
Evaluation of Engineering Approaches
in the Secure Software Development Life Cycle?

Marianne Busch, Nora Koch, and Martin Wirsing

Institute for Informatics
Ludwig-Maximilians-Universität München

Oettingenstraße 67, 80538 München, Germany
{busch,kochn,wirsing}@pst.ifi.lmu.de

Abstract. Software engineers need to find effective methods, appropri-
ate notations and tools that support the development of secure applica-
tions along the different phases of the Software Development Life Cycle
(SDLC). Our evaluation approach, called SecEval, supports the search
and comparison of these artifacts. SecEval comprises: (1) a workflow
that defines the evaluation process, which can be easily customized and
extended; (2) a security context model describing security features, meth-
ods, notations and tools; (3) a data collection model, which records how
data is gathered when researchers or practitioners are looking for arti-
facts that solve a specific problem; (4) a data analysis model specifying
how analysis, using previously collected data, is performed; and (5) the
possibility to easily extend the models, which is exemplarily shown for
risk rating and experimental approaches. The validation of SecEval was
performed for tools in the web testing domain.

1 Introduction

The development of software requires among others decisions regarding meth-
ods, notations and tools to be used in the different phases of the Software De-
velopment Life Cycle (SDLC). In the development of secure applications, such
decisions might even be more relevant as new threats continuously appear and
more and more methods, notations and tools are developed to increase the level
of security. Therefore it is important to be able to identify, e.g., authentication-
related threats that can be mitigated by a method and to find out which tools
support this method. Furthermore, it is advantageous to know which tools can
work together.

However, often the selection of methods, tools and notations is performed
based on the experience of the developers, as all too frequent there is neither
time to investigate on alternatives to the artifacts used so far, nor to document
choices and lessons learned. In other cases engineers have to search in a time-
consuming process for appropriate artifacts, decide about the relevant research

? This work has been supported by the EU-NoE project NESSoS, GA 256980.

2 Marianne Busch, Nora Koch, and Martin Wirsing

questions and repeat evaluations. What could help is a systematic way of col-
lecting information on methods, tools and notations driven by specific research
questions and a subsequent selection.

To ease the tasks of recording information and of getting an overview of
existing artifacts the Common Body of Knowledge (CBK) [1] was implemented
as a semantic Wiki within the scope of the EU project NESSoS [2]. It provides
a useful knowledge base and underlying model, but leaves open the following
questions: (a) How could security-related features also be included as first-class
citizens in the knowledge base? (b) How can we use the approach not only
for recording and comparing features of methods, notations and tools, but also
for documenting the search process? (c) How is the process of data collection
and data analysis specified, to make sure that emerging research results are
comprehensible and valid?

The aim of our evaluation approach is to give answers to these questions and
to provide software and security engineers with mechanisms to ease the selection
and comparison of methods, tools and notations. Our conceptual framework
for evaluating security-related artifacts is called SecEval [3,4]. We selected
a graphical representation for SecEval, which comprises (1) a workflow that
defines the evaluation process, which can be easily customized and extended;
(2) a security context model describing security properties, vulnerabilities and
threats as well as methods, notations and tools; (3) a data collection model,
which records how data is gathered when researchers or practitioners do research
to answer a question; and (4) a data analysis model specifying, how reasoning
on the previously collected data, is done. However, we do not claim to provide a
one-fits-all approach for IT-security (which would overload any model), instead
we introduce an extensible basis.

In this chapter we focus on the evaluation process and its placement within
the software development life cycle. Conversely to [3] in which we presented the
architectural features of SecEval, we go into more details, concerning its re-
quirements, the process supported by SecEval, and the case study. In addition,
we show how the conceptual framework can be extended to cover approaches
like the OWASP’s Risk Rating Methodology [5] and Moody’s method evalua-
tion approach [6]. The applicability of an approach like SecEval is given by
an appropriate tool support and the usability of its user interface. Therefore we
plan an implementation of SecEval as an online knowledge base and present
the requirements of such an implementation.

The remainder of this chapter is structured as follows: Section 2 discuss re-
lated work and background. Section 3 gives an overview of the SDLC for the
development of secure software and systems. Section 4 describes our evaluation
approach SecEval in detail, before Sect. 5 presents its extensions. In Sect. 6 we
validate the approach by a case study in the area of security testing of web ap-
plications. We give an overview of the requirements for a future implementation
of SecEval in Sect. 7 and conclude in Sect. 8.

Systematic Evaluation of Engineering Approaches 3

2 Related Work

In this section, we discuss approaches that focus on security during the Soft-
ware Development Life Cycle (SDLC). We continue with general evaluation ap-
proaches and conclude with security-specific evaluation frameworks.

Secure Software Development Life Cycles. Incorporating security into the SDLC
means to add activities to ensure security features in every phase of SDLC.
Adopting a secure SDLC in an organization’s framework has many benefits and
helps to produce a secure product. These approaches enrich the software devel-
opment process by, e.g., security requirements, risk assessment, threat models
during software design, best practices for coding, the use of static analysis code-
scanning tools during implementation, and the realization of code reviews and
security testing. Hereby, the concrete phases of the SDLC and how they are
arranged is less important than the focus on security during all phases.

Therefore, many companies define their own secure SDLC in order to be
able to ensure the software they developed has as few vulnerabilities as pos-
sible. A main contribution in this area is the Microsoft Security Development
Lifecycle (SDL) [7]. It is a software development process used to reduce soft-
ware maintenance costs and increase reliability of software concerning software
security-related bugs. The SDL can be adapted to be used in a classical waterfall
model, a spiral model, or an agile model.

Besides, cybersecurity standards, as ISO 27001 [8] can be applied. They go
beyond software development and define an information security management
system that requires the specification of security guidelines for policies, processes
and systems within an organization. Important is that most standards do not de-
fine how to increase security, but which areas have to be taken into consideration
in order to create meaningful security guidelines.

Another example for supporting secure development along the SDLC is the
Open Web Application Security Project (OWASP). It comprises, beyond oth-
ers, a set of guides for web security requirements, cheat sheets, a development
guide, a code review and a testing guide, an application security verification
standard (ASVS), a risk rating methodology, tools and a top 10 of web security
vulnerabilities [9].

General Evaluation Approaches. Our approach is based on the so called “Sys-
tematic Literature Review” of Kitchenham et al. [10], which is an evaluation
approach used in software engineering. Their aim is to answer research questions
by systematically searching and extracting knowledge of existing literature. We
go even further using arbitrary resources in addition to available literature, such
as source code or experiments that are carried out to answer a research ques-
tion. The systematic literature review is executed in three main steps: first, the
review is planned, then it is conducted and finally results are reported (this pro-
cess is depicted in deliverable D5.2 [11, Fig. 3.2]). In contrast to Kitchenham’s
approach, our data collection process is iterative, and more specific for a chosen

4 Marianne Busch, Nora Koch, and Martin Wirsing

domain as we specify a detailed structure of the context for which we pose the
research questions.

The CBK (Common Body of Knowledge) [11] defines a model to collect
and describe methods, techniques, notations, tools and standards. We use the
CBK as a starting point for our SecEval’s approach. However, in our model
we do not consider standards and we aggregate the concepts of technique and
method, as an instance model immediately shows whether actions (in our case
called steps) are defined. In contrast to the CBK, SecEval focuses on security-
related features providing a fine-grained model. In addition, it defines a process
for the evaluation of methods, tools and notations. The CBK is implemented
as a semantic Wiki [1] and serves as a knowledge base to which queries can be
posted. Unlike the CBK, SecEval is not implemented yet.

