
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

D8.3: Third Report on WP8
Best Practices for SCEs (first version)

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: Version 2.2 (30.7.2011)

Lead contractor for deliverable: LMU
Author(s): Matthias Hölzl, Nora Koch (LMU)

Reporting Period: 3
Period covered: October 1, 2012 to September 30, 2013
Submission date: November 8, 2013
Revision: Final
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI



D8.3: Third Report on WP8 (Final) November 8, 2013

Executive Summary

This deliverable reports on the activities of work package 8 in the third reporting period. The main
activities were the development of the Ensemble Development Life Cycle (EDLC) and the preparation
of a catalogue of patterns describing best practices for ensemble engineering.

The EDLC provides a framework that puts the work done in the other work packages “into a larger
perspective from an engineering point of view, thereby identifying best practices for service component
ensembles.” An in-depth overview of the EDLC is given in joint deliverable 3.2 [KBC+13], therefore
this deliverable gives only a short overview of the EDLC.

The catalogue of patterns codifies “best practices discovered during the project in a form that is
easily accessible for SCE practitioners.” In this deliverable we present the first version of the ASCENS
pattern catalogue, discuss the kinds of patterns included in the catalogue as well as the pattern language
used for writing the patterns, and we present some exemplary patterns from the catalogue.

ASCENS 2



D8.3: Third Report on WP8 (Final) November 8, 2013

Contents

1 Introduction 5
1.1 Results Obtained During the Work Period . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Connection to Other Work Packages . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview of this Deliverable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of the Ensemble Development Life Cycle 5

3 The ASCENS Pattern Languages and Patterns 6
3.1 A Pattern Language for Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The ASCENS Pattern Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Selected Patterns 11
4.1 Pattern: Knowledge-equipped Component . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Pattern: Distributed Awareness-based Behavior . . . . . . . . . . . . . . . . . . . . 13
4.3 Pattern: Statistical Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Pattern: Awareness Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Conclusions and Work Planned for Reporting Period 4 21

ASCENS 3



D8.3: Third Report on WP8 (Final) November 8, 2013

ASCENS 4



D8.3: Third Report on WP8 (Final) November 8, 2013

1 Introduction

The Description of Work of the ASCENS project states as general objective for work package 8 that
“[. . . ] the foundational work done of ASCENS, applied to the case studies in work package 7 must
be put into a larger perspective from an engineering point of view, thereby identifying best practices
for service component ensembles.” The two ongoing tasks of WP8 are T8.2 “An SCs component
repository for self-aware autonomic ensembles” which was reported in deliverable D8.2 [HBGK13],
and T8.3 “Best Practices for SCEs.” The main objective of T8.3 is “to codify best practices discovered
during the project in a form that is easily accessible for SCE practitioners. This work will result in a
catalogue of SCE patterns for the overall results of the ASCENS project.”

1.1 Results Obtained During the Work Period

The two main results for Task T8.3 in this reporting period are the definition of the Ensemble Devel-
opment Life Cycle (EDLC) and an initial version of the catalogue of patterns.

The EDLC provides the larger perspective mentioned in the general objectives for work package 8
and represents the majority of the work done in this work package during this reporting period. Details
about the EDLC can be found in JD3.2 [KBC+13].

The second work item in task T8.3, a catalogue of patterns, will present best practices for the
development of ensembles according to the EDLC and using the results of the project in a form that
is easily accessible for practitioners. The pattern language used in the catalogue is strongly influenced
by the adaptation patterns developed as part of work package 4 but it has been augmented to take into
account the needs of the other work packages of ASCENS.

1.2 Connection to Other Work Packages

Since the EDLC ties together all research areas of the ASCENS project into a coherent whole, it was
developed in cooperation with all technical work packages of the project.

The patterns in the catalogue are based on the work of most other work packages and informed by
the application of this work to the case studies of WP7. Many patterns try to present aspects of the
work performed in the technical work packages from a software engineering perspective; examples
are patterns such as Tuple-space Based Coordination, Knowledge-equipped Component (WP1), Soft-
constraint-based Optimization (WP2), Build Small Ontology (WP3), the awareness patterns (WP4),
and Statistical Model Checking (WP5).

1.3 Overview of this Deliverable

In the next section we give a short overview of the EDLC; an in-depth discussion can be found in joint
deliverable JD3.2 [KBC+13]. In the subsequent sections we focus on the catalogue of SCE patterns.
Sect. 3 describes the pattern language used in the pattern catalogue, as well as a tool for interactive
exploration of the pattern catalogue and the creation of new patterns. In Sect. 4 we show the definition
of several patterns and how they might be used by a developer. The final section presents the planned
work for the fourth reporting period and concludes.

2 Overview of the Ensemble Development Life Cycle

The development of adaptive and autonomic systems requires that certain activities that are usu-
ally performed by human developers before deploying the system, are deferred to run-time and au-
tonomously performed by the system itself. Therefore the development process can no longer be

ASCENS 5



D8.3: Third Report on WP8 (Final) November 8, 2013

Design Runtime 

Deployment Deployment 

Feedback 

Figure 1: Ensemble Development Life Cycle (EDLC)

described as a single waterfall or spiral that details development activities undertaken at design time
and produces as result a system that is ready for deployment; instead the deployment and operation
of the system have to be entwined with the traditional design-time activities resulting in an ongoing
interaction between development and runtime activities.

To capture this co-dependency between development and operations, we propose a “double-wheel”
life cycle for the engineering process as shown in Figure 1. The “left wheel” represents the design
or offline phases and the right one the runtime or online phases. Both wheels are connected by the
deployment and feedback transitions.

The offline phases comprise requirements engineering, modeling and programming and verifica-
tion and validation. We emphasize the relevance of mathematical approaches to validate and verify
the properties of the autonomic system and enable the prediction of the behaviour of such complex
systems.

The online phases comprise monitoring, awareness and self-adaptation. They consist of observing
the system and the environment, reasoning on such observations and using the results of the analysis
for adapting the system and providing feedback for offline activities.

Transitions between online and offline activities can be performed as often as needed throughout
the system’s evolution, and data acquired during monitoring at runtime and possibly processed by the
system’s awareness mechanism are fed back to the design cycle to provide information to be used for
system redesign, verification and redeployment.

A detailed description of the EDLC is given in JD3.2 [KBC+13]. In the rest of this deliverable
we will focus on the catalogue of patterns that supports the development of service components and
service-component ensembles.

