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Abstract. Collective autonomic systems are adaptive, open-ended,
highly parallel, interactive and distributed software systems. Their key
features are so-called self-* properties, such as self-awareness, self-
adaptation, self-expression, self-healing and self-management. We pro-
pose a software development life cycle that helps developers to engineer
adaptive behavior and to address the issues posed by the diversity of self-
* properties. The life cycle is characterized by three feedback loops, i.e.
based on verification at design time, based on monitoring and awareness
in the runtime, and the feedback provided by runtime data to the design
phases. We illustrate how the life cycle can be instantiated using specific
languages, methods and tools developed within the ASCENS project. In
addition, a pattern catalog for the development of collective autonomic
systems is presented to ease the engineering process.
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1 Introduction

Software is increasingly used to model or control massively distributed and dy-
namic collective autonomic systems. These systems consist of a set of usually
open-ended, highly parallel and interactive components, which operate in highly
variable, even unpredictable, environments. Their key features are so-called self-
* properties, such as self-awareness, self-adaptation, self-expression, self-healing
and self-management.

Self-awareness is concerned with knowledge the system has about the sys-
tem’s behavior and the environment, which may be centrally held or distributed
in nature. However, in designing autonomic self-aware systems, it is useful to ex-
plicitly and separately consider the process of determining systems actions as a
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result of this knowledge. This process is called self-adaptation or self-expression.
In particular, if the autonomic system is recovering from some failure, the term
self-healing is used. We distinguish also a self-management property as the abil-
ity collective autonomic systems have to manage local and global knowledge in
order to be aware of their own state and the state of the environment. The knowl-
edge is used for reasoning, learning and adapting at runtime to the system’s and
environmental changes.

One of the main challenges for software engineers is then to find reliable
methods and tools to build the software that implement those self-* features re-
quired by collective autonomic systems. The main aim of the ASCENS project3

is to tackle these issues using an engineering approach based on service com-
ponents and ensembles. Ensembles are dynamic groups of components that are
formed on demand to fulfill specific goals by taking into account the state of the
(changing) environment they are operating in. One distinguishing characteristic
of the approach is the use of formal methods to guarantee that the behavior of
the software complies to the specifications.

In this chapter we present the Ensemble Development Life Cycle (EDLC)
that covers the full design and runtime aspects of collective autonomic systems.
It is a conceptual framework that defines a set of phases and their interplay
mainly based on feedback loops as shown in Figure 1. The life cycle comprises a
“double-wheel” and two “arrows” between the wheels providing three different
feedback control loops: (1) at design time, (2) at runtime and (3) between the
two of them allowing for the system’s evolution. The design feedback control loop
enables continuous improvement of models and code due to changing require-
ments and results of verification or validation. The runtime feedback control loop
implements self-adaptation based on awareness about the system and its envi-
ronment. Finally, the evolution feedback control loop provides the mechanisms
to change architectural models and code on the basis of the runtime behavior of
the continuous evolving system.

We illustrate the EDLC using methods and tools, mostly developed within
the ASCENS project. Examples are SOTA [2] for requirements engineering of
awareness and adaptive issues, SCEL ([31], Chapter I.1 [53]) for modeling and
programming, SBIP ([9], Chapter I.3 [28]) for verification, SPL ([20], Chap-
ter II.5 [18]) for monitoring, Iliad (Chapter II.4 [41]) as awareness-engine, and
JDEECo [22] and JRESP (Chapter I.1 [53]) as runtime frameworks. These meth-
ods and tools are specifically designed to capture the self-* features of autonomic
systems.

When complex collective autonomic systems are developed, an important
aspect of the development process is the reusability of design choices, i.e. the
advantage to identify architectural schemes that can be reused at component
and ensemble level. We have defined a pattern catalog of interrelated patterns
–a so-called pattern language. Such a pattern language enables developers to
choose different design elements making the resulting models, implementation
and selected verification techniques more understandable. We illustrate the pat-

3 ASCENS website: http://www.ascens-ist.eu/
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Fig. 1. Ensembles Development Life Cycle (EDLC).

tern catalog with a set of architectural patterns focusing mainly on the feedback
control loops they support.

The structure of the chapter is as follows: Section II provides an overview
of the EDLC. Section III focuses on the feedback control loops and their rela-
tionship to the phases of the EDLC. Section IV present a pattern language for
ensemble development and a set of pattern examples. Section V relates our work
to other relevant software engineering approaches, and Section VI concludes
with a summary and future challenges regarding the engineering of collective
autonomic systems.

2 Software Development Life Cycle for Ensembles

The development of collective autonomic systems goes beyond addressing the
classical phases of the software development life cycle like requirements elici-
tation, modeling, implementation and deployment. Engineering these complex
systems has also to tackle aspects such as self-* properties like self-awareness
and self-adaptation. Such properties have to be considered from the beginning
of the development process, i.e. during elicitation of the requirements. Therefore,
we need to capture how the system should be adapted and how the system or
environment should be monitored in order to make adaptation possible.

Models are usually built on top of the elicited requirements, mainly following
an iterative process, in which also validation and verification in early phases of
the development are highly recommended, in order to mitigate the impact of
design errors. A relevant issue is then the use of modeling and implementation
techniques for adaptive and awareness features. Our aim is to focus on these
distinguishing characteristics of collective autonomic systems along the whole
development cycle.
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We propose a “double-wheel” life cycle to sketch the main aspects of the
engineering process as shown in Figure 1. The “first wheel” represents the design
or offline phases and the second one represents the runtime or online phases.
Both wheels are connected by the transitions deployment and feedback.

The offline phases comprise requirements engineering, modeling and program-
ming, and verification and validation. We emphasize the relevance of mathemat-
ically founded approaches to validate and verify the properties of the collective
autonomic system and enable the prediction of the behavior of such complex
software. This closes the cycle providing feedback for checking the requirements
identified so far or improving the model or code.

The online phases comprise monitoring, awareness and self-adaptation. They
consist of observing the running system and the environment, reasoning on such
observations and using the results of the analysis for adapting the system and
providing feedback that can be used in the offline activities.

Transitions between online and offline phases can be performed as often as
needed throughout the system’s evolution feedback control loop, i.e. data ac-
quired during monitoring at runtime are fed back to the design cycle to provide
information for the system redesign, verification and redeployment.

The process defined by the EDLC can be refined by providing details on the
involved stakeholders, the methods and tools they will use in the development as
well as the input needed and the output produced in each stage. This will ease the
selection of the most appropriate tools for each collective autonomic system to
be build. Process modeling languages can be used to specify these details: Either
general workflow-oriented modeling languages such as UML activity diagrams4,
and BPMN5, or a Domain Specific Language (DSL) such as the OMG standard
Software and Systems Process Engineering Metamodel (SPEM)6 and the Multi-
View Process Modeling Language (MV-PML) developed by NASA [13].

