned with issues that may falsely indicate a causal relationship
between the treatment and the outcome, although there is none.

• Participants’ background. The familiarity of the participants with the methods evaluated during the
experiment is a threat to internal validity. At the beginning of the experiment, we have administered
a questionnaire to check the background of the participants and their knowledge of security meth-
ods. The questionnaire has shown that all participants had a similar background and had no prior
knowledge about visual and textual methods.

• Bias in the tutorials. Differences in the methods’ performance may occur if a method is presented in
a better way than the other. In our experiment we limit this threat by giving the same structure and
the same duration to the tutorials on textual and visual methods.

• Participants’ behavior. During the execution of the experiment, the subjects may react differently
over time e.g., subjects may become bored or tired, or they may become more or less positive to
one or another method. We notice that the performance of the participants in terms of number of
threats and security requirements identified was almost the same for the first, second and third task,
while on the last task the performance decreases because the participants got tired or did not put
much effort. Yet, this phenomenon was common to both methods.

• Bias in data analysis. To avoid bias in the reports analysis, the coding of the participants’ reports
was conducted by the authors of the paper independently. In addition, the quality of the threats and
security requirements identified by each group was assessed by an expert external to the experi-
ment.

Construct validity Construct validity concerns generalizing the result of the experiment to the concept
and theory behind the experiment. The main threat to construct validity in our experiment is the design
of the research instruments: interviews and questionnaires. The questionnaire was designed following
the Technology Acceptance Model with four questions for each of the independent variables we wanted
to measure: perceived usefulness, perceived ease of use, intention to use. The interview guide included

2http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/

NESSoS - 256980 61

questions concerning research questions RQ3 and methods’ advantages and disadvantages. Three re-
searchers independently have checked the questions included in the interview guide and in the question-
naire: therefore we are reasonably confident that our research instruments measured what we wanted to
measure.

External validity External validity concerns the ability to generalize experiment results beyond the ex-
periment settings. External validity is thus affected by the objects and the subjects chosen to conduct the
experiment.

• Use of students instead of practitioners. Using students rather than practitioners as subjects is
known as a major threat to external validity. However, Svahnberg et al. [64] recognized that students
may work well as subjects in empirical studies in the requirements engineering area.

• Realism of the application scenario and facets. We reduce the threat to external validity by making
the experimental environment as realistic as possible. In fact, as object of our experiment we have
chosen a real industrial application scenario proposed by National Grid. Furthermore, the reports
of participants have been evaluated by an expert from National Grid: the quality of both security
requirements and threats identified is good enough for the study (see also §5.2.2).

NESSoS - 256980 62

6 Conclusion
We have presented a full evaluation approach, called SECEVAL, which can be used to do evaluation-

based research in the area of secure software in a structured way.
SECEVAL is based on the work previously done in WP2 and WP5 (CBK) [13, 6], as well as on the

structured literature review by Kitchenham et al. [39] and inspired by the C-INCAMI framework of Becker
et al. [4], to name a few. It defines an ontology which is represented as UML model. SECEVAL specifies:

• an improved, flexible security context model for describing features of methods, notations and tools
in the security area.

• a model that records the way how data is collected. It mainly comprises the research question,
collection process, used resources and the queries which are used for finding sources which might
be used to answer the question.

• an analysis model which defines the analysis strategy and the filters and algorithms it uses on the
collected sources. Furthermore, the data structure for information is exactly specified, regardless of
whether the data is to be stored in the security context model or not.

SECEVAL was improved using a guided interview and we additionally provided a case study about
methods and tools from the area of security focusing on a research question about the selection of vul-
nerability scanner for web applications.

Furthermore, we reported on an evaluation of approaches for secure software design as well as an em-
pirical validation of risk-based methods. The former is a mapping study [58] which provides an overview of
the current state of the art regarding secure software design. The latter study compares a textual method
(i.e. CORAS [45]) and a graphical method (i.e. SREP [48]), based on the approaches of Kitchenham et
al. and Moody [51].

For both studies, we claim that a slightly extended version of SECEVAL (cf. extension for Moody’s
approach in subsection 3.3.2) could easily record the process of doing research as well as the result data.
As this process is quite straight-forward, we omitted to draw SECEVAL instance diagrams. However, we
strongly recommend to add the outcome to an implemented version of SECEVAL, as soon as it will be
available.