3 The ASCENS Pattern Languages and Patterns

Pattern languages and patterns have been developed for a wide range of domains. After the original
“Gang of Four” book [GHJV95] introduced design patterns for object-oriented software development,
pattern catalogues in various formats have been proposed for a large and varied number of domains,
and for development problems ranging from implementation choices to system architecture.

While it is possible to describe a single design solution in the form of a pattern, it is common
to present patterns in the form of a pattern language or pattern system: a catalog of patterns written

ASCENS 6



D8.3: Third Report on WP8 (Final) November 8, 2013

using the same format with cross-references between patterns. Typical pattern languages contain, for
example, links between alternative patterns that represent different trade-offs for a design problem,
links from structural patterns to patterns useful for implementing that structure, and so on.

Presenting design solutions in the form of a pattern language has several advantages:

• The standardized structure of patterns belonging to the same pattern language makes it easy for
developers to determine which patterns fit their domain and the problem they are trying to solve.

• Typically patterns contain explicit information about the advantages and disadvantages of cer-
tain design choices, thereby alerting developers to costs or undesirable side effects for using a
certain pattern.

• When patterns are cross-linked in a pattern language, connections, such as alternatives for dif-
ferent design problems and patterns that complement each other are clearly visible. In many
cases patterns contain links to other patterns that might be applicable in situations where the
original pattern is not a good solution.

3.1 A Pattern Language for Ensembles

The development of ensembles poses many interrelated design challenges and implementation choices;
describing them via a pattern language makes it easier for developers to comprehend the relationship
between different design elements and simplifies an understanding of the trade-offs involved in dif-
ferent modeling, verification and implementation choices. To support the full development life cycle
and to be usable for developers who are not already expert in the EDLC and the various technologies
developed by ASCENS we have included patterns at different levels of abstraction so that the pat-
tern catalogue can also serve as introduction to certain development techniques. Currently our pattern
catalogue contains patterns in the following areas:

Conceptual Patterns: High-level descriptions of certain techniques or concepts that can serve as
introduction to topics with which developers may not be familiar. An example is Awareness
Mechanism (see Sect. 4.4) that describes the general concept of awareness mechanisms.

Architectural Patterns: Patterns that describe the architecture of a system or a component. An ex-
ample for a pattern in this category is Distributed Awareness-based Behavior (see Sect. 4.2).
These patterns often serve as entry points into the catalogue for developers trying to solve an
architectural problem.

Adaptation Patterns: Patterns concerned with adaptation and the control-loop structure of ensem-
bles, as reported in D4.2 [ZAC+12] and [Puv12]. An example for a pattern in this area is
Reactive Stigmergy Service Components Ensemble (see [ZAC+12, p.21]).

Awareness Patterns: Patterns for developing and using awareness mechanisms. An example is Action-
calculus Reasoning, a pattern that describes the trade-offs in using a logical formalism based on
an action calculus for modeling and reasoning about the system’s domain.

Coordination Patterns: Patterns that are concerned with coordination aspects of an ensemble. An
example for a pattern in this category is Tuple-space Based Coordination.

Cooperation Patterns: Patterns that describe mechanisms for cooperation between agents in an en-
semble. For example the Auction mechanism belongs to this category.

ASCENS 7



D8.3: Third Report on WP8 (Final) November 8, 2013

Implementation Patterns: Patterns that are mainly concerned with implementation or low-level de-
sign aspects. An example is the Monkey Patching (anti)-pattern which deals with a certain
method of dynamic code update.

Knowledge Patterns: Patterns that addresses issues arising with the development of knowledge bases
and knowledge-based systems. Examples for patterns in this category are Build Small Ontology
or Reuse Large Ontology.

Navigation Patterns: Patterns that address navigation or position keeping in physical space, for ex-
ample Build Chain to Target.

Self-expression Patterns: Patterns that are concerned with self-expression of ensembles, and goal-
directed or utility-maximizing behaviors. A simple example is Decompose Goal into Subgoals.

These categories are neither exhaustive nor disjoint. Patterns such as Cooperate to Reach Goal
belong into several categories (cooperation patterns and self-expression patterns), and it is easy to think
of patterns which don’t fit in any of the categories mentioned above. Therefore, the classification of
patterns is done via keywords, which allow m-n relationships between patterns and categories and
make it easy to introduce new categories. For each pattern that is concerned with particular phases of
the EDLC, these phases are also represented as keywords for the pattern.

As the Monkey Patching example shows, the catalogue also includes some patterns that describe
widely used but potentially dangerous techniques, so-called anti-patterns. We think it is important to
also include anti-patterns since there are often good reasons why an anti-pattern has become widely
used. In many cases anti-patterns are good solutions for specialized problems which are regularly
applied in situations in which they are unnecessary or in which better solutions exist (this is the case for
the Monkey Patching pattern). Additionally, developers might not even know that a certain practice is
considered an anti-pattern, and they might not be aware of superior alternatives, or of ways to mitigate
the downsides of using the anti-pattern.

When exploring the pattern catalogue, the first two categories of patterns (conceptual patterns and
architectural patterns) serve as good entry points into the pattern system; patterns in these categories
provide a coherent overview of a general topic, and the tree of references starting from patterns in
these categories transitively spans the whole pattern catalogue.

In the following paragraphs we describe the template that we use for our pattern language. Since
the patterns in our pattern system range from conceptional patterns to implementation patterns, we
include a relatively large number of fields, but we allow several of them to be left empty. In the
following description, mandatory fields are marked with an asterisk. Except for conceptual patterns,
each pattern should either contain a “context” field or the two fields “motivation” and “applicability,”
but it should not contain all three.

Name:∗ A descriptive name for the pattern, e.g., Algorithmic Planning.

Specializes: A pattern may inherit properties from another pattern but modify certain fields. In this
case the parent pattern is included in the “specializes” field and the differences are described in
the respective fields. For example, Algorithmic Planning is a generic pattern that is specialized
by several other patterns with very different areas of applicability. In [KBC+13, Sect. 3.3.5]
the HTN Planning specialization of Algorithmic Planning is used to improve the navigation of
a robot; because of the resource constraints in this scenario most other variants of Algorithmic
Planning would not be applicable.

Aliases: Other names by which this pattern is known.