SIQinU (Strategy for understanding and Improving Quality in Use) [12] is
an approach defined to evaluate the quality of a product version. It is based
on the conceptual framework C-INCAMI (Contextual-Information Need, Con-
cept model, Attribute, Metric and Indicator), which specifies general concepts
and relationships for measurement and evaluation. The latter consists of six
modules: measurement and evaluation project definition, nonfunctional require-
ments specification, context specification, measurement design and implementa-
tion, evaluation design and implementation, and analysis and recommendation
specification. Although C-INCAMI is used for the domain of quality evaluation,
we recognized several properties we considered relevant for our approach. Re-
garding the framework specification technique SIQinU provides an evaluation
strategy that is sketched as UML activity diagrams whereas C-INCAMI con-
cepts and relationships are specified as a UML class diagram. We also stick to
use UML for graphical representation of our approach and implemented separa-
tion of concerns through UML packages.

Moody [6] proposes an evaluation approach which is based on experiments
and centers the attention on practitioners’ acceptance of a method, i.e. its prag-
matic success, which is defined as “the efficiency and effectiveness with which
a method achieves its objectives”. Efficiency is related to the effort required to
complete a task and effectiveness to the quality of the result. In [6] practitioners
use methods and afterwards answer questions about perceived ease of use, per-
ceived usefulness and intention to use. This approach is integrated into SecEval
(cf. Sect. 5).

Security-specific Evaluation Approaches. Security-related frameworks often con-
sider concrete software systems for their evaluation. An example is the OWASP
Risk Rating Methodology [5], where the risk for a concrete application or
system is estimated. We added vulnerability-dependent features of the OWASP
model to SecEval, as e.g., the difficulty of detecting or exploiting a vulnerabil-
ity. Features that are related to a concrete system and the rating of a possible
attack are introduced as an extension of SecEval, which can be found in Sect. 5.

The i* [13] metamodel is the basis of a vulnerability-centric requirements en-
gineering framework introduced in [14]. The extended, vulnerability-centric
i* metamodel aims at analyzing security attacks, countermeasures, and re-

Systematic Evaluation of Engineering Approaches 5

quirements based on vulnerabilities. The metamodel is represented using UML
class models.

Another approach that focuses on vulnerabilities is described by Wang et
al. [15]. Their concept model is less detailed than the i* metamodel. They create
a knowledge base that can be queried using the Semantic Web Rule Language
(SWRL) [16]. Unlike our approach, they do not use graphical models.

Moyano et al. [17] provide a Conceptual Framework for Trust Mod-
els which is also represented using UML. As trust is an abstract concept, which
emerges between communication partners, we do not consider it in SecEval.

3 Engineering Secure Software and Systems

In the NESSoS project, we address the development of secure software and sys-
tems starting from the early phases of the secure Software Development Life
Cycle (SDLC). The life cycle on which this section is based [18], considers not
only the traditional phases, such as requirements engineering, design, implemen-
tation, testing and deployment, but also stresses the relevance of service compo-
sition and adaptation. In addition, we have to ensure that the developed software
is secure; therefore we include assurance as an orthogonal topic of paramount
importance. Another aspect is risk and cost awareness, which is a key research
direction we foresee also as transversal since it links security concerns with busi-
ness.

Figure 1 gives an overview of tools, methods and notations for which informa-
tion is available in the NESSoS Common Body of Knowledge (CBK) [1] relating
them to the phases of the SDLC in which they can be used. The graphical rep-
resentation includes both the traditional phases and the orthogonal ones men-
tioned above. On the left bottom corner Fig. 1 includes tools and methods that
correspond to a metalevel as they help developers to build more secure software
along the whole SDLC: On the one hand the Service Development Environment
(SDE) and the CBK, which were already implemented and are available online.
On the other hand two methods: our evaluation framework for security artifacts
(SecEval) and the Microsoft Security Development Lifecycle (SDL) [7].

The CBK provides the descriptions of methods, tools, notations and stan-
dards in the area of engineering secure software; several of the tools described in
the CBK are integrated in the SDE tool workbench, which allows for connecting
and executing tools in a toolchain (see chapter [19]). The amount of these arti-
facts that support the different phases makes it difficult to select the appropriate
ones for a project, lead to the development of the SecEval approach that pro-
vides a systematic evaluation and comparison of methods, notations and tools,
which is further detailed in Sect. 4.

Security Requirements Engineering. The main focus of the requirements engi-
neering phase is to enable the modeling of high-level security requirements of the
system under construction. These requirements can be expressed in terms of con-
cepts such as compliance, privacy or trust and should be subsequently mapped

6 Marianne Busch, Nora Koch, and Martin Wirsing

Requirements

Engineering

Deployment

Design

Implementation

Service

Composition

Testing

Assurance

Risk /Cost

Management

ActionGUI

Arachni

CL-Atse

Avantsaar Orchestrator

CARiSMA

BitBlaze

CORAS Risk Monitor

CORAS Tool

CacheAudit

CoSeRMaS

EOS

Experimental Platform JTrust

Jalapa

MasterDesign

Workbench

MONOPOLY

MagicSNP

MagicUWE

Maude-NPA

Metasploit

NICS CryptoLibrary

Nessus

New Relic Monitoring

Nexpose

OFMC

SDL Threat Modeling

PRRS

Parametric Relationship

Proverif

RIGER

Risk-aware usage control

SATMC

SECTET Framework

Si*

SSG GUI Builder

STS

SYNTHESIS

SAMOA

SCYTHER

Sec-MoSC

SecMER

SDE

Srijan

Tamarin

Tulafale

SecTro

UWE2XACML

VeriFast

WS-Taxi

X-CREATE

XACML2FACPL
Zenoss Core /ZenPacks

ASLan

UML-based pattern

specification language

Expressive Aspect Composition

Language for For UML Stae Diagrmas

FACPL

Misuse Case

Ponder2

STS-ML

SecureUML

Si* Modeling Language

UML4PF

UMLl4SOA

UML Profile for Trust

and Reputation

UMLsec

USDL.SEC

UWE

XACML

Pattern-Based Law Analysis

Pattern-Based Cloud ISMS
Problem-based CCThreadt Analysis

CBK

Abuse Frames

Acr@r : AC reconfiguration @

runtime

CLASP

Coras Method

Change Patterns

Contextual Requirements

GBRAM

ISMS-CORAS

KAOS

LINDDUN

MSRA

ProPAN

PriS

Probabilistic Security

by Contract

RheoStat

Risk Analysis Secure i*

SQUARE

SREF

SREP

SecEval

SecureTropos

SAC

Touchpoints

ATL Verification

Legend

SDLC

phase

Methods

Tools

Notation

Microsoft SDL

Tools & Methods for complete SDLCs

Fig. 1. Overview of Security-Related methods, notations and tools in the SDLC

into more specific requirements that refer to technical solutions. Indeed, it is
important that security requirements are addressed from a higher-level perspec-
tive, e.g., in terms of the actors’ relationships with each other and by considering
security not only at the technological level. It is essential to analyze how secu-
rity may impact on other functional and non-functional requirements, including
Quality of Service/Protection (QoS/P), both at design-time and at run-time.
In this respect, agent-oriented and goal-oriented approaches such as Secure Tro-
pos [20] and KAOS [21] are currently well recognized as means to explicitly take
the stakeholders’ perspective into account.

Elicitation, specification – in particular modeling and documentation – and
verification of security requirements is a major challenge and will be even more
relevant in applications in the Future Internet (FI), as systems are becoming
more autonomous [22]. A significant number of methods has been proposed to
elicit and analyze security requirements, but there is a lack of empirical compar-
ative evaluations that support decisions to favor one over another. The SecEval
approach was developed to close this gap.

For the evaluation it is important to define the relevant research objectives,
i.e. which are the criteria for a comparison and selection. For example: “Which
methods exist that support the elicitation of security requirements for the embed-

Systematic Evaluation of Engineering Approaches 7

ded domain?” or “Which notations can be used for the specification of security
requirements of web applications?”

