
Evaluating & Engineering: an Approach
for the Development

of Secure Web Applications
Marianne Busch

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

2016

Evaluating & Engineering: an Approach
for the Development

of Secure Web Applications

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von

Marianne Busch

München, den 3.6.2016

Erstgutachter: Prof. Dr. Dr. h.c. Martin Wirsing
Zweitgutachterin: Prof. Dr. Ruth Breu
Datum der mündlichen Prüfung: 28.7.2016

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, S8, Absatz 2 Punkt 5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Marianne Busch
München, den 3.6.2016

Abstract
On a regular basis, we learn about well-known online services that have been misused or compromised by

data theft. As insecure applications pose a threat to the users’ privacy as well as to the image of companies
and organizations, it is absolutely essential to adequately secure them from the start of the development
process.

Often, reasons for vulnerable applications are related to the insufficient knowledge and experience of
involved parties, such as software developers. Unfortunately, they rarely (a) have a comprehensive view
of the security-related decisions that should be made, or (b) know how these decisions precisely affect the
implementation. A vital decision is the selection of tools and methods that can best support a particular
situation in order to shield an application from vulnerabilities. Despite of the level of security that arises
from complying with security standards, both reasons inadvertently lead to software that is not secured
sufficiently. This thesis tackles both problems.

Firstly, in order to know which decision should be made, it is crucial to be aware of security properties,
vulnerabilities, threats, security engineering methods, notations, and tools (so-called knowledge objects).
Thereby, it is not only important to know which knowledge objects exist, but also how they are related to
each other and which attributes they have.

Secondly, security decisions made for web applications can have an effect on source code of various
components as well as on configuration files of web servers or external protection measures like firewalls.
The impact of chosen security measures (i.e., employed methods) can be documented using a modeling
approach that provides web-specific modeling elements.

Our approach aims to support the conscious construction of secure web applications. Therefore, we
develop modeling techniques to represent knowledge objects and to design secure web applications. Our novel
conceptual framework SecEval is the foundation of this dissertation. It provides an expandable structure
for classifying vulnerabilities, threats, security properties, methods, notations and tools. This structure,
called Security Context model, can be instantiated to express attributes and relations, as e.g., which tools
exist to support a certain method. Compared with existing approaches, we provide a finer-grained structure
that considers security and adapts to the phases of the software development process. In addition to the
Security Context model, we define a documentation scheme for the collection and analysis of relevant data.
Apart from this domain-independent framework, we focus on secure web applications. We use SecEval’s
Security Context model as a basis for a novel Secure Web Applications’ Ontology (SecWAO), which serves
as a knowledge map. By providing a systematic overview, SecWAO supports a common understanding and
supports web engineers who want to systematically specify security requirements or make security-related
design decisions.

Building on our experience with SecWAO, we further extend the modeling approach UML-based Web
Engineering (UWE) by means to model security aspects of web applications. We develop UWE in a way that
chosen methods, such as (re)authentication, secure connections, authorization or Cross-Site-Request-Forgery
prevention, can be linked to the model of a concrete web application.

In short, our approach supports software engineers throughout the software development process. It
comprises (1) the conceptual framework SecEval to ease method and tool evaluation, (2) the ontology
SecWAO that gives a systematic overview of web security and (3) an extension of UWE that focuses on the
development of secure web applications. Various case studies and tools are presented to demonstrate the
applicability and extensibility of our approach.

Zusammenfassung
Regelmäßig wird von erfolgreichen Angriffen auf Daten und Funktionen bekannter Onlinedienste berichtet.
Da unsichere Anwendungen nicht nur eine Bedrohung für die Privatsphäre ihrer Nutzer, sondern auch eine
Gefahr für das Image der betroffenen Unternehmen und Organisationen darstellen, ist es unverzichtbar,
Anwendungen von Anfang an ausreichend zu schützen.

Zwei Gründe für unsichere Anwendungen sind, dass die Beteiligten, wie z.B. Softwareentwickler, nur
selten (a) vollständig überblicken, welche sicherheitsbezogenen Entscheidungen getroffen werden müssten
oder (b) wissen, welche Auswirkungen diese konkret auf die Implementierung haben. Eine kritische Ent-
scheidung ist die Auswahl von Werkzeugen und Methoden, die in einer bestimmten Situation von Nutzen
sein könnten, um die Anwendung vor Schwachstellen zu schützen. Diese Gründe führen – trotz punktuellem
Schutz durch das Vorgehen nach IT-Sicherheitsstandards – ungewollt zu Software, die nicht entsprechend
ihres Schutzbedarfs abgesichert ist. Die vorliegende Arbeit nimmt sich beider Probleme an.

Einerseits ist für die Entscheidungsfindung ein Verständnis von sogenannten ”Wissensobjekten“, wie
Schwachstellen, Bedrohungen, Sicherheitseigenschaften, sicherheitsrelevanten Methoden, Notationen und
Werkzeugen essentiell. Dafür ist nicht nur eine Bestandsaufnahme existierender Wissensobjekte wichtig,
sondern auch deren Eigenschaften und Zusammenhänge untereinander.

Andererseits können sicherheitsrelevante Entscheidungen für Webanwendungen sowohl Auswirkungen
auf Quellcodes verschiedener Softwarekomponenten haben, als auch auf Konfigurationsdateien von Webser-
vern oder auf Schutzmaßnahmen wie Firewalls. Mit einem Modellierungsansatz, der webspezifische Model-
lierungselemente beinhaltet, ist es möglich Sicherheitsmaßnahmen zu dokumentieren.

Das Ziel der vorliegenden Arbeit ist es, die bewusste Absicherung sicherheitskritischer Webanwendun-
gen zu unterstützen. Dazu werden Modellierungstechniken zur Darstellung von Wissensobjekten und zum
sicheren Webanwendungsdesign entwickelt. Die Basis bildet unser konzeptionelles Framework SecEval. Es
beinhaltet eine erweiterbare Struktur für Schwachstellen, Bedrohungen, Sicherheitseigenschaften, Methoden,
Notationen und Werkzeuge. Diese Struktur (das sog. Kontextmodell) kann instanziiert werden, um Eigen-
schaften und Zusammenhänge darzustellen, z.B. Werkzeuge, die eine bestimmte Methode unterstützen. Im
Vergleich zu existierenden Arbeiten wird eine detailliertere Struktur aufgebaut, die Sicherheit berücksichtigt
und die Phasen des Softwareentwicklungsprozesses mit einbezieht. Zusätzlich zu dem Kontextmodell wird
ein Dokumentationsschema zur Sammlung und Analyse passender Daten definiert.

Abgesehen von SecEval, das nicht domänenspezifisch ist, liegt der Fokus auf dem Bereich sicherer We-
banwendungen. Genutzt wird SecEval’s Kontextmodell unter anderem als Basis für die SecWAO-Ontologie
– einer Art Wissenslandkarte der Webanwendungssicherheit. SecWAO bietet eine einheitliche Kommunika-
tionsgrundlage und unterstützt Webentwickler, die systematisch Sicherheitsanforderungen spezifizieren oder
Designentscheidungen treffen wollen.

Aufbauend auf der Struktur von SecWAO wird der Modellierungsansatz UML-based Web Enginee-
ring (UWE) mit Elementen zur Dokumentation von Sicherheitsaspekten erweitert. Auf diese Art können
ausgewählte Methoden wie z.B. (Re)authentifikation, sichere Verbindungen, Autorisierung oder die Verhin-
derung von Cross-Site-Request-Forgery direkt in Bezug zur modellierten Webanwendung gesetzt werden.

Zusammengefasst unterstützt der vorgestellte Ansatz Softwareentwickler während des Entwicklungs-
prozesses und umfasst (1) das konzeptionelle Framework SecEval, das die Evaluation von Methoden und
Werkzeugen vereinfacht, (2) die Ontologie SecWAO, die einen systematischen Überblick über Websicher-
heit gibt und (3) eine Erweiterung von UWE für sichere Webanwendungen. Verschiedene Fallstudien und
Werkzeuge werden vorgestellt, die die Anwendbarkeit und Erweiterbarkeit des Ansatzes zu veranschaulichen.

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Motivation . 3
1.2 Aim . 4
1.3 Approach . 6
1.4 Usage Example . 8
1.5 Outline . 9

2 Background 11
2.1 Secure Development Processes and Standards . 11
2.2 Ontologies, Knowledge Bases and Evaluation Approaches 13
2.3 Modeling Web Applications . 18

II Evaluating and Relating Security Concepts 21

3 SecEval: A Framework for Evaluating Security Engineering Approaches 23
3.1 Evaluation Process . 23
3.2 Architecture . 25
3.3 Guided Interview . 41
3.4 Case Study: Web Vulnerability Scanning . 41
3.5 Summary and Related Work . 46

4 SecWAO: A Secure Web Applications’ Ontology 49
4.1 Overview of SecWAO by Example . 50
4.2 Security Properties . 52
4.3 Methods . 56
4.4 Vulnerabilities and Threats . 64
4.5 Implementation of a Knowledge Base . 66
4.6 Summary and Related Work . 71

x CONTENTS

III Engineering Secure Web Applications 73
5 Modeling Secure Web Applications 75

5.1 Overview of Case Studies . 75
5.2 UWE Models . 78
5.3 Security Extensions for UWE . 85
5.4 Summary and Related Work . 99

6 Artifact Generation 101
6.1 TextualUWE: A Domain-Specific Language . 102
6.2 UWE2FACPL Toolchain: Generating Access Control Policies 105
6.3 ACT Toolchain: Testing Access Control Policies 113
6.4 ActionUWE: Transforming UWE to ActionGUI 122
6.5 SNPs: Modeling, Testing and Securing Navigation Flow 124
6.6 Summary and Related Work . 133

IV Conclusion 135
7 Summary 137

8 Future Work 141

V Appendix 145
A Attribute Description of SecEval’s Security Context Model 147

A.1 Methods . 147
A.2 Tools . 150

B SecEval Questionnaire 153
B.1 Security Engineering Method and Tool Evaluation 153
B.2 Questions and Suggestions . 157

C Excerpt of the UWE Profile 159
C.1 Requirements Model . 159
C.2 Content Model . 160
C.3 User Model and Role Model . 161
C.4 Basic Rights Model . 161
C.5 Navigation Model . 162
C.6 Application States Model . 162

D Case Study: Energy Management System 163
D.1 Environment and Requirements . 163
D.2 Securing the EMS Web Application . 168
D.3 Modeling the EMS with UWE . 170

Publications of Marianne Busch 177

Bibliography 181

List of Figures

1.1 Aims of our approach . 5
1.2 Construction of our approach . 7
1.3 Usage example . 8

3.1 SecEval: stakeholders and use cases . 24
3.2 SecEval’s evaluation process . 26
3.3 SecEval: model overview . 27
3.4 SecEval: security context . 29
3.5 SecEval’s Security Context model: details of methods 32
3.6 SecEval’s Security Context model: details of tools 33
3.7 SecEval’s Security Context model: further associations 33
3.8 SecEval: Data Collection model . 35
3.9 SecEval: Data Analysis model . 36
3.10 SecEval extension: inclusion of basic risk evaluation approach 38
3.11 SecEval extension: method extension using Moody’s method evaluation approach . 40
3.12 Vulnerability scanning case study: data collection 43
3.13 Vulnerability scanning case study: data analysis – results 44
3.14 Vulnerability scanning case study: data analysis – ratings 45
3.15 Vulnerability scanning case study: instances of the Security Context model (excerpt) 47

4.1 SecWAO example of relations regarding Cross-Site Scripting (XSS) 51
4.2 SecWAO security properties: overview . 53
4.3 SecWAO security properties: details . 55
4.4 SecWAO: main methods . 56
4.5 SecWAO methods: cryptography and data validation 58
4.6 SecWAO methods: authentication and session management 60
4.7 SecWAO methods: authorization . 62
4.8 SecWAO methods: logging, error handling and system configuration 63
4.9 SecWAO vulnerabilities . 65
4.10 SecWAO: a sequence of threats . 66
4.11 SecEval implementation: continuous text view . 69
4.12 SecEval implementation: UML view . 70
4.13 SecEval implementation: edit attributes . 70

5.1 Example: Requirements (OwnCloud File Management) 79
5.2 Example: Requirements (Patient Monitoring) . 80

xii LIST OF FIGURES

5.3 Example: Content (Hospital Information System) 81
5.4 Example: Basic Rights (SmartGrid EMS) . 82
5.5 Navigation shortcut . 83
5.6 Example: Navigation (SmartGrid Bonus Application) 84
5.7 Example: Presentation (SmartGrid Offers Application) 84
5.8 Example: Application States (SmartGrid EMS) . 85
5.9 Secure software engineering: requirements . 85
5.10 Secure software engineering: design . 86
5.11 Enforcing navigation flow . 88
5.12 Security in the Content model . 89
5.13 Non-Repudiation . 91
5.14 Data retention . 92
5.15 Restricting access to application modes . 94
5.16 Separation of duties . 95
5.17 User-defined access control . 96
5.18 Unauthorized access . 97
5.19 Logged access . 98

6.1 UWE2FACPL: toolchain . 106
6.2 HospInfo Content model . 109
6.3 HospInfo Basic Rights model . 109
6.4 HospInfo navigation states (excerpt) . 110
6.5 UWE2FACPL: FACPL Policy Decision Point . 113
6.6 ACT Toolchain in the SDE: designing and testing access control policies 115
6.7 ACT Toolchain: output of the MagicUWE Checker 118
6.8 ACT Toolchain: SmartGrid Offers – Content model 120
6.9 ACT Toolchain: SmartGrid Offers – Basic Rights model 120
6.10 SNPs: expressing SNPs with UWE’s Navigation model 127
6.11 SNPs: test generation . 128
6.12 SNPs: average benchmark result of SNPpolicyTester 130
6.13 SNPs: SmartGrid Bonus – Basic Rights model . 131
6.14 SNPs: SmartGrid Bonus – Navigation model . 132

7.1 The presented approach, including SecEval, SecWAO and our UWE extension . . . 138

B.1 Questionnaire: overview . 154
B.2 Questionnaire: Security Context model . 155
B.3 Questionnaire: Security Context model – details of tools 156
B.4 Questionnaire: Security Context model – details of methods 156

C.1 UWE profile: Requirements model . 159
C.2 UWE profile: Content model . 160
C.3 UWE profile: User model and Role model . 161
C.4 UWE profile: Basic Rights model . 161
C.5 UWE profile: Navigation model . 162
C.6 UWE profile: Application States model . 162

LIST OF FIGURES xiii

D.1 Entities in the Smart Home (adapted from [65]) 164
D.2 EMS: Requirements overview . 165
D.3 EMS: Requirements of local energy control . 166
D.4 EMS: Requirements of the energy trading system 167
D.5 EMS: Requirements of the plugin management . 167
D.6 EMS: Requirements of the user management . 168
D.7 EMS: Content model . 171
D.8 EMS: Content model – bills . 172
D.9 EMS: Role model . 173
D.10 EMS: Basic Rights model excerpt and Application States model 173
D.11 EMS: Navigation model overview . 174
D.12 EMS: Process after successful login . 175
D.13 EMS: Navigation model for plugin management . 176

Acronyms

API Application Programming Interface
BPMN Business Process Modeling Notation
CASE Computer-Aided Software Engineering
CBK Common Body of Knowledge
CPU Central Processing Unit
CSRF Cross-Site-Request-Forgery
CSS Cascading Style Sheets
DOS Denial of Service
DRM Digital Rights Management
DSL Domain-Specific Language
EMS Energy Management System
FACPL Formal Access Control Policy Language
GUI Graphical User Interface
HSTS HTTP Strict Transport Security
HTML Hypertext Markup Language
http Hypertext Transfer Protocol
https Hypertext Transfer Protocol Secure
ID Identifier
IDE Integrated Development Environment
IP Internet Protocol
IT Information Technology
JSON Java Script Object Notation
MAC Mandatory Access Control
MPO Meter Point Operator
MVC Model-View-Controller
NESSoS Network of Excellence on Engineering Secure Future Internet Software Services

and Systems
OCL Object Constraint Language
OWL Web Ontology Language
pdf Portable Document Format
PDP Policy Decision Point
PFS Perfect Forward Secrecy
RBAC Role-Based Access Control
SA Smart Appliance
SDE Service Development Environment

xvi Acronyms

SDLC Software Development Life Cycle
SecEval Framework for Evaluating (Security) Engineering Approaches
SecWAO Secure Web Applications’ Ontology
SNP Secure Navigation Path
TLS Transport Layer Security
UML Unified Modeling Language
URL Uniform Resource Locator
UWE UML-based Web Engineering
XACML eXtensible Access Control Markup Language
XMI XML Metadata Interchange
XML eXtensible Markup Language
XSS Cross-Site Scripting

Danksagung

Ich möchte mich bei allen bedanken, die mich motiviert haben zu promovieren und die mich bei
der Promotion unterstützt haben. Insbesondere danke ich meinem Doktorvater Martin Wirsing
für die stete Unterstützung und Motivation und für die Freiheit, meinen fachlichen Interessen
in der Promotion nachgehen zu können. Danke auch für die Möglichkeit über das EU Projekt
NESSoS1 Kontakte knüpfen und mein Wissen erweitern zu können. Bester Dank geht an Ruth
Breu, die ich auf einer Dienstreise in Málaga ansprach und die sich an Ort und Stelle bereiterklärte
meine Zweitgutachterin zu werden.