ASCENS 8



D8.3: Third Report on WP8 (Final) November 8, 2013

Intent:∗ The purpose for this pattern, what does the pattern accomplish? For example, for Algorith-
mic Planning the intent is “Enable agents to dynamically satisfy goals or compose complex
behaviors. Perform Temporal Decomposition of tasks.”

Summary: For patterns which have a very long description, a summary that addresses the most im-
portant features may be given in this field.

Context:∗ The design problem or runtime conditions to which this pattern is applicable. This field
is mandatory for adaptation patterns; for other patterns the context is often split into motivation
and applicability.

Motivation:∗ The reasons why this pattern is necessary. The motivation given in the pattern for
Algorithmic Planning is “In many environments it is feasible to determine the preconditions and
effects that simple actions have, but it is difficult to pre-compute at design-time algorithms for
all complex activities that a system might have to perform. Under these conditions, Algorithmic
Planning can be used to compute behaviors that satisfy the system’s goals based on descriptions
of the simple actions that are possible.”

Applicability:∗ Describes for which systems the pattern is applicable, and which influences might
lead to other patterns being preferable. In the case of Algorithmic Planning, the applicability
section starts as follows: “The system has to be able to determine relevant states of its envi-
ronment and it has to possess enough computational power and storage to perform the planning
process. In addition, most planning systems assume that the world is deterministic and that no
contingencies arise during the execution of the plan. Planning methods such as MDP-based
Planning can deal with uncertain worlds but typically place very high computational demands
on the system. . . . ”

Classification:∗ The set of keywords that describes, e.g., to which phases of the EDLC the pattern
applies. For Algorithmic Planning the keywords are “awareness, component, edlc-awareness,”
i.e., it is an awareness pattern that is relevant to the “awareness” phase of the EDLC and it is
mostly concerned with individual components.

Description/Behavior:∗ A description of the pattern. For Algorithmic Planning the description con-
tains an overview of automated planning, references to different planning mechanisms and the
restrictions imposed by them.

Formal Behavior: If applicable a more formal description of the pattern’s behavior can be given in
this section. For example, all adaptation patterns include a SOTA specification of their behavior.

Consequences: Consequences and trade-offs for using the patterns. If this section is present it often
summarizes trade-offs already mentioned in the “description” field.

Implementation: Implementation techniques and practical tips for realizing this pattern. This section
also includes references to ASCENS tools that are helpful for implementing the pattern, e.g.,
the Algorithmic Planning pattern references the PIRLO system [Bel13] which supports action
programming in rewriting logic as well as the Iliad runtime which supports HTN- and MDP-
based planning, among others.

Related Patterns: Related patterns, e.g., patterns that specialize the current pattern, alternatives for
the current pattern or patterns that are useful in the implementation of the current pattern. For
Algorithmic Planning the patterns HTN Planning and MDP-based Planning appear in this sec-
tion.

ASCENS 9



D8.3: Third Report on WP8 (Final) November 8, 2013

Figure 2: The Ascens Pattern Explorer (APEX): Creating a new pattern

Applications: References to applications in which this pattern was used.

This pattern language provides a flexible structure in which many kinds of patterns can be conve-
niently expressed while still retaining enough commonality to build a coherent system of patterns.

3.2 The ASCENS Pattern Explorer

The patterns in any pattern language form an intricate web of relationships that is as important as the
contents of the individual pattern. To simplify the exploration of our pattern catalogue we have devel-
oped the ASCENS Pattern Explorer (APEX) which allows developers to view the list of patterns, or to
filter this list using either a full-text search in the pattern description or values of specific fields. Oc-
currences of Patterns are cross-linked throughout the text of the pattern. This simplifies the search for
patterns that match a particular problem, and it also facilitates the exploration of the pattern catalogue.

Users with sufficient permissions can also enter new patterns into APEX using a wiki-like inter-
face. Since the sections of the pattern are provided by the application, new patterns can easily be
entered without remembering details of the pattern template. A screenshot of the edit screen of APEX
is shown in Fig. 2.

The APEX pattern catalogue currently contains 70 entries.1 A first version of 24 of these patterns
has been completed, work on the other patterns is in progress.

1This number does not yet include the adaptation patterns contained in [ZAC+12] since they have not yet been entered
into APEX.

ASCENS 10



D8.3: Third Report on WP8 (Final) November 8, 2013

4 Selected Patterns

This section contains a selection of patterns from the ASCENS pattern catalogue. The names of all
patterns are set in Italics and Titlecase; the patterns have been slightly edited to remove repetition that
is necessary to provide context when patterns are read individually and to make them more suitable
for presentation in a deliverable. The name field of the patterns is used as the section heading and not
repeated in the text.

To illustrate the network structure of the pattern language and the potential to navigate from high-
level pattern to low-level implementation advice (and vice versa), the patterns in this section are ar-
ranged in the way that a developer might traverse the links of the pattern catalogue. We assume that
the developer starts by looking for an architecture of the component they are developing, and arrives
at the pattern Knowledge-equipped Component. When reading the “Related Patterns” section, the
developer might decide to investigate the effect this choice has on the ensemble by following the
link to the pattern Awareness-based Behavior. The “Dynamic Behavior” section of this pattern men-
tions Statistical Model Checking as an appropriate validation technique, so the developer might follow
this link, return to the Awareness-based Behavior pattern, and then investigate the link to Awareness
Mechanisms. From there, the developer might continue to investigate links to suitable implementa-
tion techniques for awareness mechanisms, and arrive at patterns such as MDP-based Planning, Data
Driven Execution or Tuple-space Based Coordination (not shown in this deliverable) that are relevant
for the implementation of the component.

4.1 Pattern: Knowledge-equipped Component

Intent

Enable an autonomous component to operate in a context-sensitive manner that potentially requires
interaction with other components.

Motivation

Various architectures exist that allow components and systems to exhibit these kinds of complex,
context-sensitive behaviors and interactions. Knowledge-equipped Components are components with
individual behaviors and knowledge repositories that can dynamically form aggregations. These com-
ponents can often be arranged in a Flat Architecture to provide a powerful and flexible, yet simple,
architectural choice.

Applicability

Knowledge-equipped Components are well-suited to ensembles in which components need to act au-
tonomously and interact with each other. They can be used in different architectural styles such as
Peer-to-peer or Client/Server systems.