Design of Secure Software and Services. Separation of concerns is an essential
principle of software design that aims at managing the growing complexity of
software intensive systems [23]. Since the early 2000’s this software engineering
principle has been integrated in model-driven engineering, through a large re-
search and tooling effort. The aim is to provide convenient modeling techniques
that enable developers not only to graphically represent what customers need
regarding security in a concrete and intuitive manner, but also to seamlessly
implement it afterwards in any selected framework.

For example, modeling access control is currently supported in two major
UML-based methods: UMLsec [24] and SecureUML [25]. For web applications
the methods ActionGUI [26] (cf. chapter [27]) and UWE [28] (cf. chapter [29])
also extend UML. Both methods model access control using a variant of Se-
cureUML. Additionally, concepts as authentication and privacy, besides others,
are taken into account.

Alternative domain-specific languages emerged, which allow stakeholders with
heterogeneous backgrounds to model their concerns in the early development
phases. This reduces the cognitive distance between the abstract formal concepts
and domain experts’ knowledge, reduces the risk of errors in requirements elici-
tation and can thus drastically improve the quality of the implemented system.
As an example, recent work integrated security concerns in a business modeling
language to let project managers and company executives reason on security
issues on models expressed in concepts they can apprehend [30]. Other works
include access control policy enforcement mechanisms generated automatically
from high-level requirements models. The policies need to be submitted to checks
in order to ensure security aspects being modeled are preserved in the code [31].

Effective methods and tools to deal with security concerns in design models
are needed to manage the major threat of increasing cost to deploy, fix and
maintain security mechanisms. If we are able to design abstract models for these
concerns, they are much more difficult to understand at the code level, and even
more difficult to maintain, because of all the technical details introduced at the
code level.

The selection of appropriate methods and corresponding tools for the design
of secure applications remains a crucial decision and definitely will influence
other phases of the SDLC. A typical research question could be: “Are there any
tools that support secure web engineering and that can be used by non-experts?”
or “Which UML CASE tools support model-driven development with reduced
learning effort?”

Implementation of Secure Applications. Many security vulnerabilities arise from
programming errors that allow for their exploitation. For example, the OWASP
top ten list [9] for web application security flaws, clearly shows how coding issues
as injection, cross scripting and generally speaking wrong programming practices
are major issues to be tackled. The aim is therefore to use languages and tools

8 Marianne Busch, Nora Koch, and Martin Wirsing

that minimize this threat. This can be partially achieved by emphasizing the
use of well-known programming principles and best practices in secure software
development. In particular, language extensions or security patterns can be used
during development to guarantee adherence to best practices.

The main focus of this research area is not only language based security, se-
cure coding principles and practices but also programming platforms enforcing
security properties. Indeed, reliable programming environments are crucial to
minimize the presence of exploitable vulnerabilities in software-based services.
Research questions for selecting appropriate languages, methods and program-
ming environments are: “What are common security flaws in applications im-
plemented with C++?” and “Which methods and tools exists to harden the
application against these vulnerabilities?”

Testing. The implemented software has to be tested in different ways; both if it
fulfills the structural and functional goals, i.e. it has to be checked whether the
requirements are all achieved and it has to be tested for bugs. In particular, se-
curity testing consists of verifying that data is safe and of ensuring functionality.

The following are typical research questions that could be defined for the se-
lection of appropriate vulnerability scanners for web applications. “Which vul-
nerability scanners are available for testing security features of web applica-
tions?”, “Can these scanners run on Microsoft Windows, be freeware or provide
at least a free trial version and come with a command line or web interface?”

Deployment. When deploying applications at the end of the build process, this
is the appropriate moment to evaluate runtime characteristics of the applica-
tions in the context of the real environment. Deployment reviews for security
focus on evaluating security design and implementation and the configuration
of the application and the network. The objective is to verify if the settings
of the web server are correct like the configuration of file encryption, the use
of authentication and the applied personalization issues. Within the scope of
the Microsoft SDL, a checklist for the deployment reviews is provided, which
includes, e.g., checks for latest patches, installed updates or strong passwords.
A research question that arises in the deployment context is “Which methods
support systematic deployment reviews?”

Service Composition and Adaptation. The capability to achieve trustworthy se-
cure composition is a main requirement in security engineering. Building secure
services that cannot be further composed is an inherent obstacle that needs to
be avoided. The integration and interoperability of services in order to tailor and
enhance new services require adapting the service interfaces at different levels,
including the semantic level. Another aspect to consider include assessing the
trustworthiness of composition of services.

Integration and interoperability of services, is achieved among others using
techniques such as semantic annotations and secure adaptation contracts, as well
as decentralized secure composition and distributed component models. Services
and components need to be more open, with clearer interfaces and need to be

Systematic Evaluation of Engineering Approaches 9

easily accessible from known repositories. Moreover, a research question could
investigate for example techniques that provide security measures for composed
services [18].

Assurance. During the SDLC, there is a need to ensure security from many
perspectives. On the one hand, the security design decisions and the choices
of security mechanisms that are used must fulfil the identified security require-
ments. On the other hand, it is important that engineers are able to select the
appropriate mechanisms for implementing required security features.

As shown in Fig. 1 many tools were implemented to check different secu-
rity aspects of software that is under development. The focus of the assurance
activities are: (1) Security support for service composition languages; (2) Run
time and platform support for security enforcement; and (3) Security support
for programming languages, aiming for verification. For example, tools such as
Dafny [32] (for Dafny programs) and Verifast [33] (for C and Java programs)
address assurance aspects in order to verify correctness, i.e. that software ful-
fills their requirements. A research question regarding methods and tools could
be: “Which are helpful tools for assessing the trustworthiness of a system under
development?”

Risk and Cost Management. The value of security solutions and their return on
investment must be demonstrated from a business oriented perspective. There-
fore, risk analysis plays an important role when selecting security solutions and
implementing security measures. The integration of risk and cost analysis in the
whole SDLC, and an extension of the overall approach towards execution time,
is the necessary response to these needs.

The main objective of the identification and assessment of risks and the
analysis of the costs of associated countermeasures is to exploit an engineering
process that optimizes value-for-money in terms of minimizing effective risk,
while keeping costs low and justified. A set of methods and tools are available
in this context, among others those of the CORAS tool suite [34].

Relevant research questions in the area of security risk and associated cost
management are: “What are most appropriate methodologies for performing risk
management and cost assessment through the complete SDLC?” and “Which
tools support conduction of risk management?”

4 Systematic Evaluation of Engineering Approaches

This section, which is an extension of [3], provides the description of SecEval,
a conceptual evaluation framework for methods, notations and tools supporting
the development of secure software and systems. The framework can be used to
collect security-related data and to describe security-relevant metrics, using them
for reasoning and obtaining the appropriate techniques for a specific project. An
example for a simple evaluation is required to answer the question posted in
the implementation phase: “Which library for authentication should be used?”

10 Marianne Busch, Nora Koch, and Martin Wirsing

A more elaborated one could be the evaluation of risks for a concrete software
system, which is a question that is relevant for all SDLC phases.

The conceptual framework comprises a structural part and a behavioral part,
defined as a model for evaluation and an evaluation process, respectively. For
the graphical representation of the evaluation model a UML class diagram was
chosen; the evaluation process is represented as a UML activity diagram. In the
remainder of the section, we present the requirements engineering work done to
elicit the main steps of the process, followed by the main concepts of SecEval.

4.1 Evaluation Process

We start by eliciting the requirements of such a framework, i.e. which stakehold-
ers are involved, which concepts play a role in secure software and evaluation
of methods, tools and notations, and how those concepts are related. Therefore,
the first step was to name common stakeholders for secure software: security
engineers (i.e. security designers and developers), normal users of the software
and attackers. In some cases, users can attack software without being aware of it,
e.g., when they have a virus installed on their computer. We consider those users
also attackers, as well as developers which are, e.g., trying to smuggle malicious
code into software. Figure 2 depicts stakeholders and use cases in a UML use
case diagram.