Bereits als studentische Hilfskraft am Lehrstuhl für Programmierung und Softwaretechnik
(PST), arbeitete ich mit Nora Koch zusammen. Der durch sie entstandene Zugang zur Wissen-
schaft trug dazu bei, dass ich für das EU Projekt NESSoS und die Promotion an der Universität
blieb. Besten Dank fürs Korrekturlesen hunderter Seiten, seien es Papers, Deliverables für das EU
Projekt, oder die Dissertation. Danke auch für die Zusammenarbeit in NESSoS und für zahlreiche
hilfreiche Diskussionen.

Sowohl für die fachliche Zusammenarbeit als auch für motivierende Gespräche möchte ich
mich bei meinen Kollegen am PST-Lehrstuhl, den NESSoS Projektpartnern und besonders bei
allen Mitautoren meiner wissenschaftlichen Publikationen bedanken. Danke für den Einsatz der
Studentinnen und Studenten, die unter meiner Betreuung ihre Abschlussarbeiten verfassten. Viele
Arbeiten waren sehr hilfreich für die vorliegende Dissertation.

Forschung ohne Ideenaustausch wäre nicht möglich, daher bin ich dankbar für all die Infor-
mationen und Gedanken, die von anderen weitergegeben wurden und für die Rückmeldung von
Gutachtern. Besonderer Dank geht an die Wissenschaftler, die mir Vorabversionen ihrer Papers
zukommen ließen. Ich danke allen Softwareentwicklern und IT-Sicherheitsspezialisten, die mit mir
diskutiert haben und allen, die mir geholfen haben, mein Englisch zu verbessern.

Herzlicher Dank geht an meinen Freund Florian und meine Eltern, deren voller Unterstützung
bei meinen Plänen ich mir stets sicher sein konnte, und an meine Freundinnen Katharina und
Veronika, die – trotz der Arbeit an ihren eigenen Dissertationen – immer Zeit für mich hatten.
Dankbarkeit empfinde ich auch für viele glückliche Zufälle und für ein Umfeld, in dem es möglich
ist, sich mit wissenschaftlichen Fragestellungen auseinanderzusetzen.

1This work has partly been supported by the EU-NoE project NESSoS, GA 256980.

Part I

Introduction and Background

Chapter 1

Introduction

“Cybercrime is a growth industry. The returns are great, and the risks are low” [50, p.2]. This
means that around the world, much effort is spent on finding and exploiting vulnerabilities in
the user’s behavior as well as in software. Although the reported percentage of web applications
containing vulnerabilities varies according to the type of measurement, it indicates that more than
three out of four web applications are vulnerable,1 which alarmingly often results in disclosing
confidential data or in systems getting out of control.2

1.1 Motivation
Technical vulnerabilities may arise from misunderstandings within a development team, from
lack of knowledge, from losing track of complex coherences,3 from unclear responsibilities4, from
a lack of risk awareness5, from security by obscurity,6 or from arbitrary careless mistakes that
are made during the development process. Pressure of time and competition urges all actors to
focus on functional aspects, i.e., to provide as many useful features as fast as possible. Security
aspects are often categorized as non-functional requirements, as actually vulnerable software can
successfully complete its tasks. Even a compromised application might offer its functionality to
unsuspecting users for many years, while leaking data.

It is commonly known that errors made in early phases of the development process can become
expensive, as they are in many cases difficult to correct in implemented software systems [171,
p. 3]. As a consequence, it is common practice for companies to establish organization-wide
policies for secure software development. However, the resulting documentation tends to be
1Web applications with vulnerabilities: 96% [51, p.3], 76% [210, p.38] of those that were scanned.
2Critical vulnerabilities: 20% [210, p.38] of all vulnerabilities discovered, 46% websites of those that were
scanned have high security vulnerabilities [2, p.5].

3“Humans get bored, hungry, tired, hung-over, or otherwise distracted and that can introduce bugs into
the web application being developed” [171, p. 2].

4In practice, one can still hear “I do not have to care about security, because our security engineers / our
server administrators / the used web framework / our firewall will somehow ‘secure’ it.”

5Securing software is demanding and can be an obstacle to other requirements (that are often easier to
realize), which might lead to devaluating this goal to resolve cognitive dissonance: “Security is not that
important for us! Nobody could ever be interested in what we do / in our data / in our system!”

6Similarly: “Nobody will ever guess right / recognize this!” Further myths can be found in [57].

4 1. Introduction

lengthy, which makes it difficult to get a comprehensive view. Parts of these policies require to
turn high-level directives into appropriate design decisions for concrete applications, which can
be a complex task; especially if appropriate methods or tools7 have to be chosen that support
the directives. In addition, due to deadline constraints, developers frequently postpone reading
or updating comprehensive documentation, which can be fatal in cases of personnel changes.

The exploit of a vulnerability can damage the reputation of the manufacturers of software, as
well as the reputation of those who employ it. Common consequences are corporate espionage or
financial damage due to lost confidence of customers that found their private data disclosed [92,
174]. In some cases, misuse of systems can lead to legal liability. In other cases, vulnerabilities
can even threaten product safety, as e.g., some functionality of building automation systems,
medical devices and automotive software are accessible via web front-ends. In the end, a single
vulnerability can be enough to compromise an application.

Unfortunately, current engineering approaches are neither powerful enough nor used diligently
enough to secure web applications8 in a way that the number of vulnerabilities drops significantly
in practice. Many security methods exist, as e.g., the ISO/IEC 27000 [105] family, the Microsoft
SDL [124], or SABSA [196]. Most of them try to reduce security to simple lists of keywords
and guidance, but in reality interdependencies and levels of abstraction are more complex and
interconnected. Thus, checklists are better than nothing, but easily lead to applications that are
only secured selectively.

1.2 Aim
The main goal of this dissertation is to support the construction of secure applications – in
particular web applications – by facilitating conscious decision making, method evaluation and
security documentation. Therefore, we aim at providing (a) a conceptual framework for general IT
security concepts, (b) a knowledge map (ontology) of web application security concepts and (c) a
graphical representation for security concepts that are employed in a concrete web application.
These three levels of abstraction are depicted in figure 1.1. In short, 𝑎 should support evaluation,
𝑏 should document how concepts of web application security are interrelated in general, and
𝑐 should be suitable for documenting secure web applications’ requirements and designs. For
constructing a secure web application, “facilitating conscious decision making” matters especially
at the transitions between these levels: first, when evaluating which methods and tools should
be used for the development and second, when determining an application’s design.

The most abstract level we consider is the level of general IT security concepts, such as assets,
methods, notations, tools, security properties, vulnerabilities, or threats. These concepts are re-
ferred to as “knowledge objects”. Software developers, architects, security engineers and other
involved parties (henceforth called “practitioners”, if not specified more precisely) have to under-
stand and evaluate knowledge objects they work with in order to make rational decisions. For
example, practitioners need to choose appropriate methods and tools, as e.g., libraries for access
control that assist in securing their applications. As evaluations are time consuming, we want to
be able to document research questions9 and corresponding results. As a consequence, reusing
7A method is a strategy to tackle a problem; a tool usually refers to software that supports a method.
8The term web application stands for a “web-based software that performs actions (functionality) based
on user input and usually interacts with back-end systems” [171, p. 2].

9Note that these research questions do not necessarily refer to scientific research.

1.2 Aim 5

Model elements and patterns for

• documenting security requirements & design decisions

• guiding the development process

Tools for

• security-related artifact generation (policies, …)

Structure for

• knowledge organization & basis for discussion

• evaluation, i.e., answering research questions,

e.g., selecting methods, tools, notations, …

Ontology (knowledge map) for

• a visual overview of web application security

• considering related concepts

• a common understanding & teaching purposes

• common design decisions

IT security

web engineering security

secure web applications

Figure 1.1: Aims of our approach

data from a resulting knowledge base becomes easy. Contrary to existing evaluation approaches,
the conceptual evaluation framework we propose should allow to represent methods from different
areas appropriately, as e.g., design methods versus test methods and make relationships explicit
that have not been considered in existing approaches.

From the teaching experience of the author and from discussions with members of the security
community, we derive that students as well as practitioners struggle to get a comprehensive view
of concepts and their relations, especially in the vast area of web engineering security. Even in
security books in this domain, relationships are missing, as they are often structured according to
buzzwords, rather than according to a knowledge map or ontology10 that systematically connects
concepts. Fortunately, ontologies can be created by instantiating the knowledge objects men-
tioned above, which leads to a second level of abstraction (cf. figure 1.1). At this level, concrete
security concepts are located, as e.g., Cross-Site Scripting (XSS)11 (a kind of vulnerability) or
authorization (a kind of method). We aim at building a secure web applications’ ontology that
provides a comprehensive view of web engineering security so that it is easy to consider related
concepts and to come to an understanding that can be shared with others. The ontology should
allow deriving where decisions have to be made deliberately to keep common risks under control.

The overall objective is to secure web applications and data they access. Company-wide secu-
rity risk management can help to pursue this target, while in the end, the technically most decisive
factor is the reasonably secure implementation and protection of applications and systems. This
10“An ontology is a formal explicit specification of a shared conceptualization for a domain of inter-

est” [208]. This means, an ontology is a knowledge map that structures and relates concepts based on
a predefined, formal structure. (In addition to an informal knowledge map, a knowledge base provides
structured information about concepts it contains. We do not differentiate between the terms ontology
and taxonomy.)

11XSS is a kind of injection that aims at adding malicious script code – usually JavaScript – to a website
so that the browser executes the code [195, p.24].

6 1. Introduction

makes it necessary to understand complex coherences on the level of code with its technicalities
like missing bound checks or unsafe memory functions, as well as on the level of design. Common
design goals are, e.g., shielding the internal part of a web application from unauthorized access,
preventing XSS attacks or enforcing reauthentication after a while. Thereby, the challenge is to
consider security properties at the appropriate moment during the development process. This
third level is depicted at the bottom of figure 1.1, our goal is to provide a specification language
for designing secure web applications. This approach should comprise elements and patterns for
documenting security requirements and design decisions graphically or textually and provide tool
support for security-related artifact generation. So far, approaches that take security into account
are restricted to simplified web applications and to the best of our knowledge, no approach deals
with security goals that are related to common web-specific vulnerabilities.
In short, our research questions are the following:

RQ1 Which key concepts emerge while developing secure software? Which properties do these
concepts have and how are they related to each other? How can this knowledge be applied
to evaluate concepts?

RQ2 How are assets, security engineering methods, notations, tools, security properties, vulner-
abilities and threats related in the domain of web application security?

RQ3 How can security aspects of web applications be expressed? How can resulting models be
used in the development process?

1.3 Approach
In order to answer the aforementioned questions, our approach consists of three interconnected
parts. According to the levels presented in figure 1.1, we present a novel conceptual evalua-
tion framework, called SecEval, a Secure Web Applications’ Ontology (SecWAO), and security
extensions for a notation that allows to model web applications, namely UML-based Web Engi-
neering (UWE) [224, 116]. Figure 1.2a depicts the parts of our approach.

SecEval provides an expandable structure for knowledge objects, such as assets, methods,
tools, vulnerabilities, and security properties (cf. top of figure 1.2b). This model can be instan-
tiated to express attributes and relations, as e.g., which tools exist to support a certain method.
The top of figure 1.2b exemplarily shows a UML class diagram with attributes for the concept of
a Tool, as e.g., the license software is distributed under. Some associations are denoted by line
linkings to express facts like “a method is related to a vulnerability”. For example, a method can
detect a vulnerability or shield it from being exploited. Generally, SecEval’s model can also be
used to describe tools and methods that are not security-related. In addition, we define a docu-
mentation scheme for the collection and analysis of information. For validating the soundness of
SecEval, SecEval’s model is applied to a case study of web vulnerability scanning and it is used
as a basis for the novel Secure Web Applications’ Ontology (SecWAO).

In the terminology of ontologies, SecWAO is the ABox (assertion component) that provides
concrete data for the TBox (terminological component) provided by SecEval. From a modeling
perspective this means that SecWAO instantiates SecEval’s model. The center of figure 1.2b
depicts an excerpt of SecWAO as a UML instance diagram. The colors refer to the SecEval

1.3 Approach 7

{ xssPrevention = }

instantiates SecEval’s Context model

references common types of methods

«component»

Web Application

Method

Asset Security Property

XSS prevention

Vulnerability

cross-site scripting (XSS)

control flow integrity website in browser

input validation libraries x-xss protection header

uses uses

instantiates

references

SecEval

Conceptual Evaluation Framework

IT security

SecWAO

Secure Web Applications’ Ontology

web engineering security

UWE

Modeling for Secure Web Applications

secure web applications

(a) parts (b) example

Tool

writtenInLanguages

licences

…

applied methods / tools

Figure 1.2: Construction of our approach

elements, e.g., control flow integrity12 is a security property and XSS prevention is a method to
prevent an asset like a website from containing XSS vulnerabilities. Practitioners can see at a
glance that two common methods to be considered for XSS prevention are the x-xss protection
header (a http protocol header) and the use of input validation libraries.

Ideally, practitioners document or plan how a web application already is or should be config-
ured or implemented. To support this task, we extend the modeling approach UML-based Web
Engineering (UWE) by means to model security aspects of web applications. As a consequence,
security properties and methods can be represented, as e.g., authentication, reauthentication,
secure connections, authorization, user zones, Cross-Site-Request-Forgery (CSRF) prevention,
under attack mode and injection prevention. The bottom of figure 1.2 shows that UWE refer-
ences common types of methods from SecWAO, such as XSS prevention, which is specified as a
UML tag. The tag indicates that the risk of XSS attacks to the “Web Application” component
is reduced by selected methods or tools.