Components need to have at least a modest amount of computational power and local storage; the
pattern is not applicable for systems that rely on, e.g., pure stigmergy. Furthermore, if interaction is
necessary, components must be equipped with a communication mechanism that enables sender and
receiver to establish their identities and sufficient bandwidth must be available.

Classification

architecture, component, edlc-design, edlc-modeling

ASCENS 11



D8.3: Third Report on WP8 (Final) November 8, 2013

Description

A knowledge-equipped component, is equipped with behaviors and a knowledge repository. Behav-
iors describe the computations each component performs. They are typically modeled as processes
executing actions, for example in the style of process calculi or in rewriting logic. In systems using
knowledge-equipped components, interaction between components is achieved by allowing compo-
nents to access the knowledge repositories of other components; access restrictions are mediated by
access policies.

Knowledge repositories provide high-level primitives to manage pieces of information coming
from different sources. Knowledge is represented through items containing either application data
or awareness data. The former are used for determining the progress of component computations,
while the latter provide information about the environment in which the components are running (e.g.
monitored data from sensors) or about the actual status of an autonomic component (e.g. its current
location). This allows components to be both context- and self-aware. The knowledge repository’s
handling mechanism for knowledge-equipped components has to provide at least operations for adding
knowledge, as well as retrieving and withdrawing knowledge from it.

Implementation

SCEL [DLPT13] defines primitives for modeling and implementing Knowledge-equipped Compo-
nents. An example for the behavior of a component implemented in SCEL is the following monitor
for a garbage-collecting robot (which is a simplified version of the controller analyzed in [WHTZ11]):

s , get(item)@ctl.p

p , get(items, !x)@master .put(items, x+ 1)@master .c

c , get(arrived)@ctl.put(dropped)@master .s+ get(done)@ctl

This monitor waits until a tuple item becomes available in the knowledge repository ctl, updates a
counter in the knowledge repository master, and then waits until either a tuple arrived or a tuple done
is available in ctl. In the first case the controller informs the repository master that it has dropped an
item and resumes from the beginning, if instead a tuple done is retrieved from ctl the monitor stops.

This example also shows how several knowledge-equipped components can interact via a shared
knowledge repository master. Note that no further synchronization primitives are necessary, even in
the case where the master repository is shared between different components, since the first com-
ponent to perform the action get(items, !x)@master removes the items-tuple from this knowledge
repository, and other components will block on their get(items, !x)@master operations until the first
component has put the updated tuple back into master.

Related Patterns

The coordination of interactions for knowledge-equipped components is an example of Tuple-space
Based Coordination; the interaction between components can be performed using Attribute-based
Communication. If the knowledge of the component is repeatedly or continuously updated to corre-
spond to the environment, the knowledge repository and processes responsible for updating it form
an Awareness Mechanism. An ensemble containing multiple such components exhibits Distributed
Awareness-based Behavior.

ASCENS 12



D8.3: Third Report on WP8 (Final) November 8, 2013

4.2 Pattern: Distributed Awareness-based Behavior

Intent

Enable an ensemble to operate in complex, open-ended, partially observable environments by provid-
ing individual components with Awareness Mechanisms.

Motivation

Ensembles often have to operate in environments whose properties are not completely known; they
may encounter situations where complex decisions have to be taken under uncertain circumstances.
Predetermining the desired behaviors at design time is often difficult or impossible. Furthermore, often
individual components of an ensemble have to act autonomously. In these cases it may be possible to
achieve the desired behavior of the ensemble by equipping individual components with an Awareness
Mechanism and provide them with goals or measures of utility so that the aggregate behavior of the
components will result in the desired system behavior.

Applicability

For this pattern to be applicable, structural information about the environment has to be available as
an awareness model (see Awareness Mechanism); this model may be a database-like mechanism such
as a tuple space, or it may take the more complex form of a Logical Model or a Probabilistic Model
with corresponding reasoners. The components have to be able to map their runtime situation to the
awareness model with enough precision to ensure that the quality of the awareness mechanism is high
enough to reliably reach the system’s goals. The overall task of the system has to be reducible to
tasks that can (possibly cooperatively) be performed by the individual components; the distribution
of these subtasks to the components has to be decided at design time or a run-time mechanism for
Task Allocation has to be feasible. For a utility-based system it must be possible to factor the system’s
overall utility function into individual utility functions for each component (i.e., perform Threadwise
Decomposition of the utility function). Depending on the size and complexity of the awareness model,
significant computational resources and storage might have to be available at run time.

When these requirements are not satisfied, Model-free Learning applied to individual components
may provide some of the same benefits but potentially require a large number of training runs and
offer fewer static guarantees. If the system’s run-time resources are not sufficient for providing an
awareness model but data about the circumstances encountered by the system can be transmitted
back to the developers, Simulation in the Loop may be used to reduce the amount of work that has
to be performed by the awareness mechanism of the system. If at least some components can be
equipped with sufficient capabilities to run awareness mechanisms, a Teacher/Student architecture
can be employed to reduce the computational effort on a subset of components. If all components
have severe resource restrictions, an awareness-based architecture may not be possible and system
architectures such as Swarm or Client/Server may be more appropriate.

Classification

awareness, architecture, edlc-design, ensemble

Description

The architecture of a system based on this pattern is relatively straightforward, but each of the fol-
lowing steps poses significant challenges and is detailed by further patterns. In a system based on

ASCENS 13



D8.3: Third Report on WP8 (Final) November 8, 2013

Distributed Awareness-based Behavior, each component is equipped with an Awareness Mechanism.
The tasks each component has to perform are either determined at design time, or a method to per-
form Task Allocation or Threadwise Decomposition of the system’s utility function is used at run time
to divide the system tasks among the system’s components. Further Temporal Decomposition of the
component’s goals or utility functions is often necessary to reduce goals to atomic operations. Un-
less a decomposition can be found that allows each decomposed task to be performed by a single
component, a Cooperation Mechanism has to be integrated into the system.

Dynamic Behavior

The characteristic feature of an architecture based on Distributed Awareness-based Behavior is that
each component has its own awareness mechanism; therefore no general description of the ensemble’s
behavior or the dynamic behavior of components in an ensemble using this architecture is possible.

