
A Toolchain for Designing and Testing XACML Policies

Antonia Bertolino∗, Marianne Busch†, Said Daoudagh∗, Nora Koch† and Francesca Lonetti∗, Eda Marchetti∗
∗Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR

via G. Moruzzi 1, 56124, Pisa, Italy
{firstname.lastname}@isti.cnr.it

†Ludwig-Maximilians-Universität München
Oettingenstraße 67, 80538 Müunchen, Germany

{busch, kochn}@pst.ifi.lmu.de

I. INTRODUCTION

Security aspects are critical issues for many application
domains such as Service Oriented Architectures (SOAs)
and Peer-to-Peer (P2P) systems. Justified confidence in the
implemented security mechanisms is a key point for assuring
proper data access. In the last years XACML has become the
de facto standard for specifying policies for access control
decisions in many application domains. Briefly, a XACML
policy defines the constraints and conditions that a subject
needs to comply with for accessing a resource and doing
an action in a given environment. However, due to the
complexity of the language, the XACML policy specification
is a difficult and error prone process that requires specific
knowledge and big effort to be managed correctly.

In recent years, model-driven approaches have been pro-
posed for improving the definition of XACML policies [1],
to overcome intrinsic XACML language difficulties. Many
methods are able to capture the access control peculiari-
ties by abstracting from the complexity of the language.
However, a simplified view could hide some security in-
accuracies, due to an inappropriate use of model constructs.
These weaknesses can only be tackled by validating the final
XACML policy.

Model-driven proposals rarely provide facilities for veri-
fying the compliance of the derived policy with the require-
ments expressed in the model [2], [3]. In this proposal, we
make a step in this direction by presenting an integrated
framework not only for designing security policies, but also
for testing the compliance of the derived XACML sources
with the initial models. Inspired by the conformance testing
process we use some XACML-based testing strategies for
generating appropriate test cases which are able to test func-
tional aspects, constraints, permissions and prohibitions. The
execution of these test cases, generated independently from
the security model, provides (partial) input/output traces of
the XACML policy execution. These data can be exploited
for the construction of an additional model representing
the XACML policy behavior, called traces model. The
compliance of the traces model with the associated security
model is then assessed against some specific criterion.

II. USING A TOOL CHAIN

The available proposals for verifying the consistency of
access control policies with security requirements rely on the
definition of specific properties of design (see for instance
[2], [3]), which in some case could be very complex or
difficult to express. The innovation of our proposal is based
on the exploitation of a testing process for outlining the
actual policy behavior and the use of well-known model
assessment techniques for discovering possible gaps between
security and trace models. However, assisting users in design
and testing of XACML policies is not possible without tool
support. Therefore, we introduce a tool chain which includes
the following components:

• Model-driven Policy Design: offers a tool for the graph-
ical specification of security requirements and converts
the model into a XACML policy;

• Test Case Generation and Execution: provides testing
strategies to derive test cases and an engine for execut-
ing them on the XACML policy;

• Trace Analysis and Model Compliance: implements a
methodology for analyzing the execution traces and
for deriving the traces model. An oracle assesses the
compliance of the traces model with the graphical
security model.

Technical details about the “Model-driven Policy design”
and “Test Case Generation and Execution” components are
provided in Sections II-A and II-B. Currently we are finaliz-
ing the “Trace Analysis and Model Compliance” component.
The underlining ideas are presented in Section II-C.

A. Model-driven Policy Design

Modeling access control policies on a high level of
abstraction has the advantage that policies are easy to
understand and to maintain. UML-based Web Engineering
(UWE) [4] is a notation for secure web applications which
supports this approach. UWE uses the extension mechanisms
provided by UML via the definition of a UML profile. UWE
proposes to build different models for views such as content
and navigation. (1) The Content Model, representing the
domain concepts that are relevant for the web application



Figure 1. Tool chain

and the relationships between them. (2) The Role Model,
defining a hierarchy of user groups with the purpose of
authorization and access control. (3) The Basic Rights
Model, expressing role based access control on the domain
concepts. (4) The Navigation Model, providing a graphical
representation of the path the user can navigate in the web
system. This model also includes security features as, e.g.,
authentication and secure connections.