Summarizing, SECEVAL provides a sound basis for evaluating research questions related to secure
software engineering. This eases the process of doing research in the area of security no matter if the
research question aims at scientific or engineering issues.

Further goals are to evaluate more examples like the testing case study presented in this deliverable.
We already noticed that SECEVAL’s security context model can easily be extended or even mapped to
another domain by adding and removing elements. Further practical experience would be exciting at this
point.

It would also be interesting to implement the context model in a more flexible version of the CBK,
although it is challenging to strike a balance between complexity of the CBK’s implementation and the
effort such a flexible model would cause. For the implementation, we suggest experimenting with an
attribute-based suggestion system: when creating a new element in the Wiki, it first is empty, but on the
right hand side of the screen common attributes are shown which can be dragged onto the Wiki page in
order to fill and arrange them. A useful feature is to be able to insert text from other web pages, e.g., from
Wikipedia or vulnerability management systems, which are then correctly cited. Step-by-step wizards
and good tag recommendation according to the tags selected so far and the information provided would
ease this task. Additionally, recommendation includes that the system needs to explain rules inferred by
SECEVAL, as e.g., that tools and notations are described by different attributes and that it is useful to
describe tool and notation in a separate entry, also in case that a notation is only used by one tool yet.
A focus should also be on the connection of several entries and on the possibility to add data which is
not only associated with one entry (e.g., data which is semi-automatically extracted from existing papers).
Adding metrics to an attribute or to a numeric value within a text-based attribute would round off the
implementation.

So far, we also reported on newly integrated SDE tools in deliverables of WP2. This time, information
about the SDE can be found in deliverable D1.4 [2]. Details will follow in deliverable D2.5.

NESSoS - 256980 63

NESSoS - 256980 64

7 NESSoS Third-Year Publications
1. A. van den Berghe, R. Scandariato, and W. Joosen. Towards a systematic literature review on

secure software design. In Proceedings of the Doctoral Symposium of the International Symposium
on Engineering Secure Software and Systems (ESSoS-DS 2013). CEUR-WS, 2013.

2. K. Labunets, F. Massacci, F. Paci, and L. M. S. Tran. An experimental comparison of two risk-based
security methods. Proceedings of the International Symposium on Empirical Software Engineering
and Measurement, 2013.

3. K. Labunets and F. Massacci. Empirical validation of security methods. In Proceedings of the
Doctoral Symposium of the International Symposium on Engineering Secure Software and Systems
(ESSoS-DS 2013). CEUR-WS, 2013.

NESSoS - 256980 65

NESSoS - 256980 66

Bibliography
[1] J. Abramov, O. Anson, A. Sturm, and P. Shoval. Tool Support for Enforcing Security Policies on

Databases. In S. Nurcan, editor, IS Olympics: Information Systems in a Diverse World, volume 107
of Lecture Notes in Business Information Processing, pages 126–141. Springer Berlin Heidelberg,
2012.

[2] C. Bartolini and A. Bertolino. NESSoS Deliverable D1.4 – NESSoS Joint Virtual Research Lab. 2013.

[3] D. Basin, J. Doser, and T. Lodderstedt. Model Driven security: From UML Models to Access Control
Infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1):39–91, 2006.

[4] P. Becker, F. Papa, and L. Olsina. Enhancing the Conceptual Framework Capability for a Measure-
ment and Evaluation Strategy. 4th International Workshop on Quality in Web Engineering , (6360):1–
12, 2013.

[5] K. Beckers, S. Eicker, M. Heisel, and W. S. (UDE). NESSoS Deliverable D5.2 – Identification of
Research Gaps in the Common Body of Knowledge. 2012.

[6] K. Beckers, S. Eicker, M. Heisel, and W. S. (UDE). NESSoS Deliverable D5.3 – Assessment of the
CBK also through open consultation. 2013.

[7] K. Beckers and M. Heisel. A usability evaluation of the nessos common body of knowledge. In
Proceedings of the International Conference on Availability, Reliability and Security (ARES) - 2nd
International Workshop on Security Ontologies and Taxonomies (SecOnT 2013). IEEE Computer
Society, 2013. Accepted for Publication.

[8] E. Bertino, J. Crampton, and F. Paci. Access Control and Authorization Constraints for WS-BPEL. In
Web Services, 2006. ICWS ’06. International Conference on, pages 275–284, 2006.