A simple control loop for components with an awareness mechanism might take the following
form:

1. Determine the next task to be performed

2. Decompose the task into executable subtasks

3. Perform the subtasks

In this case the bulk of the work in the first two steps would be performed by the awareness mecha-
nism. In practice, however, components are often structured as Closed Loop Controllers so that the
performance of the subtasks can be monitored and corrective action taken if the results of the actual
execution do not match the predicted situation.

Ensuring that the dynamic behavior of systems bases on autonomous components matches their
specification is a difficult problem. In many cases, Design-time Verification and Design-time Valida-
tion techniques can be used. In particular, Statistical Model Checking techniques can often be applied
fruitfully.

Implementation

In the ASCENS project, the jRESP [BHK+12] implementation of SCEL [DLPT13] is typically used to
define the overall behavior of the ensemble, the communication and coordination between components
and the overall behavior of individual components. The awareness mechanism of each component
performs reasoning tasks for the SCEL controller of this component; it can be implemented, e.g.,
in KnowLang [Vas12a] using the KnowLang reasoner or in POEM [Höl13] using the Iliad/jRESP
integration.

An example for an awareness mechanism for a single component that forms a Closed Loop Con-
troller is given in the description of the Awareness Mechanism pattern, pp. 19ff.

4.3 Pattern: Statistical Model Checking

Intent

Validate quantitative properties of a system at design time.

ASCENS 14



D8.3: Third Report on WP8 (Final) November 8, 2013

Motivation

It is desirable to ascertain that a system can perform according to specification as early as possible in
the design process, and to validate changes of the system design when requirements or environmental
conditions change. Traditional verification and validation techniques are often difficult to scale to the
size of ensembles.

Applicability

Statistical Model Checking is applicable in many situations in which quantitative properties of ensem-
bles need to be validated at design time. It is necessary to have (stochastic) models of the system and
its environment that match the actual behavior closely enough to ensure meaningful results.

While it scales well when compared to many other validation techniques, the computational and
memory requirements of statistical model checking may be too high for very large systems. Systems
that include non-determinism may pose problems for statistical model checkers, although advances
in the area of statistical model checking for, e.g., Markov Decision Procedures, have recently been
made. Statistical model checking provides only statistical assurances; it can therefore not be applied
in situations where a proof of correctness is required. Furthermore, statistical model checking cannot
validate properties that can only be established for infinite execution traces. In cases where precise
behavioral estimates are required, the effort for statistical model checking may be prohibitive.

Classification

component, edlc-verification-and-validation, ensemble, validation

Description

In contrast to traditional (numerical) model checking techniques, statistical model checking runs sim-
ulations of the system, performs hypothesis testing on these simulations and then uses statistical es-
timates to determine whether the probability that the system satisfies the given hypotheses is above a
certain threshold.

Since it samples the execution traces, statistical model checking has several advantages over nu-
merical model checking [LDB10]:

• Only the distribution of sample executions has to be represented in the model, and it is possible
to use, e.g., infinite state models or “black-box” models in which part of the internal structure is
unknown or not yet decided.

• Since the model-checking process works by hypothesis testing, a wider range of logics can be
used to describe the desired system behavior than for other model-checking approaches.

• It is easy to parallelize the model checking process, since several simulations can be run con-
currently.

On the other hand, the results obtained by statistical model checking are only statistical estimates and
the computational effort to obtain small confidence intervals may be very high.

Examples

Several examples for applying the Statistical Model Checking pattern to validate properties of ensem-
bles and choose between different implementation strategies are presented in [Be13].

ASCENS 15



D8.3: Third Report on WP8 (Final) November 8, 2013

4.4 Pattern: Awareness Mechanism

Intent

An awareness mechanism is a model of an ensemble’s environment (and possibly the ensemble itself)
that is available at run-time, together with reasoners, and a sensor system that keeps the model in
sync with the environment. Awareness mechanisms can be used to reason about the current state
of the environment and provide an Illusion of Stability for deterministic reasoners performing, e.g.,
Algorithmic Planning or Action-calculus Reasoning.

Summary

An awareness mechanism consists of an awareness model which is inversely connected to the en-
vironment, reasoners that can draw inferences from the awareness model, and a sensor system that
maintains the inverse connection. See below for a description of these terms and [HW14] for a de-
tailed discussion. An awareness model is often a Multi-Model and a Deep Model, in particular it often
combines Logical Models and Probabilistic Models.

Classification

awareness, conceptual

Description

We introduce the elements that an awareness mechanism has to possess, and the characteristics ac-
cording to which awareness mechanism can be classified.

Elements of the awareness mechanism It is difficult to conceive of a completely memory-less
(self-)aware system; therefore a system S that exhibits awareness has to have some way to store
information about itself or its environment E; we call this information the awareness model M of
S. The awareness model can be distributed among various nodes of S and even the environment
E. Therefore, our concept of awareness models also encompasses system architectures based on
stigmergy, e.g., robots that place tokens in their environment to mark places they have already visited.

The designers of a system that operates in a well-known, static environment may build an internal
model that contains all information required by the system to operate successfully. In the more in-
teresting case of open-ended, non-deterministic environments in which other agents are operating as
well, we cannot ignore the dynamics of the environment E (which includes, from the point of view
of S, the other agents): we want changes in E to influence the awareness model M . However this
influence is usually not immediate, since the system has to obtain the information that E has changed
before it can update M . Therefore we say that S (or, slightly inaccurately, M ) is inversely (causally)
connected to E if certain changes in E lead to corresponding changes in M after S reaches some state
in which it can perceive the changes in its environment. We call the subsystem that is responsible for
maintaining the inverse connection between E and M the sensor system of S. Apart from sensors or
other data input devices it may contain pre-processing or filtering units that transform the raw data in
a form that is more amenable to future processing.

Most environments are only partially observable: S cannot directly perceive all relevant infor-
mation, instead it may have to reason about the available data to obtain the information required for
action. We use the term “reason” in a very broad sense: the reasoning engine of a simple agent might
be a program that simply queries the data stored in its awareness model, or it might perform simple
computations, such as computing the length of a path by summing up the length of its components.

ASCENS 16



D8.3: Third Report on WP8 (Final) November 8, 2013

More sophisticated reasoning engines might perform complex inferences, run simulations or develop
plans as part of their reasoning process, and a system may include several, distributed reasoning en-
gines.

We call the combination of sensor system, awareness model and reasoning engines of a system its
awareness mechanism. Its components need not be dedicated to the awareness mechanism, they can
also be used by other parts of the system.