Figure 2 shows an example of a process model specified in SPEM for the
requirements engineering steps of the e-Mobility scenario described in [24]. It
illustrates the relationships between stakeholders like the requirements engineer,
actions such as the definition of adaptation goals and process inputs like in-
terviews and results such as the SOTA model and the IRM model. Aspects of
the runtime phases of the development process of this scenario are shown in
Fig. 3 focusing on the monitoring and adaptation activities that use JDEECo
components and enables feedback to the phases of the design ”wheel”.

3 Engineering Feedback Control Loops

Feedback control loops are the heart of any collective autonomic system provid-
ing the generic mechanism for adaptation and enabling the creation of flexible
runtime solutions by monitoring the subsystem and applying corrections in or-
der to approach the goals. Moreover they allow a system to become self-aware

4 UML website: http://www.uml.org/
5 BPMN website: http://www.omg.org/spec/BPMN/2.0/
6 SPEM website: http://www.omg.org/spec/SPEM/2.0/
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Fig. 2. E-Mobility Scenario Development Process: Requirements Engineering Aspects.

with respect to the quality of its operations, and self-healing if there are any
problems. This is achieved by approaches like MAPE-K [30] that collect appro-
priate runtime data and analyzing it, and by planning and executing adaptation
strategies.

Engineering approaches for building collective autonomic systems need to
consider feedback control loops from the beginning on and all over the devel-
opment life cycle. This includes requirements that make such loops necessary,
the influence loops have on architecture, deployment aspects to be taken into
account, additional features to be supported as monitoring and awareness of the
system’s and environmental behavior, and implementation of adaptation mech-
anisms.

These engineering features are considered by the EDLC presented in the
previous section, which itself is composed of three feedback loops: at design time,
at runtime, and from runtime back to improve the design with the associated
redeployment of the evolving software. The development of collective autonomic
system offers several engineering challenges that are addressed by the methods,
techniques and tools that have been developed in the ASCENS project. The
remainder of this section focus on the feedback loops and provides examples of
ASCENS approaches that can be used in the different phases of the development
life cycle within each feedback loop.
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Fig. 3. E-Mobility Scenario Development Process: Runtime Aspects.

3.1 Design Cycle

The “design wheel” comprises three phases: requirements engineering, modeling
and programming, and verification and validation. At first glance it resembles
a traditional software development life cycle. However, an autonomic ensemble,
has to be aware of other autonomic ensembles and take into account its envi-
ronment. It has to provide and consume knowledge, manage policies specified in
form of goals, rules and/or constraints and infer lower-level actions [45]. These
features of collective autonomic systems have to be addressed in the stages prior
to programming, too, i.e. requirements engineering and modeling. In particu-
lar, goal-oriented approaches are in these stages promising techniques used for
requirements elicitation and specification. Particularly challenging are also the
validation and verification of large-scale autonomic systems as it will be harder
to anticipate their environment.

Requirements Engineering Traditionally, software engineering divides re-
quirements in two categories: functional requirements (what the system should
do) and non-functional requirements (how the system stands for achieving its
functional requirements in terms of performance, quality of service, etc.). In the
area of adaptive systems, and more in general of open-ended systems, both func-
tional and non-functional requirements are better expressed in terms of “goals”
[52]. A goal, in most general terms, represents a desirable state of the affairs that
a software component or software system, aims to achieve. In fact, a self-adaptive
system/component should be engineered not simply to “achieve” a functionality
or state of the affairs, but rather to “strive to achieve” such functionality per-
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haps in several steps, i.e., be able to take self-adaptive decisions and actions so
as to preserve its capability of achieving despite contingencies.

Within the ASCENS project a couple of different goal-oriented approaches
were proposed to elicitate and specify the requirements of collective autonomic
systems, i.e. State of the Affairs (SOTA), General Ensemble Model (GEM),
Invariant Refinement Method (IRM) and Autonomy Requirements Engineering
(ARE) that we briefly sketch below.

The SOTA approach [2] proposes an extension of existing goal-oriented re-
quirements engineering approach that integrates elements of dynamic systems
modeling. SOTA models the entities of a self-adaptive system as if they were
immersed in n-dimensional space S, each of the n dimensions of such space rep-
resenting a specific aspect of the current situation of an entity/ensemble and of
its operational environment. As the entity executes, its position in S changes
either due to its specific actions or because of the dynamics of environment.
Thus, we can generally see this evolution of the system as a movement in S.
For example, in the ASCENS e-mobility scenario described in [24], the space S
includes the spatial dimensions related to the street map, but also dimensions
related to the current traffic conditions, the battery conditions, etc. Once the
SOTA space is defined, a goal is specified in SOTA; for instance, a goal for a ve-
hicle could imply reaching a position in the SOTA space that, for the dimensions
representing the spatial location, trivially represents the final destination and for
the dimension representing the battery condition may represent a charging level
ensuring safe return.

Along these lines, the activity of requirements engineering for self-adaptive
systems in SOTA implies: (i) identifying the dimensions of the SOTA space,
which means modeling the relevant information that a system/entity has to
collect to become aware of its location in such space, a necessary condition
to recognize whether it is correctly behaving and adapt its actions whenever
necessary; (ii) identifying the set of goals for each entity and for the system as a
whole, which also implies identifying when specific goals get activated and any
possible constraint on the trajectory to be followed while trying to achieve such
goals.

The General Ensemble Model (Gem) is a mathematical formalization of the
SOTA approach that gives precise semantics to SOTA models and provides ways
to specify model properties in various logics [43], such as the higher-order logic of
the PVS system [54] or various temporal logics. The precise semantics that Gem
provides for SOTA models enables developers to analyze requirements models
using mathematical techniques; Chapter 1.3.1 in this volume shows how a SO-
TA/Gem model may be used to derive an adaptation strategy for a swarm of
robots operating in an adversarial environment by applying concepts from (dif-
ferential and evolutionary) game theory.

The Autonomy Requirements Engineering (ARE) (described in detail in
Chapter III.3 [58]) of this volume uses a goal-oriented approach, too, along
with a special model for generic autonomy requirements (GAR). ARE starts
with the creation of a goals model that represents system objectives and their
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inter-relationships. In the next phase, the GAR model is used to refine each
one of the system goals with elicited environmental constraints to come up with
self-* objectives providing autonomy requirements for achieving these goals. The
autonomy requirements are derived in the form of goal-supportive and alterna-
tive self-* objectives, along with required capabilities and quality characteristics.
Finally, these autonomy requirements can be specified with KnowLang, a frame-
work dedicated to knowledge representation for self-adaptive systems.