We grouped use cases based on their purpose in evaluation and development
use cases. The Evaluation package at the top contains all use cases related to
collecting, reasoning and selecting, e.g., tools, whereas the package Development
at the bottom of the diagram refers to security-related tasks within the SDLC,
such as identification of security requirements, design and implementation of
these security requirements, identification and patch of vulnerabilities. The �in-
clude� dependencies show the order these use cases have in the SDLC: imple-
menting secure software requires having a design, and a design implies that
requirements were elicited beforehand. Both, the attacker and the security en-
gineer can identify vulnerabilities, whereas the former usually attacks them and
the latter tries to patch them, which is modeled using an �extend� dependency.
Those patches can then be installed by users (which also might happen by using
an automatic update function).

From time to time, tasks within the development package require evaluation
activities to respond for example to questions like “Which tool should be used
for gathering security requirements or for designing secure web applications?”.
In fact, for security experts it is helpful to be aware of common security methods
and tools that can be used for a specific task. For further examples of research
questions related to the different SDLC phases the reader is referred to Sect. 3.

Figure 3 depicts the process of working with SecEval, which is represented
as a UML activity diagram. The first step of the process is the data collection
based on the defined research questions. Therefore different sources (as papers,
reports, websites, . . .) are gathered, which are then analyzed in the second step.
This analysis process consists of extracting information from the data collected,
activating some reasoning activities and expressing the results using SecEval’s

Systematic Evaluation of Engineering Approaches 11

Fig. 2. Stakeholders and Use Cases

security context model. Notice that this process has to be adapted (and usually
simplified) for a specific evaluation. Writing down the exact process might not
always be necessary, as many tasks can be executed in parallel or in any order
(indicated by horizontal bars).

In practice the basic ingredients of the evaluation process are a set of tasks
that has to be performed and information pieces relevant for these tasks. Tasks
are represented as UML activities like select queries, execute search/experiments
and define filters. Information pieces are represented as objects in the UML
model showing which input is required for a task and which are the results.
Examples for identified objects are: research question, used resource, query, filter
and criterion.

4.2 Systematic Evaluation – Model Overview

The use cases from our requirements analysis and the objects of the evaluation
process were a starting point to identify relevant concepts related to security for

12 Marianne Busch, Nora Koch, and Martin Wirsing

Fig. 3. SecEval’s Evaluation Process

Systematic Evaluation of Engineering Approaches 13

using and evaluating methods, notations and tools during the software engineer-
ing process. We clustered these concepts in three packages: Security Context,
Data Collection and Data Analysis. Figure 4 shows the model represented as a
UML class diagram that can be instantiated with concrete methods, tools and
notations whenever needed.

Fig. 4. SecEval: Model Overview [3]

4.3 Security Context

The Security Context package provides a structure for the classification of (security-
related) methods, notations and tools together with security properties, vulner-
abilities and threats. Within this package we represent a security feature as a
class element and introduce an abstract class Mechanism from which the classes
Method, Notation and Tool inherit common attributes such as goals, costs,
basedOnStandards, etc. We focus on security aspects, but the model can also
record non-security mechanisms.

In Fig. 5, for convenience enumerations’ texts are grey and the background of
classes which can directly be instantiated is colored. All attributes and roles are

14 Marianne Busch, Nora Koch, and Martin Wirsing

typed; however the types are not shown in the figures due to brevity. The main
characteristics of the class Mechanism are specified as boolean types (can.., has..,
is..). In an implementation of our model, it should be possible to add further
items to the enumerations.

Fig. 5. SecEval: Security Context [3]

A Mechanism is described by a problem statement, by the goals it strives
for, by its costs and by the consequences it implies. Mechanisms can be based
on standards or be standardized themselves. Before applying a mechanism, the
preconditions that are necessary for using it have to be fulfilled. Furthermore,
an estimation regarding technical maturity and adoption in practice should be
given. Several levels of usability can be stated indicating the experience users
need in order to employ a mechanism, e.g., they need to be experts.

The classes Method, Tool and Notation inherit all these properties from
the class Mechanism and have their own characteristics defined by a set of specific
attributes. For example, a Method has some general attributes, such as input,
output and if it is model-driven. These attributes are used to describe the method
at a high level of abstraction. Note that a method or step can be supported by

Systematic Evaluation of Engineering Approaches 15

notations or tools. These facts are represented in the model with corresponding
associations between the classes.

For a Notation, we consider characteristics such as whether the notation is
graphical, textual or based on a tabular representation. We also added a level
of formality, which ranges from informal to formal. Notations can be based on
other notations, for example many context-specific extensions for UML exist.

The description of a Tool is given among others by the information of
languages it is written in, operating systems it supports, frameworks it uses and
licenses under which it is released. A tool can be based on other tools, which is
the case when libraries are used or when plugins are written.

A distinguishing characteristic of our evaluation framework SecEval is the
refinement of methods and tools based on the phases of the SDLC. As far as we
know, no phase-related attributes are needed to describe features of notations.

Figure 6 depicts our Tool class and the abstract class TAreasOfDev, which is
a wildcard for detailed information about the tool in relationship to the phases
of the NESSoS SDLC [35]: requirements, design, implementation, testing, assur-
ance, risk & cost management, service composition and deployment. We added
an additional category to distinguish methods and tools that operate at the run-
time of a system. A tool can eventually support several development phases. The
meaning of attributes should be self-explaining, but is described in more detail
in [36].

Fig. 6. Security Context: Details of Tools

Similarly, a method can be redefined according to the phases in the SDLC
it covers, as depicted in Fig. 7. For example a method, such as Microsoft’s

16 Marianne Busch, Nora Koch, and Martin Wirsing

Security Development Lifecycle [7], can be used as a basis for designing secure
applications, but also covers other phases. In this case, the attributes of the
classes DesignM and ImplementationM and others would be used to describe
this method.

Fig. 7. Security Context: Details of Methods [3]

As seen before, a tool supports a certain method. However, we have not yet
defined the quality of this support. Does the tool fully support the method?
Does it provide partial support? Which features are not supported? We add this
information to the model using the association class ToolSupportedMethod,
as depicted in Fig. 8 with a dotted line. The association class itself is in-
herited from the class Method, thus can redefine its attributes. For instance,
a design tool can partly support a model-driven method (e.g., by facilitating
the modeling process), although it cannot generate artifacts. In this case, De-
signM.canGenerateArtifacts (cf. Fig. 7) would be set to false.

A method can extend other methods, which means it might also change them.
In this case the role extendedMethods should be further specified, we recommend
to add an association class which inherits from the class Method (similar to the
association between method and tool). In this way, it can be exactly described if
and how the original methods are modified. It is also possible that other methods
are used without any changes (role usesMethods).

We adopted the abstract class KnowledgeObject which is used in the
CBK as a super class for all elements which are described by SecEval. In Sec-
Eval, we applied separation of concerns so that only very general descriptions
remain as attributes in a knowledge object, which can be applied to all elements

Systematic Evaluation of Engineering Approaches 17

Fig. 8. Security Context: Connections between Tools, Notations and Methods

(cf. Fig. 5). Therefore, the class KnowledgeObject has associated names, tags
and related sources, which could be any kinds of sources, as publications or
URLs. We represent security issues, such as confidentiality, integrity and pri-
vacy by the class Security Property. The attribute SecurityGoal, which is
denoted by a string, describes the goal of the property. For instance “integrity
refers to the trustworthiness of data or resources” [37].