For each view, UWE selects an appropriate type of UML
diagram and provides a set of stereotypes, tag definitions and
constraints. For instance, the Basic Rights Model is based
on a UML class diagram which can be exported as XACML
policy file. This file is used for the test case generation in
the next step of our tool chain.

B. Test Case Generation and Execution

X-CREATE (XaCml REquests derivAtion for TEsting) is
a tool for systematic generation of XACML requests [5].
It takes into account the XACML policy structure, which
basically consists of a Target and a set of Rules, specify-
ing the access constraints and conditions. Specifically, X-
CREATE implements four testing strategies that are based
on a combinatorial approach of the values taken from the
Target and Rules of a policy. In addition, random values are
considered for negative testing purposes. The first testing
strategy (called Simple Combinatorial) uses values combi-
nations for deriving simple requests containing one subject,
one resource, one action and one environment. The main
advantage of this strategy is that it is simple and achieves
the coverage of the policy input domain represented by
the policy values combinations. The second testing strategy
(called XPT-based) exploits the XACML Context Schema
for systematically deriving structurally more complex re-
quests that are suitable where the PDP decision depends
simultaneously on the values of more than one subject,
resource, action and/or environment. The third strategy
(called Incremental XPT) is an improvement of the XPT-
based strategy allowing to reduce the number of generated

test cases. The last strategy (called Multiple Combinatorial)
allows deriving requests having more than one subject,
resource, action and environment.

C. Trace Analysis and Model Compliance

The Traces Creator derives the Traces Model by analyzing
the XACML requests and the corresponding responses.
In particular, for each request it maps: the subjects with
the roles of the Role Model; resources with concepts of
the Content Model and actions with action stereotypes of
the Basic Rights Model. A positive response is translated
into a stereotyped dependency between roles and concepts
expressed in the request.

The Checker validates the compliance of the Trace Model
against the original UWE model by considering domain
specific assessment criterions. Therefore, it analyzes if the
access permissions for each role are equally defined in both,
the Trace Model and the original Basic Rights Model.

III. CONCLUSIONS AND FUTURE WORK

We introduced three components consisting of six tools
which can be used as a tool chain as well as separately. Used
as a tool chain they allow to semi-automatically test access
control policies modeled with UWE.

Future work comprises the full implementation of the
“trace analysis and model compliance” component and the
evaluation of some further case studies. We plan to use case
studies of the NESSoS project, which are dealing with e-
health and smart-grids. Additionally, we are working on the
specialization of our oracle and think about a feedback loop
for the generation of further requests.

ACKNOWLEDGMENT

This work has been partially sponsored by the EU projects
NESSoS, NoE 256980 and ASCENS, FP7 257414.

REFERENCES

[1] OASIS, “eXtensible Access Control Markup
Language (XACML) Version 2.0,” http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-core-spec-
os.pdf, February 1 Feb 2005.

[2] F. Massacci and N. Zannone, “A model-driven approach for the
specification and analysis of access control policies,” in Proc.
of the OTM Confederated International Conferences, CoopIS,
DOA, GADA, IS, and ODBASE, 2008, pp. 1087–1103.

[3] A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-based
tests for access control policies,” in Proc. of ICST, 2008, pp.
338–347.

[4] M. Busch, A. Knapp, and N. Koch, “Modeling Secure Navi-
gation in Web Information Systems,” in BIR, ser. LNBIP 90.
Springer, 2011, pp. 239–253.

[5] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti,
“The X-CREATE framework: a comparison of XACML policy
testing strategies,” in Proc. of WEBIST, 2012, pp. 155–160.