[9] B. Best, J. Jürjens, and B. Nuseibeh. Model-based Security Engineering of Distributed Information
Systems using UMLsec. In Proceedings of the 29th international conference on Software Engineer-
ing, ICSE ’07, pages 581–590, Washington, DC, USA, 2007. IEEE Computer Society.

[10] M. Busch and N. Koch. NESSoS Deliverable D2.1 – First release of Method and Tool Evaluation.
2011.

[11] M. Busch and N. Koch. NESSoS Deliverable D2.3 – Second Release of the SDE for Security-Related
Tools. 2012.

[12] M. Busch, N. Koch, and M. Wirsing. Seceval: An evaluation framework for engineering secure
systems, 2014. submitted.

[13] CBK. Common Body of Knowledge. http://nessos-project.eu/cbk, 2013.

[14] W. J. Conover. On methods of handling ties in the wilcoxon signed-rank test. Journal of the American
Statistical Association, 68(344):985–988, 1973.

[15] L. Dai and K. Cooper. Modeling and performance analysis for security aspects. Science of Computer
Programming, 61(1):58–71, 2006. Special Issue on Quality system and software architectures.

[16] L. Dai and K. Cooper. Using FDAF to bridge the gap between enterprise and software architectures
for security. Science of Computer Programming, 66(1):87–102, 2007. Special Issue on the 5th
International Workshop on System/Software Architectures (IWSSA£06).

[17] F. D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of information tech-
nology. MIS Quarterly, pages 319–340, 1989.

[18] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen. A privacy threat analysis framework:
supporting the elicitation and fulfillment of privacy requirements. Requirements Engineering, 16(1):3–
32, 2011.

NESSoS - 256980 67

http://nessos-project.eu/cbk

[19] P. Diaz, I. Aedo, D. Sanz, and A. Malizia. A model-driven approach for the visual specification of Role-
Based Access Control policies in web systems. In Visual Languages and Human-Centric Computing,
2008. VL/HCC 2008. IEEE Symposium on, pages 203–210, 2008.

[20] G. Elahi, E. Yu, and N. Zannone. A vulnerability-centric requirements engineering framework: ana-
lyzing security attacks, countermeasures, and requirements based on vulnerabilities. Requirements
Engineering, 15(1):41–62, 2010.

[21] E. Fernández-Medina, J. Trujillo, R. Villarroel, and M. Piattini. Developing secure data warehouses
with a UML extension. Information Systems, 32(6):826–856, 2007.

[22] O. Foundation. OWASP Risk Rating Methodology, 2013. https://www.owasp.org/index.php/

OWASP_Risk_Rating_Methodology.

[23] O. Foundation. OWASP Top 10 – 2013, 2013. http://owasptop10.googlecode.com/files/

OWASPTop10-2013.pdf.

[24] G. Georg, K. Anastasakis, B. Bordbar, S. Houmb, I. Ray, and M. Toahchoodee. Verification and
Trade-Off Analysis of Security Properties in UML System Models. Software Engineering, IEEE Trans-
actions on, 36(3):338–356, 2010.

[25] G. Georg, I. Ray, and R. France. Using Aspects to Design a Secure System. In Proceedings of the
Eighth International Conference on Engineering of Complex Computer Systems, ICECCS ’02, pages
117–, Washington, DC, USA, 2002. IEEE Computer Society.

[26] M. Giordano, G. Polese, G. Scanniello, and G. Tortora. A system for visual role-based policy mod-
elling. Journal of Visual Languages & Computing, 21(1):41–64, 2010.

[27] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling security requirements through
ownership, permission and delegation. In In Proc. of the 13th IEEE International Conference on RE,
pages 167–176. IEEE, 2005.

[28] H. Gomaa and M. Eonsuk Shin. Modelling Complex Systems by Separating Application and Security
Concerns. In Engineering Complex Computer Systems, 2004. Proceedings. Ninth IEEE International
Conference on, pages 19–28, 2004.

[29] M. Hafner, M. Breu, R. Breu, and A. Nowak. Modelling Inter-organizational Workflow Security in a
Peer-to-Peer Environment. In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE Interna-
tional Conference on, pages –540, 2005.