As UWE is provided as a UML profile that defines stereotypes with tags and common pat-
terns, modeling with UWE is possible with ordinary UML editors. Moreover, we facilitate web
engineering with several proof-of-concept tools, e.g., for abbreviating common modeling tasks.
Our approach is partly model-driven with respect to security features, as various artifacts, like
configuration files or access control policies can be derived from UWE models. An example
for a configuration is the restriction of a web user’s navigation through a web application to a
predefined path.

Among other case studies, we apply the extended UWE approach to a Smart Home case study,
defined by Siemens. In this case study, a server is installed in the home of a SmartGrid customer.
12Control flow integrity is the property of software that restricts a user to execute functions in a predefined

order, according to the program logic.

8 1. Introduction

The web application deployed at this server – namely the Energy Management System (EMS)
– displays energy consumption and enables the customer to trade energy or to control home
appliances. With UWE we are able to design different views of the application, i.e. to highlight
essential security requirements and methods in the context in which they are relevant.

1.4 Usage Example
A basic usage scenario that encompasses all layers of our approach is depicted in figure 1.3. At
least since having a look at the excerpt of SecWAO, practitioners know that input validation
libraries can be used for XSS prevention. In an early phase of the development process, the
decision to use input validation libraries can be documented using UWE’s tag {xssPrevention =
“input validation libraries”}.

SecEval

IT security

SecWAO

web engineering security

UWE

secure web applications

instantiate

 & evaluate

HTML Purifier Library

writtenInLanguages = PHP

licences = LGPL v2.1+

xssprotect Library

writtenInLanguages = Java

licences = Apache License 2.0

applied methods / tools

«component»

Web Application

Method

Asset Security Property

XSS prevention

Vulnerability

cross-site scripting (XSS)

control flow integrity website in browser

input validation libraries x-xss protection header

{ xssPrevention = }

select & detail

implement

Tool

writtenInLanguages

licences

…

uses uses

Figure 1.3: Usage example

Searching the web shows that many libraries are worth considering. Practitioners can instan-
tiate SecEval’s model to be able to evaluate a selection of tools. The tools can also be connected
to existing knowledge, as e.g., to the concepts of SecWAO. Given that a team of practitioners
develop using Java and their evaluation suggests that using the xssprotect Library13 meets their
requirements best, they can refine their UWE model to {xssPrevention = “xssprotect Library”}.
Consequently, future developers can see at one glance which means of protection are applied to
certain components. Note that this example is an oversimplification, as several UWE views exist
and the UWE’s Content model that is used to represent components is just one of them. Other
models are, e.g., describing the user’s navigation possibilities within a web application or specify
access control rights on functionality or data.
13xssprotect. https://code.google.com/p/xssprotect/

https://code.google.com/p/xssprotect/

1.5 Outline 9

Most Software Development Life Cycles (SDLCs) contain requirement elicitation tasks as
well as design, implementation, testing and maintenance tasks. As the chronological order of
these tasks is irrelevant for our approach, we use the terms “SDLC” and “development process”
interchangeably. Thus, we do not restrict ourselves to a certain paradigm or technical framework,
but try to model security in a way that raises comprehension and awareness so that “security”
becomes a first-class citizen.

1.5 Outline
The next chapter completes part I by introducing existing approaches and common terms that
are related to our work. In addition, gaps are discussed. The remainder of this thesis is structured
as follows, whereby each chapter in part II and part III closes with a section that comprises a
summary which also revisits major related work:

Part II Evaluating and Relating Security Concepts

Chapter 3 presents our novel conceptual framework SecEval that (a) considers the devel-
opment phases a tool or method is used in and (b) is more expressive than existing
approaches with regard to its relations, attributes and process support.
Section 3.1 introduces a common procedure for answering research questions that

are related to knowledge objects.
Section 3.2 describes SecEval’s architecture. On the one hand, SecEval shows the

relations between security engineering methods, notations, tools, assets, security
properties, vulnerabilities and threats. Features and relations of these elements
are represented in a pattern-based structure. On the other hand, it describes
artifacts in the process of data collection and data analysis and their interrela-
tions. An extension of SecEval for existing risk rating and method evaluation
approaches concludes this section.

Section 3.3 reports on a guided interview that we executed to find out whether
SecEval’s model meets the needs of researchers from various areas.

Section 3.4 examines whether SecEval is sound, easy to use and expressive enough
to be used in a case study that evaluates web vulnerability scanning tools.

Chapter 4 Our SecWAO ontology describes how concrete security engineering methods,
notations, tools, security properties, vulnerabilities and threats are related in the
domain of web application security. Besides, SecWAO demonstrates that SecEval can
be used as a basis for an ontology.

Section 4.1 introduces SecWAO by example.
Section 4.2 shows an excerpt of SecWAO’s security properties.
Section 4.3 relates common methods for engineering and securing web applications.
Section 4.4 structures vulnerabilities and links them to threats.
Section 4.5 discusses important features for an implementation of a knowledge base

that manages SecEval’s models. Our prototype can document evaluation results
and describe and connect concepts of SecWAO.

10 1. Introduction

Part III Engineering Secure Web Applications

Chapter 5 gives an idea of our case studies and of UWE’s model types, before presenting
modeling elements that are able to express required security properties and design
decisions in UWE respectively in UML.

Section 5.1 gives an overview of the case studies we use to demonstrate how different
aspects of web applications can be modeled.

Section 5.2 introduces frequently used models of the modeling language UWE.
Section 5.3 presents novel modeling elements that express security14 aspects of web

applications.

Chapter 6 examines artifacts that can be generated from UWE models and the purposes
these artifacts serve.

Section 6.1 experiments with a textual representation of UWE models in a Domain-
Specific Language (DSL) written in Scala [155].

Section 6.2 presents a way to generate access policies (XACML [149]) and to trans-
form them to a more formal representation, namely FACPL [130].

Section 6.3 presents tools that can be used in a row for modeling access control and
testing XACML policies.

Section 6.4 introduces the transformation of a high-level language as UWE into a
modeling language like ActionGUI [12] that uses detailed models that substitute
code for restricted web applications.

Section 6.5 demonstrates that information from UWE models can be used to secure
the navigation flow of a web application, i.e., disallowing users to leave predefined
paths.

Part IV concludes with a summary and an outlook.

An appendix contains additional information, e.g., about the UWE profile and our EMS
case study. In the end, the author’s list of publications and the bibliography finalize this thesis.
Thereby, the author’s list of publications includes references to chapters of this thesis that cite
the author’s previous publications and statements about her contribution to joint works.

14Although “(IT) security” is often called “Cybersecurity” when the Internet is concerned, we stick to the
former, because the latter is increasingly used as a buzzword.

Chapter 2

Background

In this chapter, we provide background information on existing approaches in the field of secure
(web) application development. Section 2.1 introduces current efforts and standards to improve
secure development processes, section 2.2 is devoted to ontologies, knowledge bases and evaluation
approaches, and in section 2.3 we briefly present approaches for modeling secure web applica-
tions. This chapter contains and extends parts of all “related work” sections from the author’s
publications (listed on pages 177f.). Please note that details regarding similarities or differences
to our work will be discussed in following chapters of this thesis and summarized at the end of
each chapter. In addition, chapter 6 provides specific background in the area of different artifact
generation approaches.

Although we learned about background and related work over time, we tried to systematically
broaden our knowledge about security ontologies and secure web application modeling approaches,
using mainly combinations of the following three sets of search terms, choosing zero or more terms
of each set: {model, modeling, model-driven, aspect-oriented, requirements, designing, develop-
ing, engineering}, {secure web, web security, security}, {applications, access control, RBAC, life
cycle, ontology, taxonomy, evaluation, concept, knowledge base}. We searched the web using the
resulting search terms to find relevant papers, books and websites and skimmed through at least
the first ten search results. Main resources were Google Scholar1, Springer2, IEEE Computer
Society3, ACM Digital Library4 and various web security books. Our strategy included looking
into sources, categorizing seemingly interesting ones using JabRef5 and following interesting ref-
erences to (a) cited literature, (b) other work from the same author or (c) other work from the
same conference, if available.

2.1 Secure Development Processes and Standards
Incorporating security into development processes means to add activities to ensure security
features in every phase of the Software Development Life Cycle (SDLC). These approaches

1Google Scholar. http://scholar.google.com/
2Springer. http://springerlink.com/, http://www.springerprofessional.de/
3IEEE Computer Society. http://www.computer.org/
4ACM Digital Library. http://dl.acm.org/
5JabRef. http://sourceforge.net/projects/jabref/

http://scholar.google.com/
http://springerlink.com/
http://www.springerprofessional.de/
http://www.computer.org/
http://dl.acm.org/
http://sourceforge.net/projects/jabref/

12 2. Background

enrich the software development process by, e.g., security requirements, risk assessment, threat
models during software design, best practices for coding, the use of static analysis code-scanning
tools during implementation, and the realization of code reviews and security testing.

Many companies define their own secure development process in order to ensure that the
software they develop has as few vulnerabilities as possible. A contribution in this area is the
Microsoft Security Development Lifecycle (SDL) [124]. It is a software development process used
to reduce the software maintenance cost and to increase the reliability of software concerning
software security-related bugs. The Microsoft SDL can be adapted for the use in a classical
waterfall model, a spiral model, or an agile model. Other companies also define their security
SDLC, as e.g., Cisco SDL Process6 or SAP’s Product Innovation Lifecycle7. In addition to
general development processes, Glisson worked out a development process that focuses on web
engineering [89]. For our work, the concrete phases or activities of a SDLC and their order is less
important than general security awareness. Therefore, our approach does not specify a detailed
process, but should be used in an agile way.

In addition to SDLCs, security standards, as the ISO/IEC 27000 family [105] can be applied
(e.g., ISO/IEC 27034 deals with application security management8). They go beyond software
development and define an information security management system that requires the specifica-
tion of security guidelines for policies, processes and systems within an organization. Important is
that most standards do not define how to increase security, but they define areas that have to be
taken into consideration in order to create meaningful security guidelines. This is related to our
aim of conscious decision making during the SDLC. Similar documents are released by NIST’s
Computer Security Division9 and the German Federal Office for Information Security (BSI)10. For
example, in SP 800-64 Rev.2, NIST details “Security Considerations in the System Development
Life Cycle” by describing main SDLC phases with their expected outputs and typical security
roles within software projects.

All three, the ISO/IEC 27000 family, the NIST and the BSI documents, aim at providing
comprehensive information about the development and maintenance of secure software and sys-
tems. Included information is structured according to the tree of headings in the documents, but
no underlying structure is used to interconnect mentioned concepts and advices. However, for
the Common Criteria for Information Technology Security Evaluation [59], a standard for evalu-
ating whether software products fulfill specified security properties, Bia las [23, 24] structures and
relates terms that are specific for the Common Criteria.

In practice, search engines like ITU’s approved ICT security standards database11 can assist
in finding appropriate information within standards. For further information about IT security
standards, the interested reader is referred to Wikipedia12.

6Cisco SDL Process. http://www.cisco.com/web/about/security/cspo/csdl/process.html
7SAP - Embedding Security in the Product Innovation Lifecycle. https://support.sap.com/content/dam/
library/support/support-programs-services/support-services/sec-sw-dev.pdf

8ISO/IEC 27034. http://www.iso27001security.com/html/27034.html
9NIST Computer Security Resource Center. http://csrc.nist.gov/publications/PubsSPs.html
10BSI-Standards zur Internet-Sicherheit (German).

https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/ISi-Reihe/ISi-Reihe node.html
11ITU’s approved ICT security standards database https://www.itu.int/ITU-T/security, described in fur-

ther detail in http://www.itu.int/en/ITU-T/studygroups/2013-2016/17/ict/Pages/ict-part02.aspx
12Wikipedia: Cyber security standards. https://en.wikipedia.org/wiki/Cyber Security Standards

http://www.cisco.com/web/about/security/cspo/csdl/process.html
https://support.sap.com/content/dam/library/support/support-programs-services/support-services/sec-sw-dev.pdf
https://support.sap.com/content/dam/library/support/support-programs-services/support-services/sec-sw-dev.pdf
http://www.iso27001security.com/html/27034.html
http://csrc.nist.gov/publications/PubsSPs.html
https://www.bsi.bund.de/DE/Themen/Cyber-Sicherheit/ISi-Reihe/ISi-Reihe_node.html
https://www.itu.int/ITU-T/security
http://www.itu.int/en/ITU-T/studygroups/2013-2016/17/ict/Pages/ict-part02.aspx
https://en.wikipedia.org/wiki/Cyber_Security_Standards

2.2 Ontologies, Knowledge Bases and Evaluation Approaches 13

At the enterprise level, SABSA (Sherwood Applied Business Security Architecture) [196] aims
to be an “overarching framework that binds [existing methods, models and standards] all together
into a single holistic view of how to design and manage enterprise security”13. Thus, SABSA is a
framework that tries to establish security concerns as a central part of enterprise management.

Another approach is to train and to certify security engineers according to many programs, as
e.g., (ISC)2’s14 Certified Information Systems Security Professional (CISSP) or Certified Secure
Software Lifecycle Professional (CSSLP). In contrast, for developers, rather few security-related
certificates seem yet to exist15,16, which strengthens the feeling that security is often seen as
something that should be taken care of by “someone else”, instead of by developers themselves.

For general software development, the 25 most dangerous software errors are presented by
CWE/SANS17. An example for supporting in particular the secure development of web applica-
tions along the SDLC is the Open Web Application Security Project (OWASP). It comprises,
beyond others, a set of guides for web security requirements, cheat sheets, a development guide, a
code review and testing guide, an application security verification standard (ASVS), a risk rating
methodology, various tools and a Top 10 of privacy risks as well as a Top 10 of web security
vulnerabilities [161].

2.2 Ontologies, Knowledge Bases and Evaluation Ap-
proaches

In this section, we introduce terms (section 2.2.1) and existing security-related ontologies, knowl-
edge bases and evaluation approaches (section 2.2.2).

2.2.1 Terms
As already written in the introduction, “an ontology is a formal explicit specification of a
shared conceptualization for a domain of interest” [208]. An ontology usually comprises an ABox
(assertion component), i.e. the concrete elements, and a TBox (terminological component) that
defines underlying concepts. In this thesis, we usually refer to the ABox when using the term
“ontology”. Some knowledge bases employ ontologies as a TBox structure for the knowledge
objects they contain, as e.g., [227, 121, 49]. This underlines Fensel’s statement that “providing
shared domain structures is becoming essential, and ontologies will therefore become a key asset
in describing the structure and semantics of information exchange” [82, p. 3]. We agree with his
estimation and want to add that insights of how things are related have been fascinating humans
since ancient times (cf. ontology in philosophy).

A knowledge base is “a technology used to store complex structured and unstructured
information used by a computer system.”18 In our work, we are interested in structured infor-

13SABSA FAQ. http://www.sabsa.org/faq-page
14(ISC)2 Certifications. https://www.isc2.org/credentials/default.aspx
15GIAC. Security Certifications: Software Security. https://www.giac.org/certifications/software-security
16EC-Council Certified Secure Programmer (ECSP).

http://www.eccouncil.org/Certification/ec-council-certified-secure-programmer
17CWE/SANS Top 25 most dangerous software errors. https://cwe.mitre.org/top25/
18Wikipedia: Knowledge Base. https://en.wikipedia.org/wiki/Knowledge base

http://www.sabsa.org/faq-page
https://www.isc2.org/credentials/default.aspx
https://www.giac.org/certifications/software-security
http://www.eccouncil.org/Certification/ec-council-certified-secure-programmer
https://cwe.mitre.org/top25/
https://en.wikipedia.org/wiki/Knowledge_base

14 2. Background

mation and in information that can not only be used by a computer system, but also directly by
humans. In Software Engineering, a shared understanding is especially helpful when large teams
work together and experts are recruited for varying periods of time. Knowledge bases aim at sup-
porting software and security engineers to learn about the state-of-the-art to avoid “reinventing
the wheel” [80, p.2]. Therefore, knowledge bases can, e.g., be used to structure information for
evaluation purposes, such as the evaluation of different offers or the selection of a software tool
to work with.