A Vulnerability is “a weakness that makes it possible for a threat to
occur” [37]. Thus, it endangers security properties. Examples are XSS, SQL
Injection, Buffer Overflows, etc. The objective of certain methods is to detect
vulnerabilities or shield them from being exploited by a threat. Every vulnerabil-
ity is located at least in one location (which is modeled as a UML enumeration).
Furthermore, we include the categorization scheme from OWASP TOP 10 [9]
(which is adapted from the OWASP Risk Rating Methodology [5]) using preva-
lence, impact level, detectability and exploitability. Regarding the latter two
roles, the Difficulty “theoretical” means that it is practically impossible to
detect or exploit a vulnerability (cf. Fig. 5).

A Threat is “a potential occurrence that can have an undesirable effect
on the system assets or resources” [37, p.498]. We treat a threat as a kind of
method which is vicious. At least one vulnerability has to be involved, otherwise
a threat is not malicious (and the other way around), which is denoted by the
multiplicity [1..*]. Additionally, threats can be mitigated by other methods.

4.4 Data Collection

High-quality data is the basis needed to obtain good evaluation results. There-
fore we create a rigorous schema which describes a set of properties that have
to be defined before starting collecting data. The model we build contains all
the relevant features needed during data collection. It is a approach based on
Kitchenham’s systematic literature review [10]. Conversely to Kitchenham’s ap-
proach, we do not restrict ourselves to reviewing literature; we also include in-

18 Marianne Busch, Nora Koch, and Martin Wirsing

formation about tools which cannot always be found in papers, but on websites
and on information which is obtained from benchmarks or experiments.

Data collection comprises among others a search process that can be per-
formed in different ways, e.g., the search can be automated or not, or it can be a
depth-first or a breadth-first search (c.f. Fig. 9). Depth-first means, that the aim
of a search is to extract a lot of detail information about a relatively small topic,
whereas a breadth-first search is good to get an overview of a broader topic.

Fig. 9. SecEval: Data Collection [3]

Similar to Kitchenham’s literature review, research questions are used to de-
fine the corner stones and the goals of the search. Please note that for us the
term “research” does not necessarily refer to scientific research. Queries can be
derived from research questions. As different search engines support different
types of queries, concrete queries are specific for each resource, as e.g., Google
Scholar. Queries can also refer to questions which are used as a basis for experi-
ments (cf. Sect. 6). In addition, resources that will serve as data sources for the
evaluation need to be chosen. If a concrete query matches sources, as papers,
websites or personal answers, we classify the source at least by author and de-
scription (as an abstract) and provide information about the type of source and
at least one reference where to find it. The process of data collection and data
analysis is depicted in Fig. 3.

In Fig. 9 the use of an association class for ConcreteQuery (depicted by a
dashed line) denotes that for each pair of ProcessPhase and UsedResource, the
class ConcreteQuery is instantiated. The concrete search expression is derived
from a general search expression.

For example, the general search expression could be “recent approaches in Se-
curity Engineering” and we want to ask Google Scholar and a popular researcher.

Systematic Evaluation of Engineering Approaches 19

For Google Scholar we could use “"Security Engineering" 2012..2013” as a con-
crete search expression and the concrete expression for asking a researcher could
read: “I’m interested in Security Engineering. Which recent approaches in Secu-
rity Engineering do you know?”

4.5 Data Analysis

Data is collected with the purpose to obtain an answer to research questions
based on the analysis of the data.

Figure 10 depicts relevant concepts for analyzing data. First, we have to
specify which type of strategy we want to use. Are we limited to quantitative
analysis or do we focus on qualitative analysis? Accordingly, one can later refer
to Kitchenham’s checklists for quantitative and qualitative studies [10] to ensure
the quality of the own answers to the research questions.

Fig. 10. SecEval: Data Analysis [3]

The analysis strategy defines which algorithm is employed and makes sure
that the result of the algorithm fits to a criterion regarding meaning and metric.
The algorithm does not have to be executable on a computer, but it might be
implemented by a tool.

Criteria can be grouped by categories. A criterion gives more information
about data values as it defines the data type (string, list of booleans, ..) and the

20 Marianne Busch, Nora Koch, and Martin Wirsing

metric (milliseconds, ..). In addition, a priority can be defined which is useful
when methods, tools or notations should be compared.

Information can be extracted from the sources which were found in the data
collection phase (see �use� dependency starting from the class ExtractedInfo
in Fig. 4), or they can be processed using an analysis algorithm.

For example, a relation IsCompatible NxN ToolIO can be seen as instances
of an analysis algorithm. It expresses that “two notations are compatible if there
exists a tool chain that can transform the first given notation into the second
one” [35]. In this case, the algorithm might contain the depth-first search for a
tool-chain consisting of tools where the output of one tool serves as input for
the second one. The automation of such an algorithm is challenging, because in-
and output of tools may differ.

Besides, a filter can be specified to disqualify results according to certain
criteria as costs or quality. This filter is finer grained than the filter that is defined
by UsedResource’s attribute exclusionCriteria used in the data collection,
which only can be based on obvious criteria, such as the language the source is
written in. In addition to this, the filter for data analysis accesses information
as well as criteria and thus can exclude, e.g., methods, tools or notations from
the evaluation that do not meet a high-priority requirement.

A valid question is how information, criteria and the security context model
fit together. This is shown in Fig. 4: information can be stored in an instance
of our security context model, which provides a sound basis when collecting
data about methods, tools and notations. Consequently, the attributes name and
dataType of a Criterion can be left blank when information is stored in an
instance of our model, as attributes have a name and are typed. However, these
attributes are needed when describing information which is not directly related
to an instance of an artifact or not meaningful without their connection to a
concrete analysis process.

Contrary to the context model, neither the collection of data nor the data
analysis are security specific and thus can be applied in the same way to other
domains.

5 Extensions of SecEval

As stated in the introduction, the core of SecEval cannot include all attributes
which could be needed in the future. Therefore, SecEval’s models are exten-
sible, which means that users can add classes and attributes for their domain
of research. In this section, we introduce an extension to show how SecEval
can be enhanced in order to support OWASP’s Risk Rating Methodology [5]. In
addition, we provide an extension for Moody’s method evaluation approach [6].

OWASP’s Risk Rating. To rate risks for concrete IT systems is a common task
for security engineers. OWASP’s Risk Rating Methodology provides categories
and terms for this task. Figure 11 depicts the extended model whereby added
connections use thick line linkings.

Systematic Evaluation of Engineering Approaches 21

Fig. 11. Inclusion of basic risk evaluation approach

The class Threat, known from the basic context model, inherits its features
to a concrete Attack. The severity of the risk (which is an attribute of Threat)
can be calculated by likelihood multiplied with impact. The likelihood is de-
rived from the factors which describe the vulnerabilities and the threat agents,
whereas the impact is determined by the concrete technical and business-related
consequences. Therefore, each enumerations’ literal is mapped to a likelihood
rating from 0 to 9. For more information the interested reader is referred to [5].

Moody’s Method Evaluation Approach. Experimental approaches are used to
evaluate the success of using a method in practice. Our extension of SecEval
to express Moody’s concepts is shown in Fig. 12: we introduce a Test class that is
connected to at least one method and vice versa. The test uses the method on at
least one example and is executed by TestingParticipants. Each participant
assesses the method using Moody’s evaluation criteria:

– “Actual Efficiency: the effort required to apply a method.
– Actual Effectiveness: the degree to which a method achieves its objectives.
– Perceived Ease of Use: the degree to which a person believes that using a

particular method would be free of effort.
– Perceived Usefulness: the degree to which a person believes that a particular

method will be effective in achieving its intended objectives.

22 Marianne Busch, Nora Koch, and Martin Wirsing

Fig. 12. Method extension using Moody’s method evaluation approach

– Intention to Use: the extent to which a person intends to use a particular
method.

– Actual Usage: the extent to which a method is used in practice” [6].