For the refinement of the high-level strategic goals defined in SOTA to the
architecture of the collective autonomic system in terms of low-level components
and ensemble, we can use the Invariant Refinement Method (IRM) [46] (see also
Chapter III.4 [23]of this volume). The main idea of IRM is to capture the high-
level goals and requirements in terms of invariants, which describe the desired
state of the system-to-be at every time instant. Invariants are to be maintained
by the coordination of the different system components. As a design decision,
top-level invariants are iteratively decomposed into more concrete sub-invariants,
forming a decomposition graph with traceability of design decisions.

The IRM approach has been used e.g. to model the functional and adap-
tive requirements of the e-Mobility scenario, capturing the necessity to keep the
vehicles plan updated and to check whether the current plan remains feasible
with respect to measured battery level. The identified leaf invariants are eas-
ily mappable to component activities, which are further formally specified by
(SCEL) [32] or SCPL [21] (see Sec. 3.1).

The requirements engineering approaches SOTA, GEM, ARE and IRM com-
plement each other and are useful to understand and model the functional and
adaptation requirements, and to check the correctness of such specifications (as
described in [1]). However, when a designer considers the actual design of col-
lective autonomic system, it is necessary to identify which architectural schemes
need to be chosen for the individual components and the ensembles. In the next
section we give an overview of the taxonomy of architectural patterns we defined
[26] for adaptive components and ensemble.

Modeling and Programming The Service Component Ensemble Language
(SCEL) [32, 31] has been designed to deal with adaptation and move toward the
actual implementation of the self-* properties identified during the requirements
engineering phase, which have been specified e.g. using the IRM approach. It
brings together programming abstractions to directly address aggregations (how
different components interact to form ensembles and systems), behaviors (how
components progress) and knowledge manipulation according to specific policies.
SCEL specifications consist of cooperating components which, are equipped with
an interface, a knowledge repository, a set of policies, and a process.

The language is equipped with an operational semantics that permits verifi-
cation of formal properties of systems. Moreover, a SCEL program can rely on
separate reasoning components that can be invoked when decisions have to be
taken.
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To move toward implementation, jRESP7, a JAVA runtime environment has
been developed that provides an API that permits using in JAVA programs
the SCEL’s linguistic constructs for controlling the computation and interac-
tion of autonomic components, and for defining the architecture of systems and
ensembles. Its main objective is to be a faithful implementation of the SCEL
programming abstractions, suitable for rapid prototyping and experimentation
with the SCEL paradigm. The large use of design patterns greatly simplifies
the integration of new features. It is worth noticing that the implementation of
jRESP fully relies on the SCEL’s formal semantics. This close correspondence
enhances confidence in the behavior of the jRESP implementation of SCEL pro-
grams, once the latter have been analysed through formal methods made possible
by the formal operational semantics. For more details on SCEL and jRESP the
reader is referred to Chapter I.1 [53] of this volume.

As a complement to SCEL, within the ASCENS context an approach called
Soft Constraint Logic Programming (SCPL) (see Chapter II.5 [18]) has been
proposed and applied to an e-Mobility travel optimization scenario. Besides op-
timizing trips of single users, so-called local problems, the e-Mobility case study
aims to solve global problems involving large ensembles of vehicles. To tackle
these a coordination of declarative and procedural knowledge is used and a
decomposition of the global problem into local problems, which are solved by
SCLP implementations and whose parameters can be iteratively determined by
a programmable orchestration.

Complementary approaches to SCEL, like Helena [48] and DEECo, have been
developed for the specification of collective autonomic systems as well within
the scope of ASCENS. The Helena approach proposes a role-based method for
modeling collaborations using a UML-like notation and is founded on a rigorous
formal semantics. Helena focuses on the description of the behavior of each role
as well as on the behavior on the ensemble level.

DEECo (Dependable Emergent Ensembles of Components) component
model [47, 22] can be used to provide us with the relevant software engineering
abstractions that ease the programmers tasks. A component in DEECo, features
an execution model based on the MAPE-K [30] autonomic loop. In compliance
with SCEL, it consists of (i) well-defined knowledge, being a set of knowledge
items and (ii) processes that are executed periodically in a soft real-time manner.
The component concept is complemented by the first-class ensemble concept. An
ensemble stands as the only communication mechanism between DEECo compo-
nents. It specifies a membership condition, according to which components are
evaluated for participation. The evaluation is based on the components knowl-
edge (their attributes in SCEL). An ensemble also specifies what is to be commu-
nicated between the participants, that is, the appropriate knowledge exchange
function. Similar to component processes, ensembles are invoked periodically in
a soft realtime manner.

In order to bring the above abstractions to practical use we have used
jDEECo our reification of DEECo component model in Java. In jDEECo, com-

7 jRESP website: http://code.google.com/p/jresp/
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ponents are intuitively represented as annotated Java classes, where component
knowledge is mapped to class fields and processes to class methods. Similarly, ap-
propriately annotated classes represent DEECo ensembles. Once the necessary
components and ensembles are coded, they are deployed in jDEECo runtime
framework, which takes care of process and ensemble scheduling, as well as low-
level distributed knowledge manipulation.

Verification and Validation When dealing with complex collective autonomic
systems one needs to face the problem of the development and of the validation
of the models used for planning and for execution control. These systems are
deployed for increasingly complex tasks; and it becomes more and more impor-
tant to prove as early as possible in the development life cycle that they are safe,
dependable, and correct.

Analysis techniques for collective autonomic systems that capture essential
aspects such as adaptive behavior, interactions between the components, and
changing environments can only succeed if they exploit as much as possible the
specific structure of the considered systems (e.g. large replication of the same
component, hierarchical compositions). In ASCENS we consider both, qualitative
analyses targeting boolean properties stating that the system behaves without
any flaw, and quantitative analyses that evaluate expected performances accord-
ing to predefined metrics (energy/memory consumption, average/maximum time
to accomplish a task, probability to fulfil a goal, etc.). We also address security
specific issues such as control policies and information flow.

Our approach for dealing with qualitative properties is to use so called formal
verification techniques, which provide a mathematical proof, e.g. model-checking
and theorem prover. Formal verification is an attractive alternative to traditional
methods of testing and simulation that can be used to provide correctness guar-
antees. Hereby, we mean not just the traditional notion of program verification,
where the correctness of code is at question. We more broadly focus on design
verification, where an abstract model of a system is checked for desired behav-
ioral properties. Finding a bug in a design is more cost-effective than finding the
manifestation of the design flow in the code.

Regarding quantitative properties and system performance, the environment
in which the system is immersed plays an important role. Therefore the envi-
ronment behavior has to be modeled as well providing additional information
on possible scenarios the system may present. In ASCENS we used stochastic
models and frameworks for the evaluation of quantitative properties related to
the case studies of the project.