Knowledge bases are often implemented as web applications (e.g., using semantic Wikis, such
as the Semantic MediaWiki [120]) and if they are structured, they can be used similarly to ontolo-
gies that are accessible online, such as WebProtégé [206]. This means that collaborative viewing
and editing of elements contained in the knowledge base or ontology is possible. Technically,
ABoxes and TBoxes can be specified using the Web Ontology Language (OWL), which is sup-
ported by many ontology editors and common in the field of semantic web. However, we think
that most software engineers are more familiar with UML class diagrams, which can express
concepts, relations between concepts and concepts’ attributes. As this is sufficient, we decided in
favor of UML for our SecEval and SecWAO approach, although contained data could easily be
exported to OWL.

The underlying evaluation approach, our SecEval approach is built upon, is the so-called
“Systematic Literature Review” of Kitchenham et al. [113], which seems to be the main eval-
uation approach used in software engineering. Their aim is to answer research questions by
systematically searching and extracting knowledge of existing literature. We go even further us-
ing arbitrary resources in addition to available literature, such as source code or experiments that
are carried out to answer a research question. A systematic literature review is executed in three
main steps: first, the review is planned, then it is conducted and finally results are reported.

2.2.2 Existing Approaches
The Common Body of Knowledge (CBK) [15] defines a model to collect and describe meth-
ods, techniques, notations, tools and standards and also encompasses Kitchenham’s approach.
CBK’s techniques do not specify activities (process steps) for applying them, as methods do. The
CBK is implemented as a semantic Wiki [49] and serves as a knowledge base to which queries
can be posted. As we used the CBK in the EU project NESSoS [143] (and were involved in the
initial brainstorming process as well as in further discussions), it can be seen as a starting point
for our SecEval approach.

INCAMI (Information Need, Concept model, Attribute, Metric and Indicator) [156] is a
conceptual framework that specifies general concepts and relationships for the quality evaluation
of a web application. The model can be used to represent a tree of requirements a web application
should fulfil and relate requirements with measurement and evaluation concepts. The focus is
not on comparing different applications, but on measuring the quality of various requirements
within an application so that its quality can be improved. INCAMI concepts and relationships
are specified as a UML class diagram. We also stick to use UML for graphical representation of
our SecEval approach and implemented separation of concerns through UML packages.

Moody [136] proposes an evaluation approach which is based on experiments and centers the
attention on practitioners’ acceptance of a method, i.e. its pragmatic success, which is defined
as “the efficiency and effectiveness with which a method achieves its objectives”. Efficiency is

2.2 Ontologies, Knowledge Bases and Evaluation Approaches 15

related to the effort required to complete a task and effectiveness to the quality of the result.
Practitioners are invited to use methods and afterwards answer questions about perceived ease
of use, perceived usefulness and intention to use. This approach is integrated as an extension of
SecEval (cf. section 3.2.4).

Regarding web security, Salini and Kanmani [182] present an approach for creating an on-
tology of security requirements, including the concepts of assets, web applications, vulnerabilities,
threats, security requirements and stakeholders. Although they define relations between these
concepts, they do not provide attributes to describe them, as e.g., SecEval does. They mention
some examples for these concepts, but do not provide a concrete ontology. The reader is referred
to their related work section for a chronological list of security-related ontologies.

In [69, 68] Denker et al. provide examples of elements and their relations for secure web
services. In contrast to SecWAO, their ontology is restricted to a tree of subclasses and properties
of the concepts “Credential” and “SecurityMechanism”. They use a high level of abstraction and
due the lack of different concepts, they e.g., group “authentication, authorization, access control,
data integrity, confidentiality, privacy, exposure control, anonymity, negotiation, policy, key dis-
tribution” inside of “SecurityNotation”, which itself is a descendant of “SecurityMechanism”. In
SecEval and SecWAO, we differentiate between security properties like confidentiality, methods
like authentication and assets like credentials.

Besides the CBK, another approach with teaching purposes regarding security is called Cy-
ber Security Learning by security Ontology Browsing (SLOB). This project seems
to be abandoned, as few information is available and the prototype19 does not fully load. In
addition, the same working group [56] provides an editor for security ontologies, called Security
Ontology eXpert tool (SOX)20. In SOX, an attribute that can be specified for describing
a concept is, e.g., an excerpt taken from an explanation in a book. The approach to enrich an
existing ontology by exploring textbook indexes is described in [222].

The OWL ontology enriched in [222] is presented by Herzog et al. in [101]. It primar-
ily focuses on the classification of assets, threats, vulnerabilities and countermeasures and also
contains some web-related threats, as e.g., Cross-Site Scripting (XSS). However, it lacks com-
mon vulnerabilities of web applications, as cross-site-request forgery, clickjacking or methods for
session management (cf. chapter 4).

In [83], Fenz and Ekelhart introduce an ontology based on OWL that comprises (among
others) assets, security attributes, threats, vulnerabilities and controls. Additionally, they use
formal axioms to test if all necessary information to describe a concept is specified in a concrete
ontology. Unlike SecWAO, their ontology is rather abstract; even so they also include physical
security, as e.g., dumpster diving, safety doors or smoke detectors.

Kim et al. [112] use OWL to create an ontology that consists of several parts, like main
security, credentials, algorithms, assurance or semantic web services’ security. The main ontology
includes security objectives and security concepts like protocols, mechanisms (e.g., for securing a
network) or policies. Aside from cookies and some Internet protocols, web application security is
not mentioned. Unfortunately, the server hosting the full ontology files seems no longer to be on-
line. In contrast to SecEval and the CBK, neither [101], [83] nor [112] allow for the representation
of methods that are not directly related to security, as our SecEval approach does.

19SLOB. http://cis.csi.cuny.edu:8080/SLOB/
20SOX. http://cis.csi.cuny.edu/∼project/SKATClient/

http://cis.csi.cuny.edu:8080/SLOB/
http://cis.csi.cuny.edu/~project/SKATClient/

16 2. Background

Structures of ontologies can also be used as a basis for eliciting security requirements, as
already seen in Salini and Kanmani [182]. The i* metamodel [180] is the basis of a vulnerability-
centric requirements engineering framework introduced by Elahi et al. [78]. This extended,
vulnerability-centric i* metamodel aims at analyzing security attacks, countermeasures, and re-
quirements based on vulnerabilities. Similar to our approach, the metamodel is represented using
UML class models. Instances of this metamodel use an i*-specific representation, which is not
based on UML. Main elements of the metamodel are: vulnerability, attack (which can exploit a
vulnerability; executed by an actor), effect and security impact (e.g., on a resource). Although
the terms ontology or taxonomy are not used in [78], Elahi et al. provide a detailed example of
a browser and a web server, including threats by a hacker and a fake web site. For this example
they analyze countermeasures for a concrete system in order to estimate the risk of vulnerability
exploitation. As they do not provide an ontology, our SecWAO could be used to enable secu-
rity engineers to systematically examine relevant security mechanisms of web applications when
modeling with i*.

Another approach that focuses on vulnerabilities is described by Wang et al. [223]. Their
concept model is less detailed than the i* metamodel. They create a knowledge base that can be
queried using the Semantic Web Rule Language (SWRL) [179], as unlike our approach, they do
not use graphical models.

One year after SecEval was published, Souag et al. developed a quite similar ontology
(ABox-only) for eliciting security requirements [203]. It is divided in three parts: treatment (which
mechanism can help to fulfill a security requirement), risk (threats, risks and vulnerabilities) and
organization (asset, location, organization, person). Tools like the Adamant framework21 also
include persons, to be able to assign security requirements to them. Their realization in concrete
systems can then semi-automatically be tracked.

In practice, several databases exist that collect data about vulnerabilities and threats. For
example, the MITRE corporation maintains CAPEC [212], a threat database; CVE [213],
a database for common vulnerabilities; and a weakness database, namely CWE, which stands
for Common Weakness Enumeration. Weaknesses are “a type of mistake in software that, in
proper conditions, could contribute to the introduction of vulnerabilities within that software.”22

For example, XSS is a CWE weakness23 that can be used for a CAPEC attack that includes
“Scripts in existing Scripts”24. CVE references that a XSS vulnerability was located in former
versions of the wiki software MediaWiki25,26. As a weakness can be seen as a generalization of
a vulnerability, we stick to the latter term, as further discussed in section 3.2.1. The database
structure (TBox) of CAPEC, CVE, and CWE can be downloaded as XML Schema Definition
(XSD) files. Everybody can join the community to suggest potential entries, which leads to huge
knowledge bases with many detailed practical examples. In addition to these databases, MITRE
develops the Structured Language for Cyber Threat Intelligence Information (STIX) [214], which
provides a kind of ontology to describe campaigns, adversary tactics, techniques, and procedures

21Adamant. http://adamant.q-e.at
22CWE Glossary - Weakness. https://cwe.mitre.org/documents/glossary/
23CWE-79. http://cwe.mitre.org/data/definitions/79.html
24CAPEC-19. http://capec.mitre.org/data/definitions/19.html
25CVE-2008-5249. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5249
26MediaWiki. https://www.mediawiki.org

http://adamant.q-e.at
https://cwe.mitre.org/documents/glossary/
http://cwe.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/19.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5249
https://www.mediawiki.org

2.2 Ontologies, Knowledge Bases and Evaluation Approaches 17

as well as incidents. An overview of malware-related languages and ontologies is presented by
Obrst et al. [153].

Often, it is a good idea to reference item IDs from CAPEC, CVE, CWE or the OWASP Top 10
when referencing vulnerabilities and threats, as e.g., can be done in ontologies like SecWAO. How-
ever, for SecEval, we take a step back as we are not only interested in vulnerabilities and threats
that exploit vulnerabilities, but also in the interconnections of security properties, assets, meth-
ods, notations and tools. In addition, we make use of inheritance of attributes27 (top-down),
instead of pointing to generic blocks of information, as used in CAPEC’s, CVE’s, and CWE’s
schema definitions (bottom-up [148]). Both strategies have their advantages and disadvantages:
Bottom-up approaches are easier to scale due to modularization and top-down approaches fa-
cilitate focusing on relations and context-sensitive attributes due to their fundamental element
structure, which is valuable for evaluation and teaching purposes. For example, the CBK also
uses the top-down approach, which makes it easy to define attributes that should be available for
all subtypes of the most general “KnowledgeObject” type.

Some ontology structures, like the HL7’s Security and Privacy Ontology [5] and the Object-
Security’s PrivacyOntology [123] seem mostly to be used for exchanging data in a compatible
way. HL7 is a set of standards for healthcare that defines the exchange of health-related data.
The PrivacyOntology was invented by a company called ObjectSecurity to specify access control
policies.

Ontologies that focus on special areas of security, are e.g., presented by Moyano et
al. [138], who provide a conceptual framework for trust models that is also represented using UML.
In 2010, Falkenberg started WS-Attacks28, a Wiki that organizes web service attacks according
to categories like the main security objective they violate (availability, integrity, confidentiality
and access control), the number of involved parties, the web service component that is attacked,
and he distinguishes attacks due to implementation weaknesses in web service frameworks and
attacks due to conceptual flaws. Unfortunately, the Wiki is not kept up-to-date.

For mobile applications, an ontology is presented in [16]. Besides its focus on mobile applica-
tions, it includes assets, threats, vulnerabilities and mechanisms where mechanisms correspond
to SecEval’s notion of methods. For detailed evaluations of existing security ontologies, the
interested reader is referred to [26, 202, 103].

In this thesis, we focus on vulnerabilities that are introduced into software during the re-
quirements and design activities and do not go into much detail regarding vulnerabilities that are
introduced according to programming language-specific particularities (as can, e.g., be
found for C, C++, Android, Java [126] and Perl in SEI CERT Coding Standards29). The reason
is that errors in requirements and design are expected to be propagated into the implementation,
which makes them expensive to correct. Nevertheless, we aim at avoiding overengineering due to
loss of time in early phases of the development process and agree with Boehm and Basili that it
is best to develop in a kind of “continuous prototype mode that still emphasizes getting things
right early rather than late” [27]. As a consequence, we made sure that most parts of the work
we present can be used for software pieces of various size, instead of following an all-or-nothing
approach.

27Inheritance: If 𝐴 and 𝐵 are classes (concepts) and 𝐴 has attribute 𝑥 and 𝐵 is a subclass of 𝐴, then 𝐵
also has the attribute 𝑥.

28WS-Attacks. http://www.ws-attacks.org
29SEI CERT Coding Standards. https://www.securecoding.cert.org

http://www.ws-attacks.org
https://www.securecoding.cert.org

18 2. Background

2.3 Modeling Web Applications
In this section, we first discuss why graphical modeling can be advantageous, before introducing
modeling approaches for web applications that take security into account.

2.3.1 Advantages of Graphical Software Modeling
Experienced practitioners frequently warn that a main challenge is to keep the need for security in
mind while developing web applications, as functional requirements are more clearly visible when
executing and testing the application. In addition, functional features can directly be invoiced,
which can be difficult for security, as security is often taken for granted, both at the developer’s
and at the customer’s side. All too often, a document containing security guidelines and company-
wide security design decisions is handed over to the developers at the beginning of a project, but
they are not in the focus until (mostly external) penetration testers point out vulnerabilities.
In the OWASP community Munich, penetration testers reported, that they almost always find
common vulnerabilities, according to the OWASP Top 10 and that in their experience, developers
are often pressed for time when fixing reported vulnerabilities, as penetration tests are usually
executed just before a release date. Therefore, several modeling approaches try to put the focus
on requirements and design by connecting important requirements and decisions directly to the
web application’s architecture.

In general, we assume that well-presented graphical information leads to having a comprehen-
sive view and a better understanding, which eases conscious decision making and therefore reduces
common careless mistakes. To prove this assumption is beyond the scope of this thesis. However,
it is common knowledge that engaging multiple senses is advantageous for understanding and
learning. This is also reflected in the common phrase: “Do I have to paint (you) a picture?” [204]
for something that seems not to be understood from reading or listening alone. Moreover, models
that enrich textual documentation are thought not only to increase passive understanding, but
also to foster discussions between practitioners (i.e., speaking and listening, which might lead to
creating/changing models). This could similarly apply to software design models and to ontology
representations. Nevertheless, graphical representations should be designed in a way that they
are not contradictory or misleading, which can be found out by collecting experience using case
studies that employ them.

2.3.2 Approaches that support Security-Related Requirements
and Design Decisions

According to a survey, “86% of all websites had at least one serious vulnerability in 2012”, which
means that an “attacker could take control over all, or some part of the website, compromise
user accounts on the system” or “access sensitive data” [94]. One way to counter this trend is to
increase the awareness for security decisions, to make sure that necessary decisions are consciously
taken during development and that these decisions have an impact on the actual implementation.
Security-aware modeling approaches for (web) applications support this by visually or textually
describing various properties of an application. Ideally, developers can quickly get aware of them
and – for visual modeling approaches – may internalize main structures easily, which can serve as
an anchor for further information they come across. In addition, many models make it possible to

2.3 Modeling Web Applications 19

automatically generate artifacts like code snippets or configuration files. Fortunately, countless
approaches for modeling secure applications exist; unfortunately, most of them are restricted to
specifying access control policies, which is only one of many methods that have to be considered
for building a “reasonably secure” application.