Usually, the average value of the participants’ results is used as final evalua-
tion result for the method under test.

6 Validation of the Evaluation Approach

The soundness of our SecEval evaluation approach is proved by a case study
on security testing of web applications.

Web applications are the focus of many attacks. Thus, many methods such
as “penetration testing” or “vulnerability scanning” are used to identify security
flaws. These methods are supported by many commercial and open-source tools
and frequently it is not easy to decide which one is the more suitable for the
tests to be performed. In this section, we use our SecEval approach to evaluate
vulnerability scanners for web applications.

Data Collection. According to the SecEval approach the first step consists of
specifying the data that should be collected. This is done by an instance model as
shown in Fig. 13, which depicts instances of the classes we have already defined in
Fig. 9. For example, instances of the class ResearchQuestion define two research
questions, a high-level and a concrete one. We used identical background colors
for instances of the same classes and omitted all name attributes in case a name
(e.g., p3) is given in the header of an instance.

Research question q1 (“Which security-related tools and methods are avail-
able and how do they compare?”, cf. Fig. 13) is very general. In the first process
phase p1, 13 methods and 18 tools were selected [38]. More detailed information
was gathered in the second process phase p2 about: vulnerability scanning, pen-
etration testing, fuzzing and the classification into black- grey- and white-box
testing. Examples for tools are WSFuzzer, X-Create and WS-Taxi, just to men-
tion a few. As we already added most of the methods and tools we found to the
CBK [1], we focus on q2 in this section.

Systematic Evaluation of Engineering Approaches 23

Fig. 13. Case Study: Data Collection

Research question q2 (“Which vulnerability scanners are available for testing
security features of web applications?”) is a typical question which could be
asked by security engineers working in a company. The “sources” (i.e., tools)
we selected for analysis were [39]: a) Acunetix Web Vulnerability Scanner1, b)
Mavituna Security - Netsparker2, c) Burp Scanner3, d) Wapiti4, e) Arachni5, f)
Nessus6, g) Nexpose7 and h) Nikto8.

1 Acunetix. http://www.acunetix.com
2 Netsparker. https://www.mavitunasecurity.com/netsparker
3 Burp Scanner. http://portswigger.net/burp/scanner.html
4 Wapiti. http://www.ict-romulus.eu/web/wapiti
5 Arachni. http://www.arachni-scanner.com
6 Nessus. http://www.tenable.com/de/products/nessus
7 Nexpose. https://www.rapid7.com/products/nexpose
8 Nikto. http://www.cirt.net/Nikto2

http://www.acunetix.com
https://www.mavitunasecurity.com/netsparker
http://portswigger.net/burp/scanner.html
http://www.ict-romulus.eu/web/wapiti
http://www.arachni-scanner.com
http://www.tenable.com/de/products/nessus
https://www.rapid7.com/products/nexpose
http://www.cirt.net/Nikto2

24 Marianne Busch, Nora Koch, and Martin Wirsing

The instance experienceWithTestScenario describes how the data is gath-
ered by testing the vulnerability scanners. Please note that SecEval does not
impose the completion of the data collection phase before the data is analyzed.
This means that the tests were partly executed on tools which were later clas-
sified as inappropriate. This becomes clear when we think of how evaluation
works in practice: sometimes we have to collect a bunch of data before we ob-
serve information which, e.g., leads to the exclusion of a tool from the result
set.

Data Analysis. The analysis phase consists in defining the analysis strategy
and selecting a filter that enforces the requirements (limitations) defined for
question q2. Figure 14 depicts instances of the data analysis model we defined
in Fig. 10.

Fig. 14. Case Study: Data Analysis – Results [3]

Before going into detail about particular results of our experiments, we
first take a look at the overall result regarding our research question q2. Fig-
ure 14 thus depicts an instance of the class ProcessedInfo, which is called
weightedResultValues.

Only four tools passed our filter: Arachni and Nikto, which provide command-
line interfaces and Nessus and Nexpose, which also provide web interfaces. From
our list of tools from above, the trial of a) only allows to scan predefined sites.
Tools b) and c) do not support a command line or web interface in the versions
that are free. A run of tool d) on our test target Multidae9 took six hours.

Apart from information available online, we experimented with the tools
that passed the filter, in order to obtain data for our tool evaluation (q2). We
evaluated the following criteria (and weighted them as indicated in the brackets,
cf. queryForTestScenario):

– Installation simplicity (0.5)
Do any problems occur during installation?

9 NOWASP (Mutillidae). http://sourceforge.net/projects/mutillidae

http://sourceforge.net/projects/mutillidae

Systematic Evaluation of Engineering Approaches 25

– Costs (1)
How much do the tool cost? Is it a one-time payment or an annual license?

– Processor load (1)
How high is the CPU load while running the scanner

– Clarity and intuitiveness (1)
Is the tool easy to understand, clearly structured and user-friendly

– Run duration (1)
How long does a scan take?

– Quality of the report (2)
How detailed is the report of the scan? Which information does it contain?

– Number of detected vulnerabilities (4)
How many vulnerabilities does the tool detect on our test environment?

As we can see in Fig. 14, an algorithm is involved, which calculates results
according to a rating. The rating is depicted in Fig. 15.

Fig. 15. Case Study: Data Analysis – Ratings

Lower factors of a criterions’ priority denote that we consider the criterion
less important. Table 1 contains the measured results as well as the average10

and weighted11 results.
In addition, we show how intermediate values of our tests could be described

in our data analysis model in Fig. 16, as e.g., the costs of the tools or the
operating systems it runs on. Concrete instances of Information classes are not
depicted; the interested reader is referred to [39].

10 AVG: average
11 WAVG: weighted average according to ratings

26 Marianne Busch, Nora Koch, and Martin Wirsing

Tool Inst. Costs CPU Clarity Time Vuln. Report AVG10 WAVG11

Nessus 1 2 2 1 4 1 2 1,86 1,86

Arachni 1 1 4 4 2 1 3 2,29 2,42

Nexpose 4 4 1 2 3 3 1 2,57 2,10

Nikto 1 1 3 4 1 4 4 2,57 3,19

Table 1. Case Study: Final Tool Ranking (adapted from [39])

Fig. 16. Case Study: Data Analysis – Values

Security Context Model. We integrated all four tools into the NESSoS tool work-
bench, called SDE [40]. If they are executed from within the SDE, URL and port
of the web application under test have to be provided by the user. To try out the
vulnerability scanners it is possible to use Multidae as a target, as we did above.
Multidae comes with Metasploitable12, an intentionally vulnerable Linux virtual
machine. Therefore, the default configuration for the integrated SDE tools point
to a local Multidae instance, but can be changed at any time.

As SecEval’s context model is more detailed, we modeled the context of
vulnerability scanning of web applications and two of the tested tools: Nessus
and Nikto. Figure 17 shows an instance diagram of the context model, which we
have already depicted in Fig. 5. The association between vulnerabilities, as well

12 Metasploitable. http://www.offensive-security.com/metasploit-unleashed/

Metasploitable

http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.offensive-security.com/metasploit-unleashed/Metasploitable

Systematic Evaluation of Engineering Approaches 27

as further supported methods are not depicted in Fig. 5; the interested reader
is referred to the model example that can be downloaded [36].

The vulnerabilities that are modeled are the top 3 from OWASP’s top 10
project 2013 [9]. Vulnerabilities may be caused by other vulnerabilities, for ex-
ample invalidated input can lead to injection vulnerabilities.

We recommend using additional classes for extensions, such as a class to
detail a test run, using attributes as run duration or processor load. Although
building the instance model was straight forward, our experience with SecEval
and the UML CASE tool MagicDraw showed us that the layout is not inviting
to read the containing information. Consequently, we are looking forward to a
future implementation of SecEval as a kind of semantic Wiki, as described in
the following section.