A system’s awareness mechanism provides no benefits unless other parts of S or external observers
have some way to access its contents. In the simplest case, access may be provided an interface that
allows other components of the system to pose queries to the reasoners and retrieve the results of
the inference; in biological systems this mechanism may be much more complicated and directly
integrated with the awareness model and reasoners.

If it allows queries about the history of the system we say that the access mechanism is diachronic;
if S can query its awareness mechanism about consequences of actions without committing to these
actions or about properties of hypothetical environments we say it allows hypotheses.

A white-box definition of awareness The presence or absence of a certain class of model does
not separate ensembles into “aware” or “not aware;” instead we want to characterize and compare the
degree of awareness that various ensembles possess. In this section we focus on a white-box definition
in which we assume that we can analyze all internal mechanisms of the systems under consideration.
We assume that the state of a system and its environment at a single moment in time can, at least in
theory, be described by a SOTA state space, and we call all possible trajectories the system can take
through the state space over time its trajectory space or phase portrait. A more in-depth discussion of
the GEM model underlying these notions can be found in [HW11], but the details are not important
for understanding this pattern.

We classify awareness mechanisms along three different axes: expressivity, quality and interface
with the rest of the system.

Expressivity. There are various types of models used in software engineering and artificial in-
telligence, and many systems use several types of models in different parts of their awareness models.
However, most models can be classified along the following three dimensions:

Scope: To remain manageable, an awareness model will only include some dimensions of the state
space, and it will only contain a limited amount of historical information. The scope σ of the
model describes which subspace of the trajectory space is represented in the awareness model
and the granularity with which this subspace is represented.

Depth: Following [KF87], we call a measure for the amount of information explicitly contained in a
model that is related to the model’s scope its depth.

Note that scope and depth are defined with relation to the state space; both “M1 has larger scope
than M2” and “M1 is deeper than M2” mean that M1 contains more information than M2, the differ-
ence is whether this information is part of the system’s state or whether it is meta-information about
the model’s content. Intuitively, the scope of an awareness model M describes how big the slice of
the world represented by M is, and the depth of M describes how rich the ontology of the model is.

As an example, we may look at a video camera that records a room in which persons A, B
and C are moving around. We assume that we are interested in the locations of the three persons,
hence our state space contains (x, y) coordinates for A, B and C. If the video camera stores an
hour of video, what is the scope of its awareness model? Since the video feed contains no data
about the position of either person, its intersection with the state space, and hence its scope, is empty.

ASCENS 17



D8.3: Third Report on WP8 (Final) November 8, 2013

A person watching the video might be able to extract information about the locations, but that is a
result of the awareness mechanism of the human, not the camera. This example demonstrates that
the expressivity of a model is not a measure for the information that can be extracted from the model
by a sufficiently intelligent observer, but only for the data that is explicitly stored in the model. To
put it more succinctly, expressivity of models is not equal to amount of data. If we assume that we
have a smart camera that can recognize people (but not individuals) and store the information about
their locations in addition to the video feed, the scope of the awareness model is no longer empty.
In this case the granularity of the model is relatively low, since it cannot distinguish permutations of
the locations of A, B and C. If we additionally equip the camera with a facial recognition module,
the model becomes more fine-grained, since observations that were previously equivalent can now be
distinguished.

As this example shows, the expressivity of the model on its own is not sufficient to describe the
expressivity of a system’s awareness mechanism; we must also take into account the capabilities of
the reasoning engines. For example, if the smart camera in the previous example stores only the image
data, the model together with the recognition module can still provide information about the location
of A, B and C, even though this information is not explicitly stored in the model.

The two dimensions discussed above, scope, and depth, can also be used to characterize the en-
tire awareness mechanism if we generalize them from the data stored in the awareness model to the
questions that can be asked of the awareness mechanism and the answers it provides. There are some
technical challenges in providing precise definitions, but their intuitive meaning remains unchanged:
the scope of an awareness mechanism describes the slice of the world (i.e., trajectory space) about
which the awareness mechanism can provide answers and the amount of detail provided by the an-
swers, and its depth the ontological and structural complexity of questions and answers.

Quality. An awareness model that has great scope, breadth and depth, yet bears only a remote
relationship to the actual environment in which a system operates is not particularly useful. Similarly,
a reasoner that can answer a wide range of questions may not be useful for a system if it takes too long
to derive answers. Therefore we are not only interested in the expressivity of awareness mechanisms
but also in their quality which we subdivide into accuracy and performance:

Accuracy: The accuracy of an awareness mechanism is a measure for the distance between answers
provided by the awareness mechanism and the corresponding “real” values. This measure also
takes into account the different states of the system, e.g., stigmergy-based awareness might only
be able to access information stored in currently visible parts of the environment and therefore
the accuracy of awareness might strongly depend on the physical location of the system or its
nodes. In dynamic environments, accuracy depends on how frequently the awareness model is
updated.

Performance: We define the performance of an awareness mechanism as a measure of the probability
that a set of queries having a particular maximum level of complexity can be answered with a
certain minimal level of accuracy in a given time.

The accuracy of different awareness mechanisms can be estimated by comparing the data in the
awareness model with reality, e.g., by measuring the total difference between the location of a robot
R obtained from its awareness model and its actual location (as observed by a high-precision tracking
system) over the duration of a simulated rescue mission. In dynamic environments, accuracy obviously
depends on the time needed to update R’s awareness model after changes in the environment. For
example, assume that R has a map of the environment that it uses for path planning, but that R only
updates its models using data from its own sensors. If an avalanche blocks a part of the road that R

ASCENS 18



D8.3: Third Report on WP8 (Final) November 8, 2013

intends to take, this will not be reflected in R’s model until R reaches the blocked part of the road, so
this aspect of the model is inaccurate over long periods of time. If, however, R also updates its model
based on information received from other robots it may increase the accuracy of its awareness since
data about remote obstacles can be integrated into the model in a timely manner.

For some reasoning engines it is possible to increase the performance of inferences by reduc-
ing the accuracy of the answers. For example, reasoners that rely on local search or Monte-Carlo
simulations can often control the number of iterations they perform and thereby trade accuracy for
performance. Some awareness-mechanisms need to be provided with a time limit before the query is
processed, others can provide a result whenever it is requested, with longer waiting times leading to
improved accuracy. In analogy to the terminology for algorithms we call the latter anytime awareness
mechanisms.