Note that there are risks for web applications in general as well as risks that should be
rated individually for each use case (and it might turn out that some risks can be ignored).
For modeling individual threats, we suggest modeling misuse cases, as presented by Sindre and
Opdahl in [198] or mal-activities (activities by attackers who threaten a system and their impact
on other activities), as presented by El-Attar in [77]. For detailed risk analysis and for modeling
threat scenarios, the CORAS method [127] can be used. Although we assume that anticipated
threats and risks are analyzed meanwhile or prior to modeling, we mainly focus on general risks
for web applications, like those mentioned in the OWASP Top 10 [161]. Handling these common
risks is necessary for implementing a “reasonably secure” web application.

Existing modeling approaches are briefly introduced in the following, starting with UWE,
which we decided to further extend in this thesis. One of the cornerstones of the UML-based
Web Engineering (UWE) [116, 44] language is the “separation of concerns” principle, which
is implemented by using separate models for different views on the application. For example, the
Content model contains the data structure used by the application, the Presentation model can
be used to sketch the web application’s user interface and the Navigation model is used to define
which ways users can follow to browse through it. For each view, an appropriate type of UML
diagram is used, e.g., class diagrams for the Content model. In addition, the UWE profile adds
a set of stereotypes, tag definitions and constraints, which can be downloaded from the UWE
website [224]. Already for her master’s thesis [37], the author has chosen to start to extend UWE
for modeling security features of web applications, primarily because it is flexible due to its views
and can be modeled with any UML editor that supports profiles. Further details of the UWE
modeling approach can be found in part III, in which we continue to enhance UWE so that it
can be used to express a variety of security requirements and security-related design decisions.

UWE models can be built using any UML CASE tool that enables the use of UML profiles.
We use the MagicUWE plugin, which was implemented by the author and others [40] as a
MagicDraw [147] plugin. It provides additional support to the developer, e.g., repetitions can
be avoided. Thus, instead of creating a basic element, as a class, and applying a stereotype to
it, UWE’s stereotyped elements can be inserted directly from the MagicDraw toolbar. Besides,
several model transformations can be performed (semi-)automatically. Further functionalities of
MagicUWE are described in part III, chapter 6.

In order to use transformation functionalities of MagicUWE in toolchains, we integrated it
into a tool workbench, called Service Development Environment (SDE) [193]. The SDE has been
developed within the SENSORIA project [194], an initiative funded by the EU from 2005 to
2010. Afterwards, it has been maintained and extended within the scope of the NESSoS and the
ASCENS [7] EU projects. The SDE is an Integrated Development Environment (IDE) based on
a service-oriented approach, where each tool is represented as a service. Technically, the OSGi
framework in Eclipse [75] is used to integrate tools such that their functionalities can be connected
and executed in a row.

ActionGUI [11] is an approach for generating complete, but simplified, data-centric web
applications from models. It provides an OCL specification of all functionalities, so that naviga-
tion is only modeled implicitly by OCL constraints. In general, ActionGUI abstracts less from

20 2. Background

an implementation than UWE does, as its aim is to directly generate the entire code, which
requires that all information has to be provided in the models. In the most recent version, which
is presented by Basin et al. in [9], ActionGUI focuses on textual models.

UMLsec [109] is an extension of UML with emphasis on secure protocols. It is defined in
form of a UML profile including stereotypes for concepts like authenticity, freshness, secrecy and
integrity, role-based access control, guarded access, fair exchange, and secure information flow.
In particular, the use of constraints gives criteria to evaluate the security aspects of a system
design, by referring to a formal semantics of a simplified fragment of UML. UMLsec models,
compared to UWE models, are extremely detailed and therefore quickly become very complex.
Tool support is only partly adapted from UML1.4 to UML2 by some new tools [110].

SecureUML [125, 10] is a UML-based modeling language for secure systems. It provides
modeling elements for role-based access control and the specification of authorization constraints.
A SecureUML dialect has to be defined in order to connect a system design modeling language
as, e.g., ComponentUML to the SecureUML metamodel, which is needed for the specification of
all possible actions on the predefined resources. In [4], Alalfi et al. exemplarily reconstruct Se-
cureUML rules from a web application written in PHP, by automatically creating UML sequence
diagrams that present interaction behavior.

A similar approach as SecureUML is UACML [199] which also comes with a UML-based
meta-metamodel for access control, which can be specialized into various metamodels for, e.g.,
Role-Based Access Control (RBAC) or Mandatory Access Control (MAC). Conversely to UWE,
the resulting diagrams of SecureUML and UACML are quickly getting overloaded, as SecureUML
uses UML association classes instead of simple dependencies and UACML does not introduce a
dedicated model to specify user-role hierarchies.

Further approaches that model access control can be found in [33, 114, 137, 183, 146]. The
interested reader is referred to semantic literature reviews, which were published in 2015 by
Nguyen et al. [145] and van den Berghe et al. [219].

Rodŕıguez et al. add symbols to BPMN [178] and to UML [177] for modeling high-level security
requirements, such as the need for access control, non-repudiation, integrity, privacy and points
where attacks should be discovered and registered. Therefore, process flows are annotated by
several symbols like a lock named AC for activities that should be placed under access control.
The clear focus on requirements, without any refinement regarding design, let the diagrams remain
well readable.

Other approaches address the modeling of security aspects of service-oriented architectures
(SOAs), such as the SECTET framework [97], UML4SOA [88], and SecureSOA [133]. The
SECTET framework proposes the use of sequence diagrams for the representation of a set of
security patterns, in UML4SOA security features are modeled as non-functional properties using
class diagrams, and SecureSOA relies on FMC block diagrams and BPMN notation. Hoisl and
Sobernig [102] model confidentiality and integrity for SoaML invocation protocols.

Web engineering approaches that do not take security into account are, e.g., Web Application
Extension (WAE) [61] (although Conallen included a short, chapter about general web security in
his book), UWA [71], the flashWeb method [107], OOHRIA [132], OOWS [218], WebML [30] and
IFML [152], which is based on WebML and focuses on user interface modeling. The interested
reader can find an overview of non-security methods for web application modeling by Kappel et
al. [111, table 3-1, p. 60] and more recent literature reviews by Schwinger et al. [191], by Valderas
and Pelechano in [217] and by Aragón et al. [6].

Part II

Evaluating and Relating Security
Concepts

Software engineers need to find effective methods, appropriate notations and tools that sup-
port the development of secure applications along the different phases of the Software Devel-
opment Life Cycle (SDLC). Our evaluation approach, called SecEval, supports the search and
comparison of these methods, notations and tools (cf. RQ1). In addition, SecEval can be used as
a structure for ontologies or knowledge bases, which allows us to tackle RQ2.

This part is a revised and extended version of our papers published in [45, 46, 48]. The author
would like to thank her co-authors of these papers, namely Martin Wirsing and Nora Koch for
discussions and corrections.

Part II consists of two main chapters:
SecEval: A Framework for Evaluating Security Engineering Approaches. We elicit re-

quirements and define the SecEval evaluation process in section 3.1. In section 3.2 SecEval’s
architecture is described, which comprises: (i) a Security Context model with assets, meth-
ods, tools, security properties, vulnerabilities and threats (knowledge objects) (ii) a Data
Collection model that records how data is gathered when researchers or practitioners are
looking for methods, notations and tools that solve a specific problem (iii) a Data Analysis
model that specifies how analysis, using previously collected data, is performed.
For validating our approach, we interviewed international senior researchers, as we report
in section 3.3. We like to thank the 14 (associated) partners of the EU project NESSoS,
who contributed with their ideas to the improvement of SecEval.
Besides, SecEval is used for evaluating tools in the web testing domain. Under the supervi-
sion of the author, Stephanie Schreiner [188] contributed a comparison of security-related
tools and methods on a high level of abstraction and Christian Lacek [122] executed an in-
depth comparison of web testing tools with practical tests. These bachelor’s theses served
as the data basis for our SecEval models in section 3.4.

SecWAO: A Secure Web Applications’ Ontology. Regarding the area of web applications,
a reason for vulnerabilities is that for developers the term “security” is difficult to grasp.
Many security properties exist and there are various methods to enforce them and methods
to prevent common vulnerabilities in web applications. Ontologies can help to get a com-
prehensive view of web security and to structure this domain by relating relevant knowledge
objects. Our ontology, called SecWAO, is based on SecEval and supports teaching purposes
and web developers when specifying security requirements or making design decisions. Be-
sides, it serves as a basis for our security extension of the UWE notation, which will be
presented in part III.
In section 4.1, we introduce SecWAO by example, while mapping concepts from the area
of Cross-Site Scripting (XSS) to knowledge objects of SecEval. SecWAO is then presented
with excerpts of its security properties (section 4.2), methods (section 4.3), vulnerabilities
and threats (section 4.4).
On the basis of the author’s ideas and requirements, published in [45]), Martin Reith-
mayer [176] developed a prototype of an online knowledge base (section 4.5.2). Beyond
others, it allows users to create, edit, relate, and search for knowledge objects of SecEval’s
Security Context model. Knowledge objects can stem from a SecEval evaluation as well as
from SecWAO.

The interested reader can download30 all models in the MagicDraw [147] or XMI [150] format.

30SecEval, its extensions, case studies, and SecWAO. http://www.pst.ifi.lmu.de/∼busch/SecEval/

http://www.pst.ifi.lmu.de/~busch/SecEval/

Chapter 3

SecEval: A Conceptual Framework
for Evaluating (Security) Engineering
Approaches

In this chapter, we describe SecEval, our conceptual evaluation framework for methods, notations
and tools, supporting the development of secure software and systems. Our framework supports
collecting security-related data and describing security-relevant metrics, using them for reasoning
and obtaining the appropriate techniques for a specific project. An example for a simple evalua-
tion is required to answer the question posted in the implementation phase: “Which library for
authentication should be used?” A more elaborated one could be the evaluation of risks for a
concrete software system.

The conceptual framework comprises a structural part and a behavioral part, defined as a
model for evaluation and an evaluation process. For the graphical representation of the evaluation
model a UML class diagram was chosen; the evaluation process is represented as a UML activity
diagram.

This chapter is a revised and extended version of our papers published in [45, 46]. We
present the requirements engineering work that was done to elicit the main steps of the process in
section 3.1, followed by the architecture of SecEval in section 3.2. A guided interview (section 3.3)
and a case study (section 3.4) validate the soundness of the SecEval approach.

3.1 Evaluation Process
We start by eliciting the requirements of such a framework, i.e., which stakeholders are involved,
which concepts play a role in secure software and evaluation of methods, tools and notations,
and how these concepts are related (cf. section 1.2, RQ1). Therefore, the first step was to
name common stakeholders for secure software: security engineers (i.e. security designers and
developers), normal users of the software and attackers. In some cases, users can attack software
without being aware of it, e.g., when they have a virus installed on their computer. We consider
those users also attackers, as well as developers who are, e.g., trying to smuggle malicious code
into software. Figure 3.1 depicts stakeholders and use cases in a UML use case diagram.

24 3. SecEval: A Framework for Evaluating Security Engineering Approaches

EvaluateSecurity-related

KnowledgeObjects

Evaluation

ChooseEvaluation

Framework

AccessOrRecordData

SpecifyDataCollection

andAnalysisStrategy

CollectData

AnalyzeData

EvaluateRisks

Development

IdentifyVulnerabilities

Design

SecMechanisms

Implement

SecMechanisms

IdentifySecurity

Requirements

Patch

Vulnerabilities

Security Engineer

InstallUpdates

OrPatches

Attack

Vulnerability
AttackerUser

e.g. ontology for secure web applications (SecWAO)

«include»

«include»

«include»

«include»

«extend»

«include»

«include»
«extend»

«extend»
(patch)«include»

«extend»

(attack)

useWhenNeeded

«extend»

(update)

Figure 3.1: SecEval: stakeholders and use cases

3.2 Architecture 25

We grouped use cases based on their purpose in evaluation and development use cases. The
Evaluation package at the top contains all use cases related to collecting, reasoning and se-
lecting, e.g., tools, whereas the package Development at the bottom of the diagram refers to
security-related tasks within the SDLC, such as identification of security requirements, design
and implementation of these security requirements, identification and patch of vulnerabilities.
The ≪include≫ dependencies show the order these use cases have in the SDLC1: implementing
secure software requires having a design, and a design implies that requirements were elicited
beforehand. Both, the attacker and the security engineer can identify vulnerabilities, whereas
the former usually attacks them and the latter tries to patch them, which is modeled using an
≪extend≫ dependency. Those patches can then be installed by users (which might be initiated
by an automatic update function).

From time to time, tasks within the development package require evaluation activities to
respond for example to questions like “Which tool should be used for gathering security require-
ments or for designing secure web applications?”. In fact, for security experts, it is helpful to be
aware of common security methods and tools that can be used for a specific task.

A generic evaluation process with SecEval consists of data collection and data analysis, as
depicted in figure 3.2. The first step of the process is the data collection based on the current
research questions. Therefore, different sources (as papers, reports, websites, . . .) are gathered,
which are then analyzed in the second step. This analysis process consists of extracting informa-
tion from the data collected, activating some reasoning activities and expressing the results using
SecEval’s Security Context model. Notice that this process has to be adapted (and usually sim-
plified) for a specific evaluation. Writing down the exact process might not always be necessary,
as many tasks can be executed in parallel or in any order, which is indicated by horizontal bars.

In practice the basic ingredients of the evaluation process are a set of tasks that have to be
performed and information pieces relevant for these tasks. Tasks, as e.g., selecting queries, search-
ing or executing experiments, and defining filters, are represented as UML activities. Information
pieces are represented as objects in the UML model, denoting the required input and provided
output of a task. Examples for identified objects are: research questions, used resources, queries,
filters and criteria, which will be detailed in the next sections.

3.2 Architecture
The use cases from our requirements analysis and the objects of the evaluation process are a
starting point to identify relevant concepts related to security for using and evaluating methods,
notations and tools during the software engineering process. We cluster these concepts in three
packages, which are presented in this section: Security Context (section 3.2.1), Data Collection
(section 3.2.2) and Data Analysis (section 3.2.3). Section 3.2.4 concludes with two extensions of
SecEval.

Figure 3.3 gives an overview of SecEval represented as a UML class diagram2 that can be
instantiated with concrete methods, tools and notations whenever needed. As introduced in
1Please note that our approach is not based on a particular software development process (be it waterfall,
iterative or agile), as we refer to tasks within phases of a Software Development Life Cycle and do not
describe whether this “circle” is cut open, rather big or just concerning a single task.

2The background of classes that can directly be instantiated is colored and the names of them are not
italic. The same colors are used in following figures, which introduce each model in more detail.

26 3. SecEval: A Framework for Evaluating Security Engineering Approaches

DataCollection

Define Concrete Queries for Used Resources

Plan Research Process or Process Phase

Execute Search / Experiments

Define Research Questions

Select Used Resources Select Queries

enough data sources for
evaluation?

DataAnalysis

Data Extraction

Extract(&Process)
Information

(Re)Define
Algorithms

(Re)Define
Criteria

(Re)Define
Filters

Summarize Research Results

Plan Data Analysis

more data
to extract?