Considering security aspects, the focus was on confidentiality issues. We de-
velop a model-driven framework for information flow analysis, named secBIP
[7], which is suited for checking non-interference, a system property stating that
information about higher security levels cannot be inferred from lower security
levels. This component-based framework allows for the construction of complex
systems by composition of atomic components with communication and coordi-
nation operators.
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Several tools have been implemented within ASCENS to support these veri-
fication and validation methods, some of them as extension of well known exist-
ing tools. We mention here the most relevant: D-Finder [10, 11], SMC-BIP [6],
SBIP [9] and GMC.

The first three are based on BIP, a formal framework for building heteroge-
neous and complex component-based systems [8]. Notably, thanks to the formal
operational semantics of the SCEL language, BIP models can be obtained from
static SCEL descriptions (i.e. involving only bounded creation/deletion of com-
ponents and processes) by exploring a set of transformations rules. D-Finder is a
tool used for the compositional verification of safety properties, that is, it aims at
producing proofs stating that ensemble of components cannot reach a predefined
set of undesirable states. The method developed combines structural analysis for
component behaviors with structural analysis of connectors. SMC-BIP is a tool
to perform quantitative analysis, using formally-defined models from which it
explores the reachable states. Its main characteristic is to provide answers to
quantitative questions based on partial state-space coverage. It also evaluates
confidence in such results based on stochastic models. SBIP is an extension of
BIP that allows stochastic modeling and statistical verification. On one hand, it
relies on BIP expressiveness to handle heterogeneous and complex component-
based systems. On the other hand it uses statistical model checking techniques
to perform quantitative verification targeting non-functional properties. GMC
is a model checker that verifies whether properties of service components are
satisfied by their implementations in the C or C++ language, i.e. that in any
thread interleaving, no deadlock appears and no assertion state in the code is
violated. It supports verification of multi-threaded programs.

For details on verification and validation methods and tools for collective
autonomic systems, the reader is referred to Chapter I.3 [28] of this volume.

3.2 Runtime Cycle

The “runtime wheel” comprises the online activities the system performs au-
tonomically: monitoring, awareness and adaptation. This cycle is characteristic
for the life cycle of collective autonomic systems and a major difference from
traditional software which has a much more static runtime behavior.

The runtime collecting of data about the system, its components or its en-
vironment is called monitoring. Monitoring is an essential feature of adaptive
systems. While sometimes systems react directly to the data obtained by the
monitor, it is more common for ensembles to pass this data to an awareness
mechanism, i.e., a subsystem that contains reasoners, planners or learning mech-
anisms, that allow an autonomic system to come up with responses to the chal-
lenges posed by its environment. Adaptation, in this context, is then the act
of implementing the decisions made by the awareness mechanism, e.g., by per-
forming different actions done before or by reconfiguring the system structure.
To manage their collective behavior, self-aware components in an ensemble may
need to communicate with each other. Therefore the phases of the runtime cy-
cle are not restricted to actions taken by a single component, they may also
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involve the joint activities of multiple components. For example, when a robot
in a swarm becomes aware of a danger to the swarm it should communicate the
presence of the danger to other robots in the swarm.

Monitoring Monitoring is the first step in the runtime cycle of any adaptive
system: without information about the state of the system or environment, any
change in behavior can only be a random activity and not a purposeful action of
the system. Individual components, subsystems of a collective autonomic system,
the whole system or parts of the environment may all be monitored.

In the double-wheel life cycle, monitoring has a dual role. The primary ob-
jective is usually to provide information about the current state of the system
and its environment to the awareness mechanism, which incorporates this in-
formation into the decision making process. A secondary objective is to provide
developers feedback about properties of the environment so that they can check
whether the behavior of the awareness mechanism is adequate and achieves the
desired goals.

One of the technical challenges faced by monitoring systems is dynamic cov-
erage configuration: The awareness mechanism may require different information
at different points. Monitoring should accommodate these requests for informa-
tion dynamically, rather than relying only on a statically configured description
of what has to be monitored. It is also important to provide monitoring cost
awareness, to make it possible to reason on the trade off between the cost of
monitoring and the awareness benefit provided by the data. Often high moni-
toring coverage is necessary to accommodate the requirements of the awareness
mechanism, but sometimes this may lead to monitoring costs that are higher
than the benefits gained by the additional situational awareness.

To support easy access to monitoring perfomance information in ASCENS,
we have developed SPL [20], a formalism that makes it possible to express con-
ditions on performance-related observations in a compact manner. To collect
the monitoring information from executing components, we use dynamic instru-
mentation in DiSL [49]. In [19] and the Chapter II.5 [18] of this volume we
explain how the two technologies interact in the context of a performance-aware
component system.

Awareness The knowledge a collective autonomic system has on its behavior
and environment as well as the reasoning mechanisms that can be employed by
the system at runtime comprise its awareness. We divide the notion of awareness
along four dimensions: scope (which parts of the system and environment are
represented by the awareness mechanism), breadth (which properties are part of
the awareness model), depth (which kinds of questions the awareness mechanism
can answer) and quality (how well the conclusions the ensemble draws correspond
to reality). Chapter II.4 [41] contains a more detailed discussion of awareness
mechanisms.

To enable problem solving and adaptation in complex domains, deep aware-
ness mechanisms may be required. Deep models and reasoners can not only an-
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swer questions about the immediately observable state of the system, they also
model underlying principles such as causality or physical properties so that they
may, e.g., infer consequences of actions or diagnose likely causes of unexpected
events.

Designers cannot provide a complete specification of the conditions in which
an autonomic system has to operate. To achieve the desired performance and to
allow flexible reactions to contingencies not foreseen at design-time, the aware-
ness mechanism may need to learn how to adapt its internal models to the
circumstances encountered at runtime.

The Poem language [40] enables developers to specify deep logical and
stochastic domain models that describe the expected behavior of the system’s
environment. System behaviors are specified as partial programs, i.e., programs
in which certain operations are left as non-deterministic choices for the runtime
system. A strategy for resolving non-determinism is called a completion. Various
techniques can be used to build completions: If precise models of the environ-
ment are available for certain situations, completions may be inferred logically
or statistically and planning techniques can be used to find a long-term strategy.
In cases where models cannot be provided, reinforcement learning techniques
can instead be applied, and the ensemble can behave in a more reactive manner.

The Iliad implementation of Poem includes facilities for full first-order in-
ference and special-purpose reasoners for, e.g., temporal and spatial reasoning;
their results can be combined with planning methods to compute long-term
strategies if enough information about the ensemble’s operating conditions is
available. In addition, it can compute completions of programs using hierarchical-
reinforcement-learning techniques. Iliad is fully integrated as knowledge reposi-
tory and reasoner in jRESP and can therefore be used as awareness engine for
SCEL programs.

Self-adaptation Once the awareness mechanism of a component or ensemble
has come to the conclusion that a malfunction, contingency, or simply a per-
formance issue exists, it has to decide how to respond in order to resolve the
situation.