[30] R. Heldal and F. Hultin. Bridging Model-Based and Language-Based Security. In E. Snekkenes
and D. Gollmann, editors, Computer Security - ESORICS 2003, volume 2808 of Lecture Notes in
Computer Science, pages 235–252. Springer Berlin / Heidelberg, 2003.

[31] International Organization for Standardization. ISO 31000 Risk management – Principles and guide-
lines, 2009.

[32] International Organization for Standardization and International Electrotechnical Commission.
ISO/IEC 15408 Information technology - Security techniques - Evaluation criteria for IT security,
2005.

[33] International Organization for Standardization and International Electrotechnical Commission.
ISO/IEC 27002 Information technology - Security techniques - Code of practice for information secu-
rity management, 2005.

[34] J. Jürjens. Secure Systems Development with UML. Springer, 2004.

[35] J. Jürjens. Sound Methods and Effective Tools for Model-based Security Engineering with UML. In
Proceedings of the 27th International Conference on Software Engineering, ICSE ’05, pages 322–
331, New York, NY, USA, 2005. ACM.

NESSoS - 256980 68

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf

[36] J. Jürjens, M. Lehrhuber, and G. Wimmel. Model-Based Design and Analysis of Permission-Based
Security. In Engineering of Complex Computer Systems, 2005. ICECCS 2005. Proceedings. 10th
IEEE International Conference on, pages 224–233, 2005.

[37] J. Jürjens, J. Schreck, and P. Bartmann. Model-based Security Analysis for Mobile Communications.
In Proceedings of the 30th international conference on Software engineering, ICSE ’08, pages 683–
692, New York, NY, USA, 2008. ACM.

[38] S. Kim, D.-K. Kim, L. Lu, S. Kim, and S. Park. A feature-based approach for modeling role-based
access control systems. Journal of Systems and Software, 84(12):2035–2052, 2011.

[39] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews in Soft-
ware Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint
Report, 2007.

[40] M. Koch, L. V. Mancini, and F. Parisi Presicce. A graph-based formalism for RBAC. ACM Trans. Inf.
Syst. Secur., 5(3):332–365, 2002.

[41] S. Kou, M. A. Babar, and A. Sangroya. Modeling Security for Service Oriented Applications. In
Proceedings of the Fourth European Conference on Software Architecture: Companion Volume,
ECSA ’10, pages 294–301, New York, NY, USA, 2010. ACM.

[42] K. Labunets and F. Massacci. Empirical validation of security methods. In Proceedings of the Doctoral
Symposium of the International Symposium on Engineering Secure Software and Systems (ESSoS-
DS 2013). CEUR-WS, 2013.

[43] K. Labunets, F. Massacci, F. Paci, and L. M. S. Tran. An experimental comparison of two risk-based
security methods. Proceedings of the International Symposium on Empirical Software Engineering
and Measurement, 2013.

[44] C. Lacek. In-depth comparison and integration of tools for testing security features of web applica-
tions, 2013. Bachelor Thesis.

[45] M. S. Lund, B. Solhaug, and K. Stølen. Model-driven risk analysis: the CORAS approach. Springer,
2011.

[46] Y. Martínez, C. Cachero, and S. Meliá. Mdd vs. traditional software development: A practitioner’s
subjective perspective. Information and Software Technology, 2012.

[47] F. Massacci and F. Paci. How to select a security requirements method? a comparative study with
students and practitioners. In Secure IT Systems, pages 89–104. Springer, 2012.

[48] D. Mellado, E. Fernández-Medina, and M. Piattini. Applying a security requirements engineering
process. In Proc. of the 11th European Symposium on Research in Computer Security (ESORICS),
pages 192–206. Springer, 2006.

[49] M. Menzel and C. Meinel. A Security Meta-model for Service-Oriented Architectures. In Services
Computing, 2009. SCC ’09. IEEE International Conference on, pages 251–259, 2009.

[50] M. Menzel and C. Meinel. SecureSOA Modelling Security Requirements for Service-Oriented Archi-
tectures. In Services Computing (SCC), 2010 IEEE International Conference on, pages 146–153,
2010.

[51] D. L. Moody. The method evaluation model: a theoretical model for validating information systems
design methods. In C. U. Ciborra, R. Mercurio, M. de Marco, M. Martinez, and A. Carignani, editors,
ECIS, pages 1327–1336, 2003.