: Filter

: Information

: Source

: ResearchQuestion

: AnalysisAlgorithm

: ConcreteQuery

: KnowledgeObject

: UsedResource

: Criterion

: Query

[no]

[yes]

[yes] [no]

[reuse if needed]

Figure 3.2: SecEval’s evaluation process

3.2 Architecture 27

DataAnalysis

AnalysisAlgorithm

AnalysisStrategy

ProcessedInfoExtractedInfo

Information Criterion

SecurityContext

KnowledgeObject

SecurityProperty

Vulnerability

Mechanism

Notation ToolMethod

Threat

Asset

ResearchQuestion

SearchProcess

DataCollection

SourceQuery

«use»

«use»

use1..*

produce*

1..*

«use»

chooses

*

chooses

1..*

* 1

«use»

1..* *

1..**

*

*

1..*

1..*

** *
*

*

1..*
*

*

*

*
*

«use»

1..*

1

inspiredByRQs

1..*

found

1..

Figure 3.3: SecEval: model overview

28 3. SecEval: A Framework for Evaluating Security Engineering Approaches

section 2.2.2 on page 17, we consider the following concepts as key elements in SecEval: assets,
methods, notations, tools, security properties, vulnerabilities and threats.

3.2.1 Security Context
SecEval’s Security Context model provides a structure for the classification of methods, notations
and tools together with assets, and security properties, vulnerabilities and threats. Within this
model we represent a security feature as a UML class, called SecurityProperty, and an
abstract class called Mechanism is used from which the classes Method, Notation and Tool
inherit common attributes such as goals or costs. We focus on security aspects, but the model
can also record non-security mechanisms.

In figure 3.4, enumerations are edged in grey and attributes and roles are typed; however,
the types are not shown in the figures due to brevity. The main characteristics are specified as
Boolean types (can.., has.., is..). In an implementation of our model, it should be possible to add
further items to the enumerations.

We adopted the abstract class KnowledgeObject, which is used in the Common Body of
Knowledge (CBK) [49], as a super class for all context elements that are described by SecEval.
In SecEval, we applied separation of concerns so that only very general descriptions remain as
attributes in a knowledge object, which can be applied to all elements (cf. figure 3.4). The class
KnowledgeObject has associated names, tags and related sources, which could be any kinds
of sources, as publications or Uniform Resource Locators (URLs). For connecting and describing
ambiguous knowledge objects that are not (yet) clearly separated in practice, we created the
UML association class Ambiguity. For convenience, we allow to group knowledge objects in
categories, which themselves can belong to knowledge objects. Creating categories is especially
useful if instance diagrams get bigger.

Security properties, such as confidentiality3 or integrity4 are represented by the class Secu-
rity Property. Security properties can also be based on other security properties.

Security properties are always related to Assets. For us, an asset is something of value
that has to be protected [200, p. 303], as web servers, web applications or information like
passwords. For example, the security property “confidentiality” can be a feature of a transmitted
data package. Assets can belong to or be used by other assets and some of them, as web servers,
might be described by a certain configuration. In addition, an asset can include Mechanisms.
For example, authentication is a Method and thus a Mechanism and an authentication system
might be an asset that includes the concept of authentication.

A Vulnerability is “a weakness that makes it possible for a threat5 to occur” [25, p.498].
Thus, it endangers security properties. Examples are injection6, buffer overflows, etc. The
objective of certain methods is to detect vulnerabilities or to shield them from being exploited by
a threat. A vulnerability can have a location; details about the component the vulnerability is
located in can be given using the attribute affectedComponents. In case the method, notation

3Confidentiality “is the concealment of information or resources” [25, p.4].
4(Data) integrity “refers to the trustworthiness of data or resources, and it is usually phrased in terms of
preventing improper or unauthorized change” [25, p.5].

5“A threat is a potential for a security breach of an asset” [189].
6“Injection flaws occur when untrusted user data are sent to the web application as part of a command or
query” [171, p.9].

3.2 Architecture 29

writtenInLanguages [*]
runsOnOperatingSystems [*]
usedFrameworks [*]
technicalRequirements [*]
licenses [*]
timeForInstAndConfiguration
canBeUsedInteractively
canBeUsedAutonomously
hasStartupParameters
hasGUI
hasTextBasedInterface

Tool

creators [*]
preconditions [*]
problemDescription
goals [*]
consequences [*]
costs
isStandardized
basedOnStandards [*]
hasFocusOnSecurity
version

Mechanism

input [*]
output [*]
isModelDriven
hasChecklists
isPhysical

Method

recognition
resistance
mitigation
recovery
forensics
blackHat
whiteHat
none

«enumeration»

TypeOfSecurityMethod

circumstances [*]
affectedComponents [*]

Vulnerability

proofOfConceptOrPrototype
almostStable
stableOrEvaluated

«enumeration»

TechnicalMaturity

securityEngineer
customer
attacker
tester
programmer
lawyer
forensicScientist

«enumeration»

Role
names [1..*]
tags [*]
url [*]
relatedSources [*]
summary
examples [*]

KnowledgeObject

SecurityProperty

applications
humans
libraries
network
operatingSystem
web

«enumeration»

Location

oneWorkingGroup
someWorkingGroups
industrialPractice
mainstream

«enumeration»

Adoption

admins [*]
configuration [*]

Asset

easy
average
difficult
theoretical

«enumeration»

Difficulty

isGraphical
isTextual
isTableBased

Notation

formal
semiformal
informal

«enumeration»

LevelOfFormality

severe
moderate
minor

«enumeration»

TechnicalImpacts

Threat

criticalData
uselessData
none

«enumeration»

Recon

untrained
trained
expert

«enumeration»

Experience

widespread
common
uncommon

«enumeration»

Prevalence

name

Category

includes

*

includedIn

*

endangeredAts
1..*

neededUserExperience 1..*

userRoles 1..*

1..*

toolSupport
*

1 **1

mayBeCausedBy *

relatedSecPs

* *

mayExploitVs

{ordered}
1..*

1..*

belongsTo

*

partOf

*

shieldedVs

* *

detectedVs

* *

includes

*

mitigatedThreats*

*

*

description

Ambiguity
ambiguity

*

dependsOn

*

securedAts

*

belongsTo

*

endangeredSPs *

*

uses

*

exploitability 1 detectability 1

uses

*

usedAts*

intendedSecPs 1..*

*

1

* *

belongsTo*

kindOf* 1

1

1

Figure 3.4: SecEval: security context

30 3. SecEval: A Framework for Evaluating Security Engineering Approaches

or tool that contains the vulnerability is already modeled with SecEval’s Security Context model,
the role includedIn can be used. Looked at the difference between the terms “weakness”
(used by CWE [66]) and “vulnerability” the other way around than we did in section 2.2.2, a
vulnerability is a kind of weakness that is implemented in a piece of software. In SecEval, we do
not differentiate between both terms, as a Vulnerability that has not just been introduced
due to a technical issue while programming, is naturally more general. For example, conceptual
vulnerabilities in methods (cf. includedIn) affect all available implementations of this method.

Furthermore, the categorization scheme from OWASP Top 10 [161] is included (which is
adapted from the OWASP Risk Rating Methodology [166]) using prevalence, impact level, de-
tectability and exploitability. Regarding the latter two roles, the Difficulty “theoretical”
means that it is practically impossible to detect or exploit a vulnerability (cf. figure 3.4). For
concrete vulnerabilities, the inherited attribute name can refer to an identifier of the Common
Vulnerabilities and Exposures (CVE) database [213]. SecEval uses the enumeration Recon to
describe possible leakage of (critical) data.

In his “Broad Street Taxonomy” [197, p.394], Shostack differentiates between “Socially Engi-
neered Vulnerabilities” (the user is tricked and does not intend to run software), “User-Interaction
Vulnerabilities” (require user interaction, but no deception) and “Classic Vulnerabilities” (do not
require user interaction). We decided not to add this distinction, as the terms can easily be
misunderstood. If needed, we suggest to directly model the decisions as Boolean attributes, in-
stead. For example, a Vulnerability could have attributes like needsUserInteraction
or needsDeception.

A Threat is “a potential violation of security” [25, p.6]. It is treated as a kind of method that
is vicious. (Note that we do not define an “attack” here, because general SecEval models should
be time-independent – attacks threaten assets at a certain time – and independent of concrete
assets.) At least one vulnerability has to be involved, otherwise a threat is not malicious (and
the other way around), which is denoted by the multiplicity [1..*]. Additionally, threats can be
mitigated by other methods. Mitigation is not necessarily partial; it can also stand for resistance.
Threats endanger at least one asset and general methods can secure assets or use them. E.g.,
cryptographic hashing secures passwords by not storing them directly and authentication uses
passwords to identify users.

A Mechanism is described by a problem statement, by the goals it strives for, by its costs
and by the consequences it implies. Mechanisms can be based on standards or be standardized
themselves. Before applying a mechanism, the preconditions that are necessary for using it have
to be fulfilled. Furthermore, an estimation regarding technical maturity and adoption in practice
might be given. It can also be expressed whether or not the mechanism has a special focus on
security, because in practice many mechanisms might also be used for security purposes, but do
not directly focus on them. Several levels of usability can be stated indicating the experience
users need in order to employ a mechanism.

The classes Method, Tool and Notation inherit all these properties from the abstract
class Mechanism and have their own characteristics defined by a set of specific attributes. For
example, a Method has some general attributes, such as input, output and if it is model-driven
or provides checklists for developers. A method can be supported by notations or tools; this is
represented in the model with corresponding associations between the classes. According to [14,
fig.9.3], a method can support different security tactics, which can be denoted by elements of
the enumeration TypeOfSecurityMethod. It can detect attacks (recognition), resist attacks

3.2 Architecture 31

(resistance), react to attacks (mitigation) or recover from attacks (recovery). In addition, it can
be used for forensic tasks and sometimes it is interesting whether a tool is mainly used by white
hats, or black hats. For a Notation, we consider characteristics such as whether the notation
is graphical, textual or based on a tabular representation. We also added a level of formality,
which ranges from informal to formal. The description of a Tool is given among others by
the information of languages it is written in, operating systems it supports, frameworks it uses
and licenses under which it is released. The needed time for installing and configuring can be
provided. Booleans describe if the tool can be used interactively or autonomously, if it has start
parameters, a GUI or a text-based user interface.

Details of Tools and Methods according to the SDLC

During our experience with the CBK in the NESSoS project, we noticed that tools as well as
methods would better be described according to the phases of the SDLC, because attributes that
are used to describe a method or tool are related to the SDLC phases they cover. We considered
the following phases for the SDLC: requirements, design, implementation, testing, assurance, risk
& cost management, service composition, deployment and runtime. They are partially based on
the phases of the development process defined in NESSoS [41]. In our experience, no phase-related
attributes are needed to describe features of notations.

We enrich the class Method, as depicted in figure 3.5, by delegating the description to the
abstract class MAreasOfDev, which is a wildcard for detailed information about the method
according to the aforementioned phases. For example, a method as Microsoft’s Security Devel-
opment Lifecycle [124], can be used as a basis for designing secure applications, but also covers
other phases. In this case, the attributes of the classes DesignM and ImplementationM and
others would be used to describe this method. For SecEval, we selected appropriate attributes
according to what we missed when describing tools in the CBK, as e.g., the level of detail for
methods that are applied during requirements phases and which tasks they comprise (elicitation,
analysis, specification or management). For testing, we consider the area that is tested (web,
network or system) and how many information the tester got (whitebox, blackbox or greybox
test7). Methods that are applied during the runtime of developed applications can be classified
by the languages the system has to be written in order to apply the method and by the influence
a method can have on the running application, as altering or stealing data or inspecting data
flow. The meaning of all depicted attributes is detailed in appendix A.1.

Similarly, figure 3.6 depicts our Tool class and the abstract class TAreasOfDev, which is
a wildcard for detailed information about the tool in relationship to the phases of the SDLC.
A tool can be used in several development phases and as it supports at least one method, it is
indirectly described by method attributes so that only tool-specific attributes had to be added to
descendants of TAreasOfDev. We decided to use abstract attributes for methods and technical-
related ones for tools. For example, for a requirements tool, we use a Boolean to document
if it can import handwritten sketches. Likewise, it might vary from tool to tool whether an
assurance tool can export a proof using LATEX, even if they support the same assurance-related
method. Regarding deployment, we consider attributes for documenting how the described tool
technically interacts with the software that is to be deployed. E.g., a deployment tool might be
7For a whitebox test, the tester knows how the application under test is implemented. For a blackbox
test, the tester just observes input and output. Greybox testing is a mixture of both.

32 3. SecEval: A Framework for Evaluating Security Engineering Approaches

supporedTypesOfServices [*]
securesServiceComposition
knowsAvailableServices
isCentralized

ServiceCompositionM

supportedLanguageTypes [*]
inspectsArtifacts
writesArtifacts
changesArtifacts
completesArtifacts
givesSecurityAdvice

ImplementationM

versionTrackingApproach
adaptionProcessToNewEnv
updateProcess

DeploymentM

usedFormalisms [*]
assuranceCriteria [*]
canProvideCounterExample
canProvideProof

AssuranceM

worksWithLanguages [*]
canDamageSystem
canInsertData
canAlterData
canStealData
canGenerateFlow
canInspectFlow
canInspectData
canBlockFunctionCalls

RuntimeM

usedIndicators [*]
supportsRiskIdentification
supportsRiskAssessment

RiskAndCostM

usedAdversaryModels [*]
usedEquation
usesFixedProperties

ProtocolVerification

isUsedForCommunication
canGenerateArtifacts

DesignM

comprisesElicitation
comprisesAnalysis
comprisesSpecification
comprisesManagement
levelOfDetail

RequirementsM

isTestingWebApp
isTestingNetwork
isTestingSystem
isWhiteboxTest
isBlackboxTest
isGreyboxTest

TestingM

input [*]
output [*]
isModelDriven
hasChecklists
isPhysical

Method

MAreasOfDev

detailedInfo*

Figure 3.5: SecEval’s Security Context model: details of methods

able to install, configure, update or uninstall software. The meaning of all depicted attributes is
detailed in appendix A.2.

Figure 3.6 also depicts how tool-chains are built: Functionality can be grouped to sets
that belong to tools. For us, a functionality is a tool or a part of a tool that covers a certain
feature. It might be described by its typed input or output and it can be used to build toolchains.
In a toolchain, output from predecessors is used as input for successors.

Relations between Methods, Notations and Tools

As seen before, a tool supports a certain method. However, we have not yet defined the quality
of this support. Does the tool fully support the method? Does it provide partial support?
Which features are not supported? We add this information to the model using the association
class ToolSupportedMethod, as depicted in figure 3.7. The association class itself is inherited
from the class Method, thus can redefine its attributes. For instance, a design tool can partly
support a model-driven method (e.g., by facilitating the modeling process), although it cannot
generate artifacts. In this case, DesignM.canGenerateArtifacts (cf. figure 3.5) would be
set to false.

Notations can be based on other notations, e.g., many context-specific extensions for UML
exist that are also based on UML itself. Figure 3.7 depicts that a notation can belong to another
notation. For example, Javadoc belongs to Java [159] and extends it, whereas the Scala [155]
programming language is just inspired by Java (among others).