In ASCENS we call this response an adaptation action, and we distinguish
between two main classes of adaptation actions:

– Weak-adaptation, which implies modifying some of the control parameters
of a component/ensemble, and possibly adding new functions/behaviors or
modifying some of the existing ones.

– Strong-adaptation, which implies modifying the very structure of the com-
ponent or ensemble, and in particular modifying the architecture by which
adaptive feedback loops are organized around the component or ensemble.

Weak adaptations are often cheaper and simpler than strong adaptations
and still sufficient to respond adequately to changes in its environment: If the
path of a rescue robot is blocked it can simply try to take another route to its
target; there is no need for the robot to change its configuration to respond to
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this scenario. However, for more difficult adaptations, the whole structure of an
ensemble may need to be reconfigured: If a swarm of independently operating
rescue robots has to move victims that are too heavy for a single robot to carry,
several robots may have to form a new sub-ensemble that coordinates their ac-
tions using a centralized autonomic manager. The adaptation patterns presented
in Sect. 4 support these kinds of strong adaptation.

To the best of our knowledge, ASCENS is the first approach in which both
weak and strong forms of self-adaptation are put at work in a unique coherent
framework. For white-box and black-box adaptation mechanisms for collective
autonomic systems the reader is referred to Chapter II.1 [16] of this volume.

3.3 Evolution Control Loop

The two cycles of EDLC are complemented by transitions from design cycle
to runtime cycle and vice versa supporting the long term system’s evolution.
The collective autonomic system evolution consists in monitoring data at run-
time, the fed back to the design cycle to provided basis for system redesign and
redeployment. These transitions thus correspond to deployment and feedback
activities.

Deployment The transition from design to runtime deploys a collective auto-
nomic system preparing it for its execution. This involves installing, configuring
and launching the application. The deployment may also involve executable code
generation and compilation/linking. In ASCENS, the deployment is addressed
by service-component runtime frameworks like JDEECo [22] and JRESP. These
frameworks allow for the distributed execution of a service component applica-
tion and provide their specific means of deployment.

Feedback The transition from runtime to design provides feedback based on
data collected by the monitoring and learning process of the running application.
The feedback is used for improving the specification, code or a deeper analysis
of the requirements. It connects the online with the offline development process.
This connection is made possible by employing design methods that keep the
traceability of design decisions to code artefacts and knowledge – e.g. the Invari-
ant Refinement Method (IRM) [46], which has been specifically developed for
hierarchical design of a service component application. When used in conjunc-
tion with IRM, monitoring (i) observes the real functional and non-functional
properties of components and situation in components environment, and (ii)
provides observed data. At design time these observed data can be compared
to assumptions and conclusions captured by IRM; comparison is currently per-
formed manually but we envision automated support. If a contradiction is de-
tected, IRM is used to guide a developer to a component or ensemble which
has to be adjusted or extended, e.g. to account for an unexpected situation en-
countered at runtime. For further details on IRM, see Chapter III.4 [23] of this
volume.
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4 A Pattern Language for Ensemble Development

In order to design and develop collective autonomic systems, we have defined
a catalog of patterns for this kind of systems [55, 42]. The importance of the
catalog and of patterns in general start from the idea that “software patterns are
reusable solutions to recurring design problems and are considered a mainstream
of software reuse practice” [51]. So software adaptation can indeed benefit from
reuse in a similar way that designing software architectures has benefited from
the reuse of software design patterns [37].

Presenting engineering concepts in terms of interrelated patterns enables de-
velopers to explore the relationship between different design elements and simpli-
fies an understanding of the trade-offs involved in different modeling, verification
and implementation choices. To support the full development life cycle and to be
usable for developers who are not already expert in the EDLC and the various
technologies developed by ASCENS we have included patterns at different levels
of abstraction so that the pattern catalog [39] can also serve as introduction to
certain development techniques.

4.1 Pattern Categories

We started identifying adaptation patterns, one of the undoubtedly most impor-
tant and unique design aspects of ensembles. There are, however, many other
parts of the ensemble development process where interrelated design challenges
and implementation choices can be clarified and made accessible via a catalog
of interrelated patterns, which is often called a pattern language.

Currently our pattern catalog contains patterns in the following areas:

Conceptual Patterns: High-level descriptions of certain techniques or con-
cepts that can serve as introduction to topics with which developers may
not be familiar. An example is Awareness Mechanism that describes the
general concept of those mechanisms to ensure awareness of the system’s
and environmental behavior.

Architectural Patterns: Patterns that describe the architecture of a system
or a component. An example for a pattern in this category is Distributed
Awareness-based Behavior . These patterns often serve as entry points into
the catalog for developers trying to solve an architectural problem.

Adaptation Patterns: Patterns concerned with adaptation and the control-
loop structure of ensembles. Examples for patterns in this area are Reactive
Stigmergy Service Components Ensemble Pattern and Centralised AM Ser-
vice Components Ensemble Pattern described in detail in section 4.3.

Awareness Patterns: Patterns for developing and using awareness mecha-
nisms. An example is Action-calculus Reasoning , a pattern that describes
the trade-offs in using a logical formalism based on an action calculus for
modeling and reasoning about the system’s domain.

Coordination Patterns: Patterns that are concerned with coordination as-
pects of an ensemble. An example for a pattern in this category is Tuple-space
Based Coordination.
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Cooperation Patterns: Patterns that describe mechanisms for cooperation
between agents in an ensemble. For example the Auction mechanism belongs
to this category.

Implementation Patterns: Patterns that are mainly concerned with imple-
mentation or low-level design aspects. An example is the Monkey Patching
(anti)-pattern which deals with a certain method of dynamic code update.

Knowledge Patterns: Patterns that addresses issues arising with the devel-
opment of knowledge bases and knowledge-based systems. Examples for pat-
terns in this category are Build Small Ontology or Reuse Large Ontology.

Navigation Patterns: Patterns that address navigation or position keeping in
physical space, for example Build Chain to Target.

Self-expression Patterns: Patterns that are concerned with self-expression
of ensembles, and goal-directed or utility-maximizing behaviors. A simple
example is Decompose Goal into Subgoals.

These categories are neither exhaustive nor disjoint. Patterns such as Co-
operate to Reach Goal belong into several categories (cooperation patterns and
self-expression patterns), and it is easy to think of patterns which do not fit in
any of the categories mentioned above. Therefore, the classification of patterns
is done via keywords, which allow m-n relationships between patterns and cat-
egories and make it easy to introduce new categories. For each pattern that is
concerned with particular phases of the EDLC, these phases are also represented
as keywords for the pattern.