[52] M. Morandini, A. Marchetto, and A. Perini. Requirements comprehension: A controlled experiment
on conceptual modeling methods. In In Proc. of the International Workshop on Empirical RE, pages
53–60. IEEE, 2011.

NESSoS - 256980 69

[53] H. Mouratidis. Secure software systems engineering: The secure tropos approach. Journal of
Software, 6(3):331–339, 2011.

[54] F. Moyano, C. Fernandez-Gago, and J. Lopez. A conceptual framework for trust models. In S. Fischer-
Hübner, S. Katsikas, and G. Quirchmayr, editors, 9th International Conference on Trust, Privacy &
Security in Digital Business (TrustBus 2012), volume 7449 of Lectures Notes in Computer Science,
pages 93–104, Vienna, 2012. Springer Verlag, Springer Verlag.

[55] Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono. Model-driven security based on a Web services
security architecture. In Services Computing, 2005 IEEE International Conference on, volume 1,
pages 7–15, 2005.

[56] OMG. OCL 2.0. http://www.omg.org/spec/OCL/2.0/.

[57] A. L. Opdahl and G. Sindre. Experimental comparison of attack trees and misuse cases for security
threat identification. Information and Software Technology, 51(5):916–932, 2009.

[58] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping studies in software en-
gineering. In Proceedings of the 12th international conference on Evaluation and Assessment in
Software Engineering, EASE’08, pages 68–77. British Computer Society, 2008.

[59] F. Satoh, Y. Nakamura, and K. Ono. Adding Authentication to Model Driven Security. In Proceedings
of the IEEE International Conference on Web Services, ICWS ’06, pages 585–594, Washington, DC,
USA, 2006. IEEE Computer Society.

[60] S. Schreiner. Comparison of security-related tools and methods for testing software, 2013. Bachelor
Thesis.

[61] G. Sindre and A. Opdahl. Eliciting security requirements with misuse cases. Requirements Engi-
neering, 10(1):34–44, 2005.

[62] K. Sohr, G.-J. Ahn, M. Gogolla, and L. Migge. Specification and Validation of Authorisation Con-
straints Using UML and OCL. In S. Vimercati, P. Syverson, and D. Gollmann, editors, Computer Se-
curity £ ESORICS 2005, volume 3679 of Lecture Notes in Computer Science, pages 64–79. Springer
Berlin Heidelberg, 2005.

[63] A. L. Strauss and J. M. Corbin. Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. SAGE Publications, 1998.

[64] M. Svahnberg, A. Aurum, and C. Wohlin. Using students as subjects-an empirical evaluation. In
Proceedings of the Second International Symposium on ESEM, pages 288–290. ACM, IEEE, 2008.

[65] A. Teh, E. Baniassad, D. Van Rooy, and C. Boughton. Social psychology and software teams: Es-
tablishing task-effective group norms. Software, IEEE, 29(4):53–58, 2012.

[66] R. A. University. i* notation. http://istar.rwth-aachen.de/.

[67] A. van den Berghe, R. Scandariato, and W. Joosen. Towards a systematic literature review on
secure software design. In Proceedings of the Doctoral Symposium of the International Symposium
on Engineering Secure Software and Systems (ESSoS-DS 2013). CEUR-WS, 2013.

[68] B. Vela, C. Blanco, E. Fernández Medina, and E. Marcos. A practical application of our MDD ap-
proach for modeling secure XML data warehouses. Decision Support Systems, 52(4):899–925,
2012.

[69] Verizon. Vector for hacking actions. Data Breach Investigations Report, 2013. http://www.

verizonenterprise.com/resources/reports/es_data-breach-investigations-report-2013_

en_xg.pdf.

[70] J. A. Wang and M. Guo. Security data mining in an ontology for vulnerability management. In Bioinfor-
matics, Systems Biology and Intelligent Computing, 2009. IJCBS ’09. International Joint Conference
on, pages 597–603, 2009.

NESSoS - 256980 70

http://www.omg.org/spec/OCL/2.0/
http://istar.rwth-aachen.de/
http://www.verizonenterprise.com/resources/reports/es_data-breach-investigations-report-2013_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/es_data-breach-investigations-report-2013_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/es_data-breach-investigations-report-2013_en_xg.pdf

[71] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. Experimentation in
software engineering. Springer, 2012.