3.2 Architecture 33

canInstallSoftware
canConfigureSoftware
canAdaptSoftwareToChangedEnv
canUpdateSoftware
canUninstallSoftware
hasVersionManagement
canCheckSecureInstallation
canCheckCorrectInstallation
isConnectedToConfigurationMngt

DeploymentT

inputDescription [1..*]{ordered}
inputType [1..*]{ordered}
outputDescription [1..*]{ordered}
outputType [1..*]{ordered}

Functionality

writtenInLanguages [*]
runsOnOperatingSystems [*]
usedFrameworks [*]
technicalRequirements [*]
licenses [*]
timeForInstAndConfiguration
canBeUsedInteractively
canBeUsedAutonomously
hasStartupParameters
hasGUI
hasTextBasedInterface

Tool

usedManagementInterfaces [*]

RiskAndCostT

supportsHandwrittenSketches

RequirementsT

isInstalledOnTargetSystem
canCoverOwnTraces
usesExploitDatabases [*]

RuntimeT

canExportLaTeXproof
canVisualizeAttacks

AssuranceT

supportsOfflineServices
supportsOnlineServices

ServiceCompositionT

TAreasOfDev

targetLanguages [*]
targetArchitectures [*]
targetFrameworks [*]
usedExploitDatabases [*]

TestingT

worksWithLanguages [*]

ImplementationT

generatedArtifacts [*]

DesignT

FunctionalitySetimplements

*

includes 1..*

detailedInfo *

successorsInToolchain*predecessorsInToolchain *

Figure 3.6: SecEval’s Security Context model: details of tools

an alternative with a more detailed description:

Notation

Method Tool

TAreasOfDevMAreasOfDev

supportedMethod

1..*

toolSupport

*

percentageOfMSupport

ToolSupportedMethod
1..* *

uses

*

*

*

describes *

belongsTo

*

basedOn

*

extends

*

inspiredBy

*

basedOn

*

detailedInfo *detailedInfo *

extends

*

uses

*

{ordered}
steps *belongsTo * worksWith *

Figure 3.7: SecEval’s Security Context model: further associations

34 3. SecEval: A Framework for Evaluating Security Engineering Approaches

A method can extend other methods, which means it might also change them. In this case
the role extends should be further specified, we recommend adding an association class that
inherits attributes from the class Method (similar to the association between method and tool).
In this way, it can be exactly described if and how the original methods are modified. It is also
possible that other methods are used without any changes (role uses) or that methods belong
to other methods (e.g., “web security testing” belongs to “security testing”). A method can also
describe another method or it can define an ordered list of steps it comprises.

A tool can be based on other tools, which is the case when libraries are used or when plugins
are written. The association worksWith denotes that tools work together, as e.g., in a toolchain.

In general, many ways exist to model certain facts. For example, a whitebox test can be
modeled as an instance of the class Method and other method instances can use it (denoted by
the association uses) to describe that they are testing methods. However, for famous methods
it can be handy just to set a Boolean, like TestingM.isWhiteboxTest to express the same
fact.

We encourage users of SecEval, to adapt the Security Context model dynamically, so that for a
method 𝑚 that is heavily used, an attribute called “is” + m.names.head is added to a descen-
dant of MAreasOfDev that fits best. Another approach is to scan famous sources as Wikipedia
from time to time to parse listings as “software testing types”8 in order to add its headlines to an
enumeration named TestingTypes, which can then be connected to TestingM with an unidi-
rectional association. This would result in the possibility to directly describe a method 𝑚 that uses
acceptance testing, by setting m.detailedInfo.testingTypes.isAcceptanceTesting
to true. For us, the reason for not adding that many specialized attributes at the first step was
twofold: First, we wanted to keep our models clean and second, our main focus is on uncovering
and depicting dependencies between knowledge objects using associations (cf. chapter 4), which
would be undermined by using surrogate attributes in the long run.

3.2.2 Data Collection
High-quality data is the required basis for obtaining good evaluation results. Therefore, we
create a rigorous schema which describes a set of properties that have to be defined before
starting collecting data. The Data Collection model we build contains all relevant features that
are needed during data collection. It is based on Kitchenham’s systematic literature review [113].
Conversely to Kitchenham’s approach, we do not restrict ourselves to reviewing literature; we also
include, e.g., information about tools which cannot always be found in papers, but on websites
and in results from benchmarks or experiments.

SecEval’s Data Collection model is depicted in figure 3.8 and closely relates to the process of
data collection and data analysis depicted in figure 3.2. Similar to Kitchenham’s literature review,
research questions are used to define the corner stones and the goals of the search, i.e., define
what is inside and outside the scope of research. Before specifying the research questions, a basic
understanding of the context is needed, therefore a dependency, stereotyped ≪use≫, points from
ResearchQuestion to the package SecurityContext in figure 3.4.

Queries are used to find matching sources containing data which might help to answer
research questions. As different search engines support different types of queries, concrete

8Wikipedia: Software Testing Types. https://en.wikipedia.org/wiki/Software testing#Testing Types

https://en.wikipedia.org/wiki/Software_testing#Testing_Types

3.2 Architecture 35

personalAnswer
measuredResults
website
code
paper
survey
report

...

«enumeration»

SourceType

question
limitation

ResearchQuestion

name
approachDescription
isAutomated

ProcessPhase

generalExpression

Query

title
author
length
description
references [1..*]

Source

name
description
locations [*]
exclusionCriteria
years

UsedResource

name

SearchProcess

depth-first
breadth-first

«enumeration»

SearchType

«use»

1..

includedRQs

1..*1

1..*1

1..*

1

matchedSources*

1..*concreteExpression

ConcreteQuery

1..*

1

1..*

inspiredByRQs 1..*

1..*

1

Figure 3.8: SecEval: Data Collection model

queries are specific for each resource. In figure 3.8 the use of the association class Concrete-
Query (depicted by a dashed line) denotes that for each pair of ProcessPhase and Used-
Resource, the class ConcreteQuery is instantiated. The concrete search expression is derived
from a general search expression. Thus, concrete queries document what was searched for in a
certain resource so that results remain as repeatable and comprehensible as possible. At the same
time, concrete queries belong to a general query. Queries can also refer to questions that are used
as a basis for experiments (cf. case study in section 3.4).

For example, the general search expression could be “recent approaches in Security Engineer-
ing” and we want to ask the Google Scholar9 and a popular researcher. Consequently, both are
our used resources. For Google Scholar we could use “"Security Engineering" 2014..2015” as
a concrete search expression and the concrete expression for asking a researcher could read: “I
am interested in Security Engineering. Which recent approaches in Security Engineering do you
know?”. It is worth to notice that resources can not only be scientific papers but also the web
or measured data, code repositories or persons. When measuring data, the resource’s exclusion
criteria have to be empty or specified in a way that the result is not distorted.

If a concrete query matches sources, as papers, websites or personal answers, we classify the
source at least by author and description and provide information about the type of source and
at least one reference in which resource to find it.

The search process can be performed in different ways, e.g., a process phase can be
automated or not, or it can be a depth-first or a breadth-first search (cf. SearchType in fig-
ure 3.8). Depth-first means that the aim of a search is to extract a detail information about
a relatively small topic, whereas a breadth-first search is good to get an overview of a broader
topic. We noticed that Kitchenham et al. do not use more than one search phase. This might be
the case because they prefer to not be biased by findings from a previous phase. The advantage
of more than one search phase is that resources can be added which were considered interest-

9Google Scholar. http://scholar.google.com

http://scholar.google.com

36 3. SecEval: A Framework for Evaluating Security Engineering Approaches

name
objective
version
metricForResult

AnalysisAlgorithm

qualityRequirements
inclusionCriteria
exclusionCriteria

Filter

name
description

AnalysisStrategy

name
description
dataType
metric
priority

Criterion

ProcessedInfo

KnowledgeObject

ExtractedInfo

qualitative
quantitative

«enumeration»

AnalysisType

values [1..*]

Information

name

Category

use

1..*

produce*

1..*

chooses

1..*

* 1

chooses

*

1

*

chooses

*

partOf *

*

chooses

0..*

belongsTo
*

*

0..1

«use»
attributes

classified by

belongsTo *

Figure 3.9: SecEval: Data Analysis model

ing in a previous phase, such as further contributions from conferences or from authors which
seemed promising. Searching in several phases is especially useful for breath-first searches that
are followed by depth-first search phases.

3.2.3 Data Analysis

Data is collected with the purpose to obtain an answer to research questions based on the analysis
of the data. Figure 3.9 depicts our Data Analysis model, which relates relevant concepts for
analyzing data. First, we have to specify which type of analysis strategy we want to use.
Are we limited to quantitative analysis or do we focus on qualitative analysis? Accordingly, one
can later refer to Kitchenham’s checklists for quantitative and qualitative studies [113, tables 5
and 6] to ensure the quality of the own answers to research questions. The analysis strategy
requires selecting the used algorithms for analysis, categories & criteria, and filters according to
the research question.

The chosen algorithm might be implemented by a tool, but generally does not have to be
executable on a computer. For example, the relation named IsCompatible NxN ToolIO can
be seen as instance of an analysis algorithm. It expresses that “two notations are compatible
if there exists a toolchain that can transform the first given notation into the second one” (as
formally defined in [41]). In this case, the algorithm might contain a (semi-)automated depth-first

3.2 Architecture 37

search for a tool-chain consisting of tools where the output of one tool serves as input for the
second one, etc.

Information can be extracted from the sources that were found in the data collection phase
(cf. ≪use≫ dependency starting from the class ExtractedInfo in figure 3.3), or they can be
processed using an analysis algorithm. Information can be stored in an instance of our Security
Context model, which provides a sound basis for collecting and relating data about all kinds
of knowledge objects. Additionally, the information classes can be used to describe information
that is not directly related to an instance of a knowledge object or not meaningful without its
connection to a concrete analysis process.

A criterion gives more information about data values, as e.g., attributes of knowledge
objects, as it defines the data type (string, list of Booleans, ..) and the metric (milliseconds, ..).
In addition, a priority can be defined, which is useful when methods, tools or notations should
be compared by given criteria. Whether or not a criterion is grouped by categories depends
on the kind of information which should be associated to the criterion: information with a single
value does not have to be grouped, whereas it makes sense to group a set of values that are closely
connected in terms of content. Another purpose of categories is to group knowledge objects, as
described in section 3.2.1.

Besides, a filter can be specified to disqualify results according to certain criteria as costs or
quality. This filter is finer grained than the filter that is defined by UsedResource’s attribute
exclusionCriteria used in the Data Collection model, which only can be based on obvious
criteria, such as the language the source is written in. In addition to this, the filter for data
analysis can be based on extracted or processed information as well as criteria and thus can
exclude, e.g., information about methods, tools or notations from the evaluation that do not
meet a high-priority requirement.

3.2.4 Architecture Extensions
As the core of SecEval cannot include all attributes that could possibly be needed in the future,
SecEval’s models are extensible, which means that users can add classes and attributes for their
domain of research. In this section, we introduce an extension to show how SecEval’s Security
Context model can be enhanced in order to support OWASP’s Risk Rating Methodology [166].
In addition, we provide an extension for Moody’s method evaluation approach [136].

However, we would refrain from expressing specialized data structures with SecEval., as e.g.,
those presented by Akhawe et al. [3] to formalize the http protocol with its entities, tokens,
its status and other items that are closely interconnected by many different types of relations.
Although the UML class model is capable of expressing this structure, it probably provides too
many details in the context of SecEval.

OWASP’s Risk Rating Methodology

To rate risks for running IT systems is a common task for security engineers. OWASP’s Risk
Rating Methodology provides categories and terms for this task. Figure 3.10 depicts the extended
model whereby added connections use thick connection lines.

The class Threat, known from the basic Security Context model, inherits its features to a
concrete Attack. The severity of the risk (which is an attribute of Threat) can be calculated
by likelihood multiplied with impact. The likelihood is derived from the factors which describe

38 3. SecEval: A Framework for Evaluating Security Engineering Approaches

fullAccessOrExpensiveResourcesRequired
specialAccessOrResourcesRequired
someAccessOrResourcesRequired
noAccessOrResourcesRequired

«enumeration»

Opportunity

lessThanTheCostToFixTheVulnerability
minorEffectOnAnnualProfit
significantEffectOnAnnualProfit
bankruptcy

«enumeration»

FinancialDamage

minimalSecondaryServicesInterrupted
minimalPrimaryServicesInterrupted
extensiveSecondaryServicesInterrupted
extensivePrimaryServicesInterrupted
allServicesCompletelyLost

«enumeration»

LossOfAvailability

minimalNon-sensitiveDataDisclosed
minimalCriticalDataDisclosed
extensiveNon-sensitiveDataDisclosed
extensiveCriticalDataDisclosed
allDataDisclosed

«enumeration»

LossOfConfidentiality

activeDetectionInApplication
loggedAndReviewed
loggedWithoutReview
notLogged

«enumeration»

IntrusionDetection

securityPenetrationSkills
networkAndProgrammingSkills
advancedComputerUser
someTechnicalSkills
noTechnicalSkills

«enumeration»

SkillLevel

minimalSlightlyCorruptData
minimalSeriouslyCorruptData
extensiveSlightlyCorruptData
extensiveSeriouslyCorruptData
allDataTotallyCorrupt

«enumeration»

LossOfIntegrity

developers
systemAdministrators
intranetUsers
partners
authenticatedUsers
anonymousInternetUsers

«enumeration»

GroupSize

circumstances [*]
affectedComponents [*]

Vulnerability

fullyTraceable
possiblyTraceable
completelyAnonymous

«enumeration»

LossOfAccountability

applications
humans
libraries
network
operatingSystem
web

«enumeration»

Location

input [*]
output [*]
isModelDriven
hasChecklists
isPhysical

Method

date
time
duration
goals [*]
attackedSystems [*]

Attack

BusinessImpact

minimalDamage
lossOfMajorAccounts
lossOfGoodwill
brandDamage

«enumeration»

ReputationDamage

TechnicalImpact

minorViolation
clearViolation
highProfileViolation

«enumeration»

Non-compliance

KnowledgeObject

admins [*]
configuration [*]

Asset

oneIndividual
hundredsOfPeople
thousandsOfPeople
millionsOfPeople

«enumeration»

PrivacyViolation

easy
average
difficult
theoretical

«enumeration»

Difficulty

lowOrNoReward
possibleReward
highReward

«enumeration»

Motive

severe
moderate
minor

«enumeration»

TechnicalImpacts

impact
likelihood
riskSeverity

Threat

ThreatAgent

widespread
common
uncommon

«enumeration»

Prevalence

1

1

1

1

1

1

mayExploitVs

{ordered}1..*

1..*

1

detectedVs

* *shieldedVs*

*

1..*

launches

*

attacks

*

1

1

usedAts

*

1

detectability1exploitability

mitigatedThreats *

*

1

belongsTo*

1

1

1 1

Figure 3.10: Inclusion of basic risk evaluation approach (Security Context model)

3.2 Architecture 39

the vulnerabilities and the threat agents, whereas the impact is determined by the concrete
technical and business-related consequences. Therefore, each enumeration’s literal is mapped to
a likelihood rating from 0 to 9. For example, OWASP ranks the motives as follows: “Low or no
reward (1), possible reward (4), high reward (9)”. For more information, the interested reader is
referred to [166].

Alternative risk rating approaches are, e.g., NIST’s Common Vulnerability Scoring System
(CVSS)10 or Microsoft’s simple DREAD model11.