As the Monkey Patching example shows, the catalog also includes some pat-
terns that describe widely used but potentially dangerous techniques, so-called
anti-patterns. We think it is important to also include anti-patterns since there
are often good reasons why an anti-pattern has become widely used. In many
cases anti-patterns are good solutions for specialized problems which are reg-
ularly applied in situations in which they are unnecessary or in which better
solutions exist (this is the case for the Monkey Patching pattern). Additionally,
developers might not even know that a certain practice is considered an anti-
pattern, and they might not be aware of superior alternatives, or of ways to
mitigate the downside of using the anti-pattern.

When exploring the pattern catalog [39], the first two categories of patterns
(conceptual patterns and architectural patterns) serve as good entry points into
the pattern system; patterns in these categories provide a coherent overview of a
general topic, and the tree of references starting from patterns in these categories
transitively spans the whole pattern catalog.

4.2 Pattern Template

In the following paragraphs we describe the template that we use for our pattern
language. Since the patterns in our pattern system range from conceptional
patterns to implementation patterns, we include a relatively large number of
fields, but we allow several of them to be left empty. In the following description,
mandatory fields are marked with an asterisk. Except for conceptual patterns,
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each pattern should either contain a context field or the two fields motivation
and applicability, but it should not contain all three.

Name:∗ A descriptive name for the pattern, e.g., Algorithmic Planning.

Specializes: A pattern may inherit properties from another pattern but modify
certain fields. In this case the parent pattern is included in the specializes
field and the differences are described in the respective fields.

Classification:∗ The set of keywords that describes, e.g., to which phases of
the EDLC the pattern applies.

Aliases: Other names by which this pattern is known.

Intent:∗ The purpose for this pattern, what does the pattern accomplish?

Summary: For patterns which have a very long description, a summary that
addresses the most important features may be given in this field.

Context:∗ The design problem or runtime conditions to which this pattern is
applicable. This field is mandatory for adaptation patterns; for other patterns
the context is often split into motivation and applicability.

Motivation:∗ The reasons why this pattern is necessary.

Applicability:∗ Describes for which systems the pattern is applicable, and
which influences might lead to other patterns being preferable.

Diagram/Structure: If applicable a diagram that describes the pattern; e.g.,
adaptation patterns contain a diagram illustrating the components that are
involved in the feedback loops.

Description/Behavior:∗ A description of the pattern.

Formal Behavior: If applicable a more formal description of the pattern’s be-
havior can be given in this section. For example, all adaptation patterns
include a specification using the State-of-the-Affairs (SOTA) [2] notation of
their behavior, which comprises the description of the patterns goals, con-
straints and utilities.

Consequences: Consequences and trade-offs for using the patterns. If this sec-
tion is present it often summarizes trade-offs already mentioned in the de-
scription field.

Implementation: Implementation techniques and practical tips for realizing
this pattern. This section also includes references to ASCENS tools that are
helpful for implementing the pattern.

Variants: If a pattern has simple variations which are not significant enough
to justify their own patterns they are mentioned here.

Related Patterns: Related patterns, e.g., patterns that specialize the current
pattern, alternatives for the current pattern or patterns that are useful in
the implementation of the current pattern.

Applications: References to applications that apply self-adaptation patterns
in different real life scenarios. This is very important because the catalog
has to be based on experiences and/or on some solid formal ground, and on
a solid organization.

17



4.3 Pattern Examples

The pattern language described above provides a flexible structure in which
many kinds of patterns can be conveniently expressed while still retaining enough
commonality to build a coherent system of patterns.

To give a flavor of the patterns we present an excerpt of five patterns of
the ASCENS pattern catalog. Due to space restrictions we omitted the section
applications for some of the examples. The complete catalog is available on
the web [39]. For a detailed description as long as the taxonomy table of the
adaptation patterns the reader is referred to [55].

Pattern: Reactive Stigmergy Service Components Ensemble Pattern

– Name: Reactive Stigmergy Service Components Ensemble.
– Classification: service-components-ensemble, edlc-requirements-enginee-

ring
– Intent: There are a large amount of components that are not able to directly

interact one to each other. The components simply react to the environment
and sense the environment changes.

– Context: This pattern has to be adopted when:
• there are a large amount of components acting together;
• the components need to be simple components, without having a lot of

knowledge;
• the environment is frequently changing;
• the components are not able to directly communicate one with the other.

– Structure: See Figure 4.

!"#$%&"'!"()

*+) *+) *+)

Fig. 4. Reactive Stigmergy Service Components Ensemble

– Behavior: This pattern has not a direct feedback loop. Each single compo-
nent acts like a bio-inspired component (e.g. an ant). To satisfy its simple
goal, the Service Component (SC) acts in the environment that senses with
its “sensors” and reacts to the changes in it with its “effectors”. The differ-
ent components are not able to communicate one with the other, but are
able to propagate information (their actions) in the environment. Than they
are able to sense the environment changes (other components reactions) and
adapt their behavior due to these changes.
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– SOTA description (Formal Behavior):

• Goals: GSC1
, GSC2

, . . . , GSCn

• Utilities: USC1
= USC2

= . . . = USCn

• Explanation: In the pattern each Service Component has a separated
goal, that is explicit only at the component level.
Regarding the utilities of the ensemble, they are the same of each SCs
that have to be shared by the components.

– Consequences: If the component is a proactive one, its behavior is defined
inside it with its internal goal. The behavior of the whole system cannot be
a priori defined. It emerges from the collective behavior of the ensemble. The
components do not require a large amount of knowledge. The reaction of each
component is quick and does not need other managers because adaptation
is propagated via environment. The interaction model is an entirely indirect
one.

– Related Patterns: Proactive Service Component.

Pattern: Centralised AM Service Components Ensemble Pattern

– Name: Centralised Autonomic Manager (AM) Service Components Ensem-
ble.

– Classification: service-components-ensemble, edlc-requirements-enginee-
ring

– Intent: A Service Component necessitates an external feedback loop to
adapt. All the components need to share knowledge and the same adap-
tation logic, so they are managed by the same AM.

– Context: This patterns has to be adopted when:

• the components are simple and an AM is necessary to manage adapta-
tion;

• a direct communication between components is necessary;

• a centralised feedback loop is more suitable because a single AM has a
global vision on the system;

• there are few components composing the system.

– Structure: See Figure 5.

– Behavior: This pattern is designed around an unique feedback loop. All
the components are managed by a unique AM that “control” all the compo-
nents behavior and, sharing knowledge about all the components, is able to
propagate adaptation.

– SOTA description (Formal Behavior):

• Goals: G = GSC1
+ GSC2

+ . . . + GSCn
+ GAM

• Utilities: U = USC1
+ USC2

+ . . . + USCn
+ UAM

– Consequences: An unique AM is more efficient to manage adaptation over
the entire system, but it can became a node of failure.