7 Towards an Implementation of SecEval

Currently, we are implementing the concept of SecEval as a flexible web appli-
cation. The aim is to provide a Wiki-like knowledge base for software and security
engineers as well as for developers. Advantages of a web-based implementation of
SecEval would be that connections to existing elements (like other methods or
vulnerabilities), can be added without building the knowledge base from scratch
and that data sets of previous evaluations remain available for future research.

The SecEval Wiki will support the following use cases: (1) viewing Knowl-
edge Objects (knowledge objects), (2) editing knowledge objects, (3) import-
ing external information and (4) searching for information to answer research
questions, which can result in executing a tool-supported SecEval evaluation
process.

Viewing knowledge objects. For the implementation of SecEval’s context model,
we experiment with a system that provides three views on each knowledge object:

– A tabular view that shows attributes’ values, grouped by classes (presented
as boxes) of SecEval’s models. Which attributes are shown can be defined
by the user. This view is especially useful for comparing knowledge objects.

– A UML view that presents an instance model of SecEval’s UML model.
The advantage of this view is that it is easy to examine links between several
knowledge objects.

– A view that shows continuous text, enriched by boxes that can be placed
between paragraphs or beside the text, similar to Wikipedia13.

The user should be able to switch between these views at any time.

Editing knowledge objects. When creating a new element in the Wiki, the page
is empty at first and shown in the continuous text view so that text can by
written and structured by headings and paragraphs immediately, like in most

13 Wikipedia. https://www.wikipedia.org/

https://www.wikipedia.org/

28 Marianne Busch, Nora Koch, and Martin Wirsing

Fig. 17. Case Study: Instances of the Context Model (excerpt) [3]

Systematic Evaluation of Engineering Approaches 29

Wikis. Additionally, on the side of the screen, common attributes are presented
in a sidebar which can be dragged onto the Wiki page in order to fill them with
actual values and to arrange them within the text or in boxes. These attributes
correspond to attributes from SecEval models. For example, the user can spec-
ify some attributes of the Tool class, as technical requirements, licenses or the
language the tool is written in.

Usually, information about knowledge objects has already been stored in
continuous text form. In such a case, the application should allow to easily mark
text and to click on an attribute on the sidebar. The attribute is then linked to
the text so that it changes automatically when the text is altered. It is important
to store previous versions not only for continuous text, but also for attributes,
as both can easily be changed or deleted.

For the sidebar (which is resizable up to full-screen) it is also useful to im-
plement different views, for example:

– a UML view, showing the full SecEval class diagrams for experts. This is
the counterpart to the instance view for a concrete entry of the Wiki.

– an auto-suggestion view in which single attributes are shown according to
an attribute-based suggestion system. This system can then recommend at-
tributes which seem to be useful in the current context, as e.g., attributes of
testing tools, as soon as it becomes clear that a user describes a tool from
the domain of testing.

Recommendation includes that the system needs to explain rules inferred by
SecEval, as e.g. that it is useful to describe a tool and a corresponding notation
in two separate entries, even if the notation has only been used by this tool so
far. A focus is on the connection between several knowledge objects in our Sec-
Eval system and on the possibility to add data which is not only associated
with one knowledge object, as e.g., evaluation results.

Importing external information. Another useful feature is syndication, i.e. to be
able to insert text from other web pages, as from Wikipedia or from vulnerability
management systems, which are correctly cited and updated automatically. This
task could be eased by step-by-step wizards and good attribute recommendation
according to the attributes selected so far and the information provided. For
example, if the user inserts the URL of a Wikipedia article, the article is displayed
in a window that allows selecting passages and to transfer them to the SecEval
system immediately, along with a linked cite.

Another requirement is the import of text from PDF files. Hereby, a challenge
is to deal with licensed books or papers, because citing small passages is usually
allowed, whereas publishing the whole document in the web is prohibited.

Searching for information to answer research questions. In addition to the im-
plementation of SecEval’s context model, the application should support the
process of collecting and analyzing data to answer a concrete research question.

Simple questions can be answered using a full-text search. More complex
questions can involve several knowledge objects and their attributes, so that the

30 Marianne Busch, Nora Koch, and Martin Wirsing

search function has to be able to rely on the associations between knowledge
objects stored in the knowledge base.

If the requested information cannot be found in the knowledge base, a wizard
might suggest using SecEval’s process to collect and analyze information. Ide-
ally, the wizard allows jumping between several process steps while offering to
record information for SecEval’s data collection and data analysis models. The
users can decide whether their research question should be public14. At the end
of a complex evaluation process, artifacts as research questions, used sources and
the concrete approach of a research can be published to save time and money in
case a similar question will arise again in the future.

A general requirement for our implementation is the usability of the interface.
For example, the CBK provides a complex search function, but it turned out that
it is rarely used, because attributes have to be selected by using their technical,
short names. For SecEval, it might be helpful to present descriptions and to
suggest attributes according to a catalogue that learns how users tend to name
a concept. Ideally, this search does not require a complex interface, but supports
the user with auto-completion or wizards when typing a query into a text box.

8 Conclusions

We presented a conceptual framework, called SecEval, for the structured eval-
uation of so-called knowledge objects – methods, tools, notations, security prop-
erties, vulnerabilities and threats – in the area of secure software. SecEval is
based on the structured literature review by Kitchenham et al. [10] and inspired
by the C-INCAMI framework of Becker et al. [12], to name a few. Our approach
is designed to ease the process of doing research or obtaining pragmatic an-
swers in the area of security whether the research question aims at scientific or
engineering issues.

SecEval is represented as a UML model and follows the separation of con-
cerns principles. These concerns are:

– An evaluation process that specifies the set of tasks and information pieces
needed to evaluate methods, tools and notation in the security area.

– A security context model for describing features of the security-relevant
knowledge objects.

– A data collection model that records the way how data is gathered. It mainly
comprises the research question, collection process, used resources and the
queries for finding sources that might be used to answer the question.

– An analysis model which defines the analysis strategy and the filters and
algorithms it uses on the collected sources. Furthermore, the data structure
for information is exactly specified, regardless of whether the data is to be
stored in the security context model or not.

14 Discussions can also help to answer a research question, therefore it is desirable
to connect the Wiki with question/answer systems as, e.g., Stackoverflow http:

//stackoverflow.com/.

http://stackoverflow.com/
http://stackoverflow.com/

Systematic Evaluation of Engineering Approaches 31

An advantage of our context model is that it can describe tools and meth-
ods according to their placement within the software development life cycle.
In case SecEval does not provide all attributes for expressing elements of re-
lated domains, it can easily be extended, as demonstrated for Moody’s method
evaluation approach and OWASP’s Risk Rating Methodology.

To validate our SecEval approach, we performed a case study about meth-
ods and tools from the area of security focusing on a research question about the
selection of vulnerability scanners for web applications. For the case study all
elements were presented as UML objects. To improve the practicability of our
approach, we envisioned how an implementation of a SecEval knowledge base
might look like and which requirements might be important.

Summarizing, SecEval provides a sound basis for evaluating research ques-
tions related to secure software engineering. This might ease the process of doing
research in the area of security no matter whether a research question aims at
scientific or engineering issues. In the future we plan to evaluate further research
questions using SecEval, describing knowledge objects that are security-related
and those that are related to other domains. Besides, it would be interesting to
implement SecEval as a smart and flexible knowledge base and to execute
empirical studies to measure the utility of our framework.