Since many reasoning mechanisms are not completely deterministic, the quality of an awareness
mechanism is best described as the probability that a query with a certain level of expressivity can be
answered with accuracy a in time t, i.e., quality is not a function, but rather a probability distribution
over accuracy and performance conditioned on the expressivity of the queries (and other factors, such
as the allocated time and resources for reasoning).

Interface. A third aspect that distinguishes different awareness mechanisms is how much access
they permit for the rest of the system or to external observers, and how their connection with the rest of
the system is achieved. We usually use the term interface to describe the connection that an awareness
mechanism has to the rest of the system. In software-intensive system the awareness mechanism may
provide and require precisely specified interfaces to interact with other components. In biological
systems the connection between the awareness mechanism and the rest of the system is often much
less clearly delineated and corresponds better to the notion of combination operator from [HW11].
The interface may not provide the full expressivity and quality of the awareness mechanism to the rest
of the system. For example, the interface of an intelligent camera might only expose aggregate data
and not the locations of individual persons at particular times. We call these aspects of the interface of
an awareness mechanism its accessibility.

Degree of Awareness. With the previously discussed dimensions of awareness mechanisms, a
non-operational (or structural, white-box) classification of degrees of awareness is relatively straight-
forward: The (internal) degree of awareness of a system is determined by the expressivity (scope,
granularity and depth), and quality (performance, accessibility) of its awareness mechanism. We call
the integration of the awareness mechanism the (structurally) exposed degree of awareness of a sys-
tem. Various (non-operational) notions of self-awareness found in the literature can be expressed in
our classification by placing constraints on the expressivity of the awareness mechanism.

Implementation

In the ASCENS project, the jRESP [BHK+12] implementation of SCEL [DLPT13] is typically used to
define the overall behavior of the ensemble, the communication and coordination between components
and the overall behavior of individual components. The awareness mechanism of each component
performs reasoning tasks for the SCEL controller of this component; it can be implemented, e.g.,
in KnowLang [Vas12a] using the KnowLang reasoner or in POEM [Höl13] using the Iliad/jRESP
integration. The sensor system of the awareness mechanism can either be part of the SCEL program,
or it can be performed transparently by the KnowLang/POEM runtime. One possible way to structure
the subsystems of an awareness mechanism is as pyramid of awareness [Vas12b], see Fig. 3.

ASCENS 19



D8.3: Third Report on WP8 (Final) November 8, 2013

Figure 3: Pyramid of awareness

To demonstrate the interaction between SCEL and an awareness mechanism we show a simple
example in which a jRESP controller uses a knowledge repository that is backed by an ILIAD reasoner.
In this example a single robot has to navigate from its current position in a grid world to a given target
position. The SCEL program controls the movement of the robot; to determine the next action it puts
information about the current state to the POEM knowledge repository and then gets the next action
from this repository. By being responsible for the update of the knowledge repository, part of the
SCEL program is part of the awareness mechanism.

The class ScelPoemNav implements this behavior in jRESP. The attribute poem represents the
POEM knowledge repository; tuples and templates for this repository are created by the utility func-
tions makePoemTuple and makePoemTemplate; as usual the methods put and get are used
to store and retrieve tuples. The method getPoemValue is a simple wrapper around get that casts
the result from type Object to the more specific type PoemValue. The method navigateTo-
Target initially informs the reasoner about the current position and the target position by placing
two tuples 〈set-current-pos, curx, cury〉 and 〈set-target-pos, targetx, targety〉 in the poem knowledge
repository. It then repeatedly queries the repository for the next move by calling getwith the template
〈get-next-move〉 on the repository. This operation returns the compass direction of the next move, or
the value NIL if the robot has reached the target. When a compass direction is returned, the controller
executes the requested move by driving to the new location and then informs the reasoner about the
new position and the cost for performing the action.

public class ScelPoemNav {
public ScelPoemNav(int curX, int curY, int maxMoves) {

this.maxMoves = maxMoves;
this.curX = curX;
this.curY = curY;

}

// ...
private PoemAdaptor poem;
private int maxMoves;
private int curX;
private int curY;

public void navigateToTarget(int targetX, int targetY)
throws InterruptedException {

poem.put(makePoemTuple("set-current-pos", curX, curY));
poem.put(makePoemTuple("set-target-pos", targetX, targetY));
PoemValue nextMove;
for (int i = 0; i < maxMoves; i++) {

ASCENS 20



D8.3: Third Report on WP8 (Final) November 8, 2013

nextMove = poem.getPoemValue(makePoemTemplate("(get-next-move)"));
if (nextMove.equals(PoemSymbol.NIL)) {

break;
}
executeMove(nextMove);

}
}

private void executeMove(PoemValue nextMove)
throws InterruptedException {

int movementCost = driveToNewPosition(nextMove);
poem.put(makePoemTuple("set-current-pos", curX, curY));
poem.put(makePoemTuple("set-action-cost", movementCost);

}

private void driveToNewPosition(PoemValue nextMove) {
// Drive to new position and update curX and curY.

}
}

The definitions of makePoemTuple and makePoemTemplate determine the behavior of the rea-
soner when a put or get request is sent to the reasoner. For this example, each request simply calls
a corresponding function in the reasoner, so that a basic implementation of the awareness mechanism
could be achieved as follows:

(defstruct pos
(x 0 :type integer)
(y 0 :type integer))

(defvar *current-pos* (make-pos))
(defvar *target-pos* (make-pos))
(defvar *action-cost* 0)

(defun set-current-pos (x y)
(setf *current-pos* (make-pos :x x :y y)))

(defun set-target-pos (x y)
(setf *target-pos* (make-pos :x x :y y)))

(defun set-action-cost (cost)
(setf *action-cost* cost))

(defun get-next-move ()
;; Compute and return the next move, e.g., by learning a map of the environment.
)

Depending on the details of the scenario the function get-next-move could, e.g., use the rein-
forcement learning mechanism of ILIAD to learn how to navigate in an unknown environment.

5 Conclusions and Work Planned for Reporting Period 4

Work package 8 has made significant progress in the third reporting period: the Ensemble Develop-
ment Life Cycle serves to structure the numerous activities of the ASCENS project in a way that clearly
illustrates the dependencies between different research areas in the project and possible workflows for
development processes using ASCENS results. The catalogue of patterns reinforces this structure by

ASCENS 21



D8.3: Third Report on WP8 (Final) November 8, 2013

providing links between different phases and activities, showing ways for reducing larger tasks to sim-
pler activities and detailing a number of best practices. An important function of the pattern catalogue
is also to serve as a tool for learning about different aspects of the development process.