– Related Patterns: Autonomic Service Component.
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Fig. 5. Centralised AM Service Components Ensemble

Pattern: P2P AMs Service Components Ensemble Pattern

– Name: P2P AMs Service Components Ensemble.
– Classification: service-components-ensemble, edlc-requirements-enginee-

ring
– Intent: This pattern is designed around an explicit autonomic feedback

loop for each component. The components are able to communicate and
coordinate each other through their AMs. Each AM manages adaptation on
a single SC.

– Context: This pattern has to be adopted when:
• the components are simple and an external AM is necessary to manage

adaptation at the component level;
• the components need to directly communicate one with the other

(through their AMs) to propagate adaptation.
– Structure: See Figure 6.

AM	  

SC	  

AM	  

SC	  

AM	  

SC	  

ENVIRONMENT	  

Fig. 6. P2P AMs Service Components Ensemble
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– Behavior: Each component is managed by an AM and acts as an autonomic
component. Than the AMs directly communicate one with the other with a
P2P communication protocol. The communication made at the AM’s level
makes it easier to share not only knowledge about the components, but also
the adaptation logic.

– SOTA description (Formal Behavior):
• Goals: (GSC1

, GAM1
)
⋃

(GSC2
, GAM2

)
⋃

. . .
⋃

(GSCn
, GAMn

)
• Utilities: (USC1 , UAM1)

⋃
(USC2 , UAM2)

⋃
. . .

⋃
(USCn , UAMn)

The goal of the ensemble is composed of the goals of every single component.
Here a component is composed of a SC and an AM, so its goal is the goal of
the SC (if it is a proactive component), along with the goal of the AM.
At the same way the utilities of the ensemble are composed of the utilities of
every single component. In this scenario, it is not necessary that all the com-
ponents have the same utilities (same for goals), and also some components
may have no utilities at all.

– Consequences: The use of AMs to communicate between components
makes the adaptation management more simple because the components
remain simple and the knowledge necessary for adaptation is easily shared
between the AMs.

– Related Patterns: Autonomic Service Component.
– Applications: A lot of case studies about intelligent transportation systems

use this pattern. For example a traffic jam monitoring system case study is
presented in [4]. The intelligent transportation system consists of a set of in-
telligent cameras, which are distributed evenly along a highway. Each camera
(SC) has a limited viewing range and cameras are placed to get an optimal
coverage of the highway. Each camera has a communication unit to interact
with other cameras. The goal of the cameras is to detect and monitor traf-
fic jams on the highway in a decentralised way. The data observed by the
multiple cameras have to be aggregated, so each camera has an agent that
can play different roles in organizations. Agents exploit a distributed middle-
ware, which provides support for dynamic organizations. This middleware
acts as an AM; it encapsulates the management of dynamic evolution of
organizations offering different roles to agents, based on the current context.

Pattern: Knowledge-equipped Component

– Name: Knowledge-equipped Component
– Classification: architecture, component, edlc-design, edlc-modeling
– Intent: Enable an autonomous component to operate in a context-sensitive

manner that potentially requires interaction with other components.
– Motivation: Various architectures exist that allow components and systems

to exhibit these kinds of complex, context-sensitive behaviors and interac-
tions. Knowledge-equipped Components are components with individual be-
haviors and knowledge repositories that can dynamically form aggregations.
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These components can often be arranged in a Flat Architecture to provide a
powerful and flexible, yet simple, architectural choice.

– Context: Knowledge-equipped Components are well-suited to ensembles in
which components need to act autonomously and interact with each other.
They can be used in different architectural styles such as Peer-to-peer or
Client/Server systems.

Components need to have at least a modest amount of computational power
and local storage; the pattern is not applicable for systems that rely on, e.g.,
pure stigmergy. Furthermore, if interaction is necessary, components must be
equipped with a communication mechanism that enables sender and receiver
to establish their identities and sufficient bandwidth must be available.

– Description: A knowledge-equipped component, is equipped with behaviors
and a knowledge repository. Behaviors describe the computations each com-
ponent performs. They are typically modeled as processes executing actions,
for example in the style of process calculi or in rewriting logic. In systems
using knowledge-equipped components, interaction between components is
achieved by allowing components to access the knowledge repositories of
other components; access restrictions are mediated by access policies.

Knowledge repositories provide high-level primitives to manage pieces of in-
formation coming from different sources. Knowledge is represented through
items containing either application data or awareness data. The former are
used for determining the progress of component computations, while the lat-
ter provide information about the environment in which the components are
running (e.g. monitored data from sensors) or about the actual status of an
autonomic component (e.g. its current location). This allows components to
be both context- and self-aware. The knowledge repository’s handling mech-
anism for knowledge-equipped components has to provide at least operations
for adding knowledge, as well as retrieving and withdrawing knowledge from
it.

– Implementation: SCEL (see Chapter 1.2.1) defines primitives for model-
ing and implementing Knowledge-equipped Components. An example for the
behavior of a component implemented in SCEL is the following monitor for
a garbage-collecting robot (which is a simplified version of the controller
analyzed in [60]):

s , get(item)@ctl.p

p , get(items, !x)@master .put(items, x + 1)@master .c

c , get(arrived)@ctl.put(dropped)@master .s + get(done)@ctl

This monitor waits until a tuple item becomes available in the knowledge
repository ctl, updates a counter in the knowledge repository master, and
then waits until either a tuple arrived or a tuple done is available in ctl. In
the first case the controller informs the repository master that it has dropped
an item and resumes from the beginning, if instead a tuple done is retrieved
from ctl the monitor stops.
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This example also shows how several knowledge-equipped components can
interact via a shared knowledge repository master. Note that no further
synchronization primitives are necessary, even in the case where the master
repository is shared between different components, since the first compo-
nent to perform the action get(items, !x)@master removes the items-tuple
from this knowledge repository, and other components will block on their
get(items, !x)@master operations until the first component has put the up-
dated tuple back into master.

– Consequences: A knowledge-equipped component can exhibit complex be-
havior that relies on local or shared knowledge. It can adapt its behavior
flexibly to knowledge gathered while the ensemble is running. In some cases
(e.g., some swarm robotics scenarios with limited sensor input) it may not be
possible to extract the required knowledge from the available information.
In general knowledge-equipped components have relatively high processing
and storage requirements; shared knowledge repositories often require high
network bandwidth and low latency.

– Related Patterns: The coordination of interactions for knowledge-
equipped components is an example of Tuple-space Based Coordination;
the interaction between components can be performed using Attribute-based
Communication. If the knowledge of the component is repeatedly or con-
tinuously updated to correspond to the environment, the knowledge repos-
itory and processes responsible for updating it form an Awareness Mecha-
nism. An ensemble containing multiple such components exhibits Distributed
Awareness-based Behavior.