References

1. CBK: Common Body of Knowledge. http://nessos-project.eu/cbk (2013)
2. NESSoS: Network of Excellence on Engineering Secure Future Internet Software

Services and Systems. http://nessos-project.eu/ (2014)
3. Busch, M., Koch, N., Wirsing, M.: SecEval: An Evaluation Framework for Engi-

neering Secure Systems. MoK’14 (2014)
4. Busch, M., Koch, N.: NESSoS Deliverable D2.4 – Second release of Method and

Tool Evaluation. (2013)
5. OWASP Foundation: OWASP Risk Rating Methodology (2013) https://www.

owasp.org/index.php/OWASP_Risk_Rating_Methodology.
6. Moody, D.L.: The method evaluation model: a theoretical model for validating

information systems design methods. In Ciborra, C.U., Mercurio, R., de Marco,
M., Martinez, M., Carignani, A., eds.: ECIS. (2003) 1327–1336

7. Lipner, S., Howard, M.: The Trustworthy Computing Security Development Life-
cycle. Developer Network - Microsoft (2005) http://msdn.microsoft.com/en-us/
library/ms995349.aspx#sdl2_topic2_5.

8. ISO/IEC: 27001: Information technology – Security techniques – Information se-
curity management systems – Requirements. Technical report, International Orga-
nization for Standardization (ISO) and International Electrotechnical Commission
(IEC) (2013)

9. OWASP Foundation: OWASP Top 10 – 2013 (2013) http://owasptop10.

googlecode.com/files/OWASPTop10-2013.pdf.
10. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Re-

views in Software Engineering. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report (2007)

11. Beckers, K., Eicker, S., Heisel, M., (UDE), W.S.: NESSoS Deliverable D5.2 –
Identification of Research Gaps in the Common Body of Knowledge. (2012)

http://nessos-project.eu/cbk
http://nessos-project.eu/
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic2_5
http://msdn.microsoft.com/en-us/library/ms995349.aspx#sdl2_topic2_5
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf

32 Marianne Busch, Nora Koch, and Martin Wirsing

12. Becker, P., Papa, F., Olsina, L.: Enhancing the Conceptual Framework Capabil-
ity for a Measurement and Evaluation Strategy. 4th International Workshop on
Quality in Web Engineering (6360) (2013) 1–12

13. RWTH Aachen University: i* notation http://istar.rwth-aachen.de/.
14. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering

framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requirements Engineering 15(1) (2010) 41–62

15. Wang, J.A., Guo, M.: Security data mining in an ontology for vulnerability man-
agement. In: Bioinformatics, Systems Biology and Intelligent Computing, 2009.
IJCBS ’09. International Joint Conference on. (2009) 597–603

16. RWTH Aachen University: SWRL: A Semantic Web Rule Language Combining
OWL and RuleML (2004) http://www.w3.org/Submission/SWRL/.

17. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust
models. In Fischer-Hübner, S., Katsikas, S., Quirchmayr, G., eds.: 9th International
Conference on Trust, Privacy & Security in Digital Business (TrustBus 2012).
Volume 7449 of Lectures Notes in Computer Science., Vienna, Springer Verlag,
Springer Verlag (2012) 93–104

18. Fernandez, C., Lopez, J., Moyano, F.: NESSoS Deliverable D4.2 – Engineering Se-
cure Future Internet Services: A Research Manifesto and Agenda from the NESSoS
Community. (2012)

19. Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F., Marchetti, E.: A Toolchain for
Designing and Testing Access Control Policies. In Heisel, M., Joosen, W., Lopez,
J., Martinelli, F., eds.: Advances in Engineering Secure Future Internet Services
and Systems. Volume LNCS 8431., Springer (2014)

20. Giorgini, P., Mouratidis, H., Zannone, N.: Modelling Security and Trust with
Secure Tropos. In: In Integrating Security and Software Engineering: Advances
and Future Vision. (2006)

21. A., D., van Lamsweerde A., S., F.: Goal-directed Requirements Acquisition. 20(1-
2) (1993) 3–50

22. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems 8(3) (2004) 203–236

23. Gedik, B., Liu, L.: Protecting Location Privacy with Personalized k-anonymity:
Architecture and Algorithms. 7(1) (2008) 118

24. Jürjens, J.: Secure Systems Development with UML. Springer (2004)
25. Basin, D., Doser, J., Lodderstedt, T.: Model Driven security: From UML Models to

Access Control Infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1) (2006)
39–91

26. Basin, D., Clavel, M., Egea, M., Garcia de Dios, M., Dania, C.: A model-driven
methodology for developing secure data-management applications. Software Engi-
neering, IEEE Transactions on PP(99) (2014) 1–1

27. Garćıa de Dios, M.A., Dania, C., Basin, D., Clavel, M.: Model-driven Development
of a Secure eHealth Application. In Heisel, M., Joosen, W., Lopez, J., Martinelli,
F., eds.: Advances in Engineering Secure Future Internet Services and Systems.
Volume LNCS 8431., Springer (2014)

28. Busch, M., Knapp, A., Koch, N.: Modeling Secure Navigation in Web Information
Systems. In Grabis, J., Kirikova, M., eds.: 10th International Conference on Busi-
ness Perspectives in Informatics Research. LNBIP, Springer Verlag (2011) 239–253

29. Busch, M., Koch, N., Wirsing, M.: Modeling Security Features of Web Applications.
In Heisel, M., Joosen, W., Lopez, J., Martinelli, F., eds.: Advances in Engineering
Secure Future Internet Services and Systems. Volume LNCS 8431., Springer (2014)

http://istar.rwth-aachen.de/
http://www.w3.org/Submission/SWRL/

Systematic Evaluation of Engineering Approaches 33

30. Goldstein, A., Frank, U.: Augmented Enterprise Models as a Foundation for Gen-
erating Security-related Software: Requirements and Prospects. In: Model-Driven
Security Workshop in conjunction with MoDELS 2012 (MDsec 2012), ACM Digital
Library (2012)

31. Busch, M., Koch, N., Masi, M., Pugliese, R., Tiezzi, F.: Towards Model-Driven
Development of Access Control Policies for Web Applications. In: Model-Driven
Security Workshop in conjunction with MoDELS 2012 (MDsec 2012), ACM Digital
Library (2012)

32. Microsoft: Dafny. https://research.microsoft.com/en-us/projects/dafny/

(2014)
33. Jacobs, B., Smans, J., Piessens, F.: VeriFast. http://www.cs.kuleuven.be/

~bartj/verifast/ (2013)
34. CORAS method: CORAS tool. http://coras.sourceforge.net/ (2013)
35. Busch, M., Koch, N.: NESSoS Deliverable D2.1 – First release of Method and Tool

Evaluation. (2011)
36. Busch, M.: SecEval – Further Information. http://www.pst.ifi.lmu.de/~busch/

SecEval (2014)
37. Bishop, M.: Computer Security: Art and Science. 1st edn. Addison-Wesley Pro-

fessional (2002)
38. Schreiner, S.: Comparison of Security-related Tools and Methods for Testing Soft-

ware (2013) Bachelor Thesis.
39. Lacek, C.: In-depth Comparison and Integration of Tools for Testing Security

features of Web Applications (2013) Bachelor Thesis.
40. Busch, M., Koch, N.: NESSoS Deliverable D2.3 – Second Release of the SDE for

Security-Related Tools. (2012)

https://research.microsoft.com/en-us/projects/dafny/
http://www.cs.kuleuven.be/~bartj/verifast/
http://www.cs.kuleuven.be/~bartj/verifast/
http://coras.sourceforge.net/
http://www.pst.ifi.lmu.de/~busch/SecEval
http://www.pst.ifi.lmu.de/~busch/SecEval

	Evaluation of Engineering Approaches in the Secure Software Development Life Cycle
	Introduction
	Related Work
	Engineering Secure Software and Systems
	Systematic Evaluation of Engineering Approaches
	Evaluation Process
	Systematic Evaluation – Model Overview
	Security Context
	Data Collection
	Data Analysis

	Extensions of SecEval
	Validation of the Evaluation Approach
	Towards an Implementation of SecEval
	Conclusions