[72] C. Wolter and A. Schaad. Modeling of Task-Based Authorization Constraints in BPMN. In G. Alonso,
P. Dadam, and M. Rosemann, editors, Business Process Management, volume 4714 of Lecture
Notes in Computer Science, pages 64–79. Springer Berlin / Heidelberg, 2007.

[73] D. Xu and K. Nygard. Threat-Driven Modeling and Verification of Secure Software Using Aspect-
Oriented Petri Nets. Software Engineering, IEEE Transactions on, 32(4):265–278, 2006.

NESSoS - 256980 71

NESSoS - 256980 72

A Appendix: Questionnaire
In the following, the questionnaire about our Security Context model is reprinted. It was handed out

at the NESSoS plenary meeting in Malaga (29.5.-31.5.2013). In the original version of the questionnaire,
there was space after each question so that the answers could be handwritten.

A.1 Security Engineering Method and Tool Evaluation

Our aim is to provide an approach for the evaluation of methods and tools for the engineering of secure
software systems. In our approach we do not only distinguish methods and tools, but also notations.
For an evaluation and comparison approach we need to define (1) the process of how to conduct a
comparison and (2) the structure used to collect security-related data and metrics to analyze it. Therefore,
we define a conceptual framework that comprises these three aspects: Security Context, Data Collection
and Analysis. We depict the concepts and their relationships as a model (see Figure A.1 for an overview),
so that we can instantiate concrete methods, tools and notations.

Figure A.1: Overview

Additionally, we will compare other approaches with our framework in order to further adapt or extend
it with the objective to make it more general. The basic structure of our model of the Security Context is
as depicted in Figure A.2.

The classes Method, Notation and Tool are depicted in the center. They inherit general attributes,
as e.g., names and URLs, from the abstract class Mechanism (we are still looking for a better name to
replace “mechanism”, suggestions are welcome!). A tool can support methods and a notation can be
used for several methods.

NESSoS - 256980 73

Figure A.2: Security Context

Security features are shown on the left hand side of Figure A.2.

• A SECURITY PROPERTY can be, e.g., authorization, authentication, integrity, etc. Several security
properties can be enforced or attacked by a method.

• A VULNERABILITY can endanger security properties. Examples are XSS, SQL Injection, Buffer or
Overflows, etc.

• A THREAT can exploit vulnerabilities. Threats are kind of methods which are vicious.

In Figure A.3 resp. A.4, the classes Tool and Method are refined according to their usage in the
Software Development Life Cycle (SDLC).

NESSoS - 256980 74

Figure A.3: Security Context: Details of Tools

Figure A.4: Security Context: Details of Methods

NESSoS - 256980 75

A.2 Questions and Suggestions

1. Name:
Partner:

2. Areas of security you are working in?

3. Can methods from your area be represented using our model?
Provide examples of methods.

Are concepts or relationships missing? Which?

4. Can tools from your area be represented using our model?
Provide examples for tools.

Are concepts or relationships missing? Which?

5. Can notations from your area be represented using our model?
Provide examples of notations.

Are concepts or relationships missing? Which?

7. Would you use our structure to evaluate tool, methods or notations in your area? If not, what would
your approach look like?

If yes, where do you see its strengths?

8. Can you suggest related work (esp. for managing tool and method portfolios for the area you are
working in or general approaches to compare with our approach)?

9. General comments or improvements?

NESSoS - 256980 76

	List of Acronyms
	List of Figures
	Introduction
	Background
	General Evaluation Approaches
	Security-specific Evaluation Approaches

	Evaluation Approach in the Security Domain: SecEval
	Requirements
	Ontology
	Security Context
	Data Collection
	Data Analysis

	Gathering Expert Knowledge
	Guided Interview
	Results and Extensions

	Case Study on Security Testing of Web Applications using SecEval
	Data Collection
	Data Analysis
	Security Context Model

	Domain-specific Evaluation of Security Mechanisms
	Mapping Study on Secure Software Design
	Review method
	Discussion of the research questions
	Identified Gaps
	Limitations of this study

	Empirical Validation of Risk-based Methods
	Research method
	Reports' Analysis
	Questionnaire Analysis
	Interviews' Analysis
	Discussion
	Threats to Validity

	Conclusion
	NESSoS Third-Year Publications
	Bibliography
	Appendix: Questionnaire
	Security Engineering Method and Tool Evaluation
	Questions and Suggestions