Pattern: Statistical Model Checking

– Name: Statistical Model Checking
– Classification: ensemble, validation, edlc-verification-and-validation
– Intent: Validate quantitative properties of a system at design time.
– Motivation: It is desirable to ascertain that a system can perform according

to specification as early as possible in the design process, and to validate
changes of the system design when requirements or environmental conditions
change. Traditional verification and validation techniques are often difficult
to scale to the size of ensembles.

– Context: Statistical Model Checking is applicable in many situations in
which quantitative properties of ensembles need to be validated at design
time. It is necessary to have (stochastic) models of the system and its envi-
ronment that match the actual behavior closely enough to ensure meaningful
results.
While it scales well when compared to many other validation techniques, the
computational and memory requirements of statistical model checking may
be too high for very large systems. Systems that include non-determinism
may pose problems for statistical model checkers, although advances in the
area of statistical model checking for, e.g., Markov Decision Procedures,
have recently been made. Statistical model checking provides only statistical
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assurances; it can therefore not be applied in situations where a proof of
correctness is required. Furthermore, statistical model checking cannot vali-
date properties that can only be established for infinite execution traces. In
cases where precise behavioral estimates are required, the effort for statistical
model checking may be prohibitive.

– Description: In contrast to traditional (numerical) model checking tech-
niques, statistical model checking runs simulations of the system, performs
hypothesis testing on these simulations and then uses statistical estimates
to determine whether the probability that the system satisfies the given hy-
potheses is above a certain threshold.

– Applications: Several examples for applying the Statistical Model Checking
pattern to validate properties of ensembles and choose between different
implementation strategies are presented in [29].

5 Related Work

In the literature we find several approaches for possible architectures or refer-
ence models for adaptive and autonomic systems. A well known approach is the
MAPE-K architecture introduced by IBM [30] which comprises a control loop
of four phases Monitor, Analyse, Plan, Execute. MAPE-K – in contrast to our
approach – focus only on the adaptation process at runtime and does not con-
sider the interplay of design and runtime phases. The second research roadmap
for self-adaptive systems [3] also suggests a life cycle based on MAPE-K and
proposes the use of a process modeling language to describe the self-adaptation
workflow and feedback control loops.

The approach of Inverardi and Mori [44] shows foreseen and unforeseen con-
text changes which are represented following a feature analysis perspective. Their
life cycle is also based on MAPE-K, focusing therefore on the runtime aspects.
A slightly different life cycle is presented in the work of Brun et al. [15] which
explores feedback loops from the control engineering perspective; feedback loops
are first-class entities and comprise the activities collect, analyse, decide and act.

Bruni et al. [17] presented a control data based conceptual framework for
adaptivity. In contrast to our pragmatic approach supporting the use of methods
and tools in the development life cycle, they provide a simple formal model for
the framework based on a labelled transition system (LTS). In addition, they
provide an analysis of adaptivity in different computational paradigms, such as
context-oriented and declarative programming from the control data point of
view.

After the original “Gang of Four” book [35] introduced design patterns for
object-oriented software development, pattern catalogues in various formats have
been proposed for a large and varied number of domains, and covering many ar-
eas also addressed in the ASCENS pattern catalogue, e.g., application architec-
ture [34, 33], distributed computing [25, 57, 5], testing [12], resource-constrained
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devices [36], cooperative interactions [50], or fault-tolerant software [38]. How-
ever, many of the specific features of ASCENS and the EDLC, e.g., the use of
formal methods or the integration of the design-time and runtime cycle are not
addressed in these pattern languages.

In the last years the interest in engineering self-adaptive and autonomic sys-
tems is growing, as shown by the number of recent surveys and overviews on
the topic [27, 56]. However, a comprehensive and rationally-organized analysis of
architectural patterns for self-adaptation is still missing.

Salehie and Tahvildari [56] survey and classify the various principles under-
lying self-adaptation and the means by which adaptation ca be enforced in a
system, i.e., the different mechanisms to promote adaptation at the behavioral
and structural level. Similarly, Andersson et al. [4] propose a classification of
modeling dimensions for self-adaptive systems to provide the engineers with a
common set of vocabulary for specifying the self-adaptation properties under
consideration and select suitable solutions. However, and although both these
works emphasize the importance of feedback loops, nothing is said about the pat-
terns by which such feedback loops can be organized to promote self-adaptation.

Coming to work that have a more direct relation with ours, Brun et
al. [14] present a possible classification of self-adaptive systems with the empha-
sis on the use of feedback loops as first-class entities in control engineering. They
unfold the role of feedback loops as a general mechanism for self-adaptation, es-
sential for understanding all types of self-adaptation. Taking inspiration for con-
trol engineering, natural systems and software engineering, the authors present
some self-adaptive architectures that exhibit feedback loops. They also iden-
tify the critical challenges that must be addressed to enable systematic and
well-organized engineering of self-adaptive and self-managing software systems.
Their analysis of different kinds of feedback loops is very relevant for our work,
and in our effort towards a comprehensive and complete taxonomy of patterns
for feedback loops we have partially built upon it.

Grounded on earlier works on architectural self-adaptation approaches, the
FORMS model [59] (FOrmal Reference Model for Self-adaptation) enables engi-
neers to describe, study and evaluate alternative design choices for self-adaptive
systems. FORMS defines a shared vocabulary of adaptive primitives that – while
simple and concise – can be used to precisely define arbitrary complex self-
adaptive systems, and can support engineers in expressing their design choices,
there included those related to the architectural patterns for feedback loops.
FORMS does not have the ambition to analyse and classify architectural self-
adaptation patterns, and rather has to be considered as a potentially useful
complement to our work.

6 Conclusions

In this work we presented a software development life cycle for collective auto-
nomic systems. Its aim is to support developers dealing with self-* properties of
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ensembles, mainly self-awareness and self-adaptation talking into account envi-
ronmental situations. A distinguishing feature of the double-wheeled life cycle
is the feedback loop from runtime to design (in addition to the feedback loops
at design and runtime provided by classical approaches for self-adaptive engi-
neering). It is also important to remark that our life cycle relies on foundational
methods used for the verification of the expected behavior; indeed this provides
a feedback loop that allows for improvement of an evolving software. We illus-
trated how the life cycle can be instantiated using a set of languages, methods
and tools developed within the ASCENS project.

A first proof of concept of the life cycle was performed for the e-mobility do-
main [24]. Future plans are the validation of our engineering approach with more
challenging scenarios of different application domains. A vision on future engi-
neering approaches should consider to have a look at other disciplines even those
that are not so directly related to computer science for ideas and technologies
for building collective autonomic systems.

In addition, we have presented a catalog of patterns to provide reusable
solutions for the development of collective autonomic systems. We included in
the catalog patterns at different levels of abstraction so that the pattern catalog
can also serve as introduction to certain development techniques. Therefore, it is
useful for developers who are not already experts in the EDLC and the various
technologies developed within the scope of the ASCENS project.
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