In the fourth reporting period we will continue to work on the EDLC, the pattern catalogue and
the service-component repository with particular focus on the following topics

• We will refine and further detail the EDLC using the experience gained from applying it to the
case studies.

• We will complete the unfinished patterns in the pattern catalogue and, continuing the close
collaboration with work package 7, identify new patterns that arise from applying the tools and
techniques developed in the project to the case studies. In the reverse direction, we will try to
apply the patterns to the case studies and evaluate their effectiveness.

• We will investigate whether the pattern catalogue and the service-component repository (SCR)
can be cross-linked, e.g., by suggesting patterns that are applicable for the use of a chosen com-
ponent in the SCR, or by adding links from patterns in APEX to the SCR entries for components
that support them.

• Several important aspects for ensemble are currently not made explicit in the structure of the
pattern catalogue. For example, many design decisions impact the security of a system or the
privacy of its users. Some patterns mention these concerns in their description, but they are
not explicitly addressed by the pattern language. It might be worthwhile to extend the pattern
template with additional keywords for these kinds of concerns, but this carries the risk of in-
flating the number of optional keywords to the point where the pattern system loses its internal
coherence. We will investigate possible extensions of the pattern template and experiment with
the results they have on the pattern catalogue.

References

[Be13] Saddek Bensalem and Jacques Combaz (eds.). Verification Results Applied to the Case
Studies, November 2013. ASCENS Join Deliverable JD3.1.

[Bel13] Lenz Belzner. Action Programming In Rewriting Logic (technical communication). The-
ory and Practice of Logic Programming, On-line Supplement, 2013.

[BHK+12] Tomas Bures, Vojtech Horky, Jaroslav Keznikl, Michele Loreti Jan Kofron, and Fran-
tisek Plasil. Language Extensions for Implementation- Level Conformance Checking.
ASCENS Deliverable D1.5, October 2012.

[DLPT13] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. SCEL: a
Language for Autonomic Computing. Technical report, Univ. Firenze, 2013. http:
//rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Longman, Amsterdam,
1995.

[HBGK13] Matthias Hölzl, Lenz Belzner, Thomas Gabor, and Annabelle Klarl. D8.2: Second Report
on WP8: The ASCENS Service Component Repository (first version), 2013.

ASCENS 22

http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf
http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf


D8.3: Third Report on WP8 (Final) November 8, 2013

[Höl13] Matthias Hölzl. The POEM Language (Version 2). Technical Report 7, ASCENS, July
2013. http://www.poem-lang.de/documentation/TR7.pdf.

[HW11] Matthias M. Hölzl and Martin Wirsing. Towards a System Model for Ensembles. In
Gul Agha, Olivier Danvy, and José Meseguer, editors, Formal Modeling: Actors, Open
Systems, Biological Systems, volume 7000 of Lecture Notes in Computer Science, pages
241–261. Springer, 2011.

[HW14] Matthias Hölzl and Martin Wirsing. Issues in Engineering Self-Aware and Self-
Expressive Ensembles. In Jeremy Pitt, editor, The Computer After Me. World Scientific
Publishing, to appear 2014.

[KBC+13] N. Koch, T. Bures, J. Combaz, A. Lluch Lafuente, R. De Nicola, S. Sebastio, F.Tiezzi,
A. Vandin, F. Gaducci, U. Montanari, M. Hölzl, A. Klarl, P. Mayer, M. Loreti, C.Pinciroli,
M. Puvani, F. Zambonelli, and N. Šerbedžija. Software Engineering for Self-Aware SCEs:
Ensemble Development Life Cycle, 2013.

[KF87] David Klein and Timothy W. Finin. What’s in a Deep Model? A Characterization of
Knowledge Depth in Intelligent Safety Systems. In John P. McDermott, editor, IJCAI,
pages 559–562. Morgan Kaufmann, 1987.

[LDB10] Axel Legay, Benoı̂t Delahaye, and Saddek Bensalem. Statistical Model Checking: An
Overview. In Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup
Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, RV,
volume 6418 of Lecture Notes in Computer Science, pages 122–135. Springer, 2010.

[Puv12] M. Puviani. TR 4.2: Catalogue of Architectural Adaptation Patterns. Technical report,
ASCENS Project, 2012.

[Vas12a] E. Vassev. Operational Semantics for KnowLang ASK and TELL Operators. Technical
Report Lero-TR-2012-05, Lero, University of Limerick, Ireland, 2012.

[Vas12b] Emil Vassev. Building the Pyramid of Awareness. Awareness Magazine - Self-awareness
in Autonomic Systems, 07/2012 2012.

[WHTZ11] Martin Wirsing, Matthias M. Hölzl, Mirco Tribastone, and Franco Zambonelli. ASCENS:
Engineering Autonomic Service-Component Ensembles. In Bernhard Beckert, Ferruccio
Damiani, Frank S. de Boer, and Marcello M. Bonsangue, editors, FMCO, volume 7542
of Lecture Notes in Computer Science, pages 1–24. Springer, 2011.

[ZAC+12] Franco Zambonelli, Dhaminda B. Abeywickrama, Giacomo Cabri, Mariachiara Puviani,
Matthias Hölzl, Andrea Corradini, Alberto Lluch Lafuente, and Rocco De Nicola. D4.2:
Second Report on WP4. Component- and Ensemble-level Self-Expression Patterns: Re-
port on Experimental and Simulation Activities, and requirements for Tools Implementa-
tion, October 2012.

ASCENS 23

http://www.poem-lang.de/documentation/TR7.pdf

	Introduction
	Results Obtained During the Work Period 
	Connection to Other Work Packages
	Overview of this Deliverable

	Overview of the Ensemble Development Life Cycle
	The ASCENS Pattern Languages and Patterns
	A Pattern Language for Ensembles
	The ASCENS Pattern Explorer

	Selected Patterns
	Pattern: Knowledge-equipped Component
	Pattern: Distributed Awareness-based Behavior
	Pattern: Statistical Model Checking
	Pattern: Awareness Mechanism

	Conclusions and Work Planned for Reporting Period 4