Moody’s Method Evaluation Approach

Experimental approaches are used to evaluate the success of using a method in practice. Our
extension of SecEval to express Moody’s concepts (cf. section 2.2.2) is shown in figure 3.11:
We introduce a MoodyExperiment class as a descendant of UsedResource – a class from
SecEval’s Data Analysis model. It is connected to at least one method (from the Security Context
model) and vice versa, which is depicted by the upper blue association. The experiment uses the
method on at least one example. Observed and surveyed participants can either be practitioners
or students. ParticipantSurveys are the Source of information for the research question
the experiment is conducted for. Two types of experiments exist: laboratory experiments with
student participants and field experiments with practitioners. Multi-inheritance is used to be
able to describe an experiment not only as a resource for obtaining data, but also as a method,
e.g., by relating it to other methods. For example, a concrete experiment instance might relate
to a method instance like “acceptance testing”.

The lower blue association allows to access the resulting information, grouped by Moody et
al. [136] into performance, perception, intensions and behavior, as depicted in the lower half of
figure 3.11:

∙ “Actual Efficiency: the effort required to apply a method.

∙ Actual Effectiveness: the degree to which a method achieves its objectives.

∙ Perceived Ease of Use: the degree to which a person believes that using a particular method
would be free of effort.

∙ Perceived Usefulness: the degree to which a person believes that a particular method will
be effective in achieving its intended objectives.

∙ Intention to Use: the extent to which a person intends to use a particular method.

∙ Actual Usage is the extent to which a method is used in practice” [136].

We could have used instances of Criterion instead of adding classes for each resulting
group. However, for many experiments carried out following Moody’s approach, an advantage
of classes is that their predefined structure facilitates information retrieval, contrary to instances
that would need to reestablish this structure for each experiment.

Purple-colored associations show where the resulting information originates from: Perfor-
mance is based on observing laboratory experiments that were not conducted with practitioners,
10CVSS. https://nvd.nist.gov/cvss.cfm
11Microsoft Threat Rating. https://msdn.microsoft.com/en-us/library/aa302419.aspx#c03618429 011

https://nvd.nist.gov/cvss.cfm
https://msdn.microsoft.com/en-us/library/aa302419.aspx#c03618429_011

40 3. SecEval: A Framework for Evaluating Security Engineering Approaches

Context Model

Data Collection Model

Data Analysis Model

MethodEvaluationResults

LaboratoryExperiment

MoodyExperiment

perceivedEaseOfUse
perceivedUsefulness

Perception

ParticipantSurvey

actualEfficiency
actualEffectiveness

Performance

FieldExperiment

intentionToUse

Intensions

actualUsage

Behavior

UsedResource

ProcessedInfo

PractitionerS StudentS

Example

Method

Source

basedOn

basedOn

1..*1..*

basedOn

basedOn

1..

1..*

1..*

1..*1..*

1..*

Figure 3.11: Method extension using Moody’s method evaluation approach

3.3 Guided Interview 41

whereas perception and intention to use is based on (surveys subsequent to) laboratory as well
as field experiments. Actual usage is typically determined from another UsedResource than
from experiments, e.g., from large-scale surveys. In the end, the average value of the subclasses’
attributes of MethodEvaluationResults can be used as final evaluation result for the method
under test and can help to categorize methods using the Category class depicted in figure 3.4.

3.3 Guided Interview
To validate the relations and properties of security knowledge objects is challenging, because
many different areas of expertise are needed. We had the opportunity to conduct a so-called
“guided interview” with partners of the EU project NESSoS, who encompass the broad area of
secure software development. A Guided Interview is “a one-on-one directed conversation with
an individual that uses a pre-determined, consistent set of questions but allows for follow-up
questions and variation in question wording and order.”12 In 2013, we hold this kind of interview
in a slightly modified way: first we explained our basic model (especially the basic Security
Context model). Second, we handed out a description of the draft version of SecEval and a
questionnaire, which can be found in appendix B. Finally, 14 international senior researchers,
who are experts in different areas of security engineering, gave us feedback.

The answers and discussions helped us to improve SecEval. Among other changes, further
attributes were added, as e.g., canBeUsedInteractively and canBeUsedAutonomously
to express if tools support an interactive or batch mode. Some classes and enumerations were split
to emphasize the idea of separation of concerns. For example, the enumeration MaturityLevel
was split into TechnicalMaturity and Adoption. In addition, we extended SecEval for risk
rating and experimental approaches. A closer view on resulting changes can be found in [42,
chapter 3.3].

3.4 Case Study: Web Vulnerability Scanning
Web applications are the focus of many attacks. Thus, many methods such as “penetration test-
ing” or “vulnerability scanning” are used to identify security flaws. These methods are supported
by many commercial and open-source tools and it is not easy to decide which one is the more
suitable for the tests to be performed. In this section, we use our SecEval approach to evaluate
vulnerability scanners for web applications. Two bachelor’s theses [188, 122], supervised by the
author, offered the initial data basis for our SecEval model examples in 2013. Note that this case
study is an example of an evaluation, as depicted in the introduction (cf. figure 1.3, upper arrow).

3.4.1 Data Collection
According to the SecEval approach, the first step consists of specifying the data that should be
collected. This is done by an instance model as shown in figure 3.12, which depicts instances of
the classes depicted in figure 3.8. For example, instances of the class ResearchQuestion define
two research questions, a high-level and a concrete one. We used identical background colors for

12Education dictionary. http://www.mondofacto.com/facts/dictionary?guided+interview

http://www.mondofacto.com/facts/dictionary?guided+interview

42 3. SecEval: A Framework for Evaluating Security Engineering Approaches

instances of the same classes and omitted all name attributes in case a name (e.g., p3) is given
in the header of an instance.

Research question q1 (“Which security-related tools and methods are available and how do
they compare?”, cf. figure 3.12) is very general. In the first process phase p1, 13 methods and
18 tools were selected [188]. More detailed information was gathered in the second process phase
p2 about: vulnerability scanning, penetration testing, fuzzing and the classification into black-,
grey-, and white-box testing. Examples for tools are WSFuzzer, X-Create and WS-Taxi, just to
mention a few.

For recording our information sources, we used a table which contains the name of a method
/ tool and URLs from which information should be extracted in the data analysis phase.

The research question we focus on in this section is depicted in figure 3.12 as instance called q2
(“Which vulnerability scanners are available for testing security features of web applications?”).
It is a typical question which could be asked by security engineers working in a company. The
“sources” (i.e., tools) we selected for analysis were [122]:(a) Acunetix Web Vulnerability Scanner13,
(b) Netsparker14, (c) Burp Scanner15, (d) Wapiti16, (e) Arachni17, (f) Nessus18, (g) Nexpose19

and (h) Nikto20.
The instance experienceWithTestScenario describes how the data is gathered by test-

ing the vulnerability scanners. It is worth mentioning that SecEval does not impose the com-
pletion of the data collection phase before the data is analyzed. This means that the tests were
partly executed on tools which were later classified as inappropriate. This becomes clear when we
think of how evaluation works in practice: sometimes we have to collect a bunch of data before
we observe information which, e.g., leads to the exclusion of a tool from the result set.

3.4.2 Data Analysis
In the analysis phase for question q2 the analysis strategy is defined so that a filter enforces
our requirements (cf. value of attribute limitation of q2 in figure 3.12). Figure 3.13 depicts
instances of SecEval’s Data Analysis model we introduced in figure 3.9.

Before going into detail about particular results of our experiments, we first take a look at
the overall result regarding our research question q2. Figure 3.13 thus depicts an instance of the
class ProcessedInfo, which is called weightedResultValues.

Only four tools passed our filter: Arachni and Nikto, which provide command-line interfaces
and Nessus and Nexpose, which also provide web interfaces. From our list of tools from above,
the trial of (𝑎) only allows to scan predefined sites. Tools (𝑏) and (𝑐) do not support a command
line or web interface in the versions that are free. A run of tool (𝑑) on our test target Multidae21

with Metasploitable22 took six hours.
13Acunetix. http://www.acunetix.com
14Netsparker. https://www.mavitunasecurity.com/netsparker
15Burp Scanner. http://portswigger.net/burp/scanner.html
16Wapiti. http://www.ict-romulus.eu/web/wapiti
17Arachni. http://www.arachni-scanner.com
18Nessus. http://www.tenable.com/de/products/nessus
19Nexpose. https://www.rapid7.com/products/nexpose
20Nikto. http://www.cirt.net/Nikto2
21NOWASP (Mutillidae). http://sourceforge.net/projects/mutillidae
22Metasploitable. http://www.offensive-security.com/metasploit-unleashed/Metasploitable

http://www.acunetix.com
https://www.mavitunasecurity.com/netsparker
http://portswigger.net/burp/scanner.html
http://www.ict-romulus.eu/web/wapiti
http://www.arachni-scanner.com
http://www.tenable.com/de/products/nessus
https://www.rapid7.com/products/nexpose
http://www.cirt.net/Nikto2
http://sourceforge.net/projects/mutillidae
http://www.offensive-security.com/metasploit-unleashed/Metasploitable

3.4 Case Study: Web Vulnerability Scanning 43

description = "The selected tools (see Filter in data analysis) are installed on a Windows 7 Professional system with 8 Gigabyte

memory. An Intel Core i5 2500 quad core processor with 3,30 Gigahertz serves as CPU. All the test runs of the tools are executed

separately with no other processes running on the system. The anti-virus program and the Windows Firewall are inactive during the

whole scan.

As test target we use the vulnerable web application Mutillidae, version 2.1.19. It is part of Metasploitable which is installed in a

Virtual Box on Windows 7."

experience with test scenario : UsedResource

generalExpression = "We want to know a ranking of: installation simplicity, processor load, clarity and

intuitiveness, detected vulnerabilities, run duration and accuracy of the report."

query for test scenario : Query

limitation = "The tools should be able to scan web applications (especially our

test target Mutillidae within one hour), they should run on Microsoft

Windows 7, be freeware or provide at least a free trial version and come with a

command line or web interface."

question = "Which vulnerability scanners are available for testing security

features of web applications?"

q2 : ResearchQuestion

question = "Which security-related tools and

methods are available and how do they

compare?"

q1 : ResearchQuestion

approachDescription = "We search for

vulnerability scanners which meet our

requirements (see q2.limitation)."

p3 : ProcessPhase

compare testing methods and tools :

SearchProcess

approachDescription = "We search

for details for each of the names we

found before."

searchType = depth-first

p2 : ProcessPhase

approachDescription = "We search

for lists of security methods or

tools and record method/tool

names."

searchType = breadth-first

p1 : ProcessPhase

years = "newer than 2005"

google web & scholar :

UsedResource

developer pages :

UsedResource

includedRQs

includedRQs

Figure 3.12: Vulnerability scanning case study: data collection

44 3. SecEval: A Framework for Evaluating Security Engineering Approaches

inclusionCriteria = "The tools should be able to scan web

applications (especially our test target Mutillidae within one

hour), they should run on Microsoft Windows 7, be

freeware or provide at least a free trial version and come with

a command line or web interface."

qualityRequirements = "Documentation has to be available."

tool filter : Filter

dataType = "HashMap<Tool, Double>"

metric = "Weighted overall result using

priority factors. The lower the rating the better

the tool fits our needs."

result type : Criterion

analyze security testing tools :

AnalysisStrategy

calc weighted results :

AnalysisAlgorithm

values = "

Nessus 1.86

Nexpose 2.10

Arachni 2.42

Nikto 3.19 "

weighted result values :

ProcessedInfo

overall result :

Category

: chooses: chooses

: chooses

Figure 3.13: Vulnerability scanning case study: data analysis – results

Apart from information available online, we experimented with the tools that passed the filter,
in order to obtain data for our tool evaluation (q2). We evaluated the following criteria (and
weighted them as indicated in the brackets, cf. queryForTestScenario):

∙ Installation simplicity (0.5)
Do any problems occur during installation?

∙ Costs (1)
How much do the tool cost? Is it a one-time payment or an annual license?

∙ Processor load (1)
How high is the CPU load while running the scanner

∙ Clarity and intuitiveness (1)
Is the tool easy to understand, clearly structured and user-friendly

∙ Run duration (1)
How long does a scan take?

∙ Quality of the report (2)
How detailed is the report of the scan? Which information does it contain?

∙ Number of detected vulnerabilities (4)
How many vulnerabilities does the tool detect on our test environment?

We selected these criteria, because they cover the process of working with a vulnerability
scanner: first the costs when buying it and the installation effort needed in the beginning, second
the intuitiveness, e.g. for setting up a test, third the processor load and run duration when
executing a test and finally the quality of the report and the number of detected vulnerabilities.

As we can see in figure 3.13, an algorithm is involved, which calculates results according to
our weighting. The consequent ranking is depicted in figure 3.14.

Lower factors of a criterion’s priority denote that we consider the criterion less important.
Table 3.1 contains the measured results as well as the average23 and weighted24 results.
23AVG: average
24WAVG: weighted average according to ratings

3.4 Case Study: Web Vulnerability Scanning 45

dataType = "HashMap<Tool, Integer>"

metric = "Ranking from 1 to 4, where 1 is

best. Tools can rank equal."

priority = "0.5"

ranking0.5 : Criterion

analyze security testing tools :

AnalysisStrategy

values = "

1. Nikto

2. Arachni

3. Nexpose

4. Nessus"

run duration ranking : ExtractedInfo

values = "

1. Nessus

2. Nexpose

4. Arachni, Nikto"

clarity and intuitiveness ranking

: ExtractedInfo

values = "

1. Arachni, Nikto, Nessus

4. Nexpose"

installation simplicity

ranking : ExtractedInfo

values = "

1. Nexpose

2. Nessus

3. Arachni

4. Nikto"

detected vulnerabilities

ranking : ExtractedInfo

values = "

1. Nexpose

2. Nessus

3. Nikto

4. Arachni"

processor load ranking :

ExtractedInfo

values = "

1. Arachni, Nessus

3. Nexpose

4. Nikto"

quality of report ranking

: ExtractedInfo

values = "

1. Arachni, Nikto

3. Nessus

4. Nexpose"

costs ranking :

ExtractedInfo

priority = "4"

ranking4 : Criterion

priority = "2"

ranking2 : Criterion

priority = "1"

ranking1 : Criterion

rankings : Category

: chooses

Figure 3.14: Vulnerability scanning case study: data analysis – ratings

Tool Inst. Costs CPU Clarity Time Vuln. Rep. AVG23 WAVG24

Nessus 1 2 2 1 4 1 2 1,86 1,86
Arachni 1 1 4 4 2 1 3 2,29 2,42
Nexpose 4 4 1 2 3 3 1 2,57 2,10

Nikto 1 1 3 4 1 4 4 2,57 3,19

Table 3.1: Case Study: Final Tool Ranking (adapted from [122])

46 3. SecEval: A Framework for Evaluating Security Engineering Approaches

3.4.3 Security Context
We modeled the context of vulnerability scanning of web applications and two of the tested tools,
namely Nessus and Nikto in figure 3.15, which is an instance diagram of the Security Context
model.

Note that from the criteria we used for evaluating the tools, only “costs” is non-experimental.
Thus, costs can directly be added to Tool instances in figure 3.15. Except costs, all criteria are
rather subjective, which means that they depend on our experimental setup. Consequently, they
have to remain connected to the Data Collection and Analysis models. If someone wants to know
more about a tool depicted in the Security Context model, searching research questions that use
this tool (cf. dependency ≪use≫) lead to associated evaluations.

The depicted vulnerabilities are the top 3 from OWASP’s top 10 project 2013 [161]. Further
vulnerabilities are modeled in the course of presenting our Secure Web Applications’ Ontology in
the next chapter.

3.5 Summary and Related Work
SecEval, our conceptual framework for the development and evaluation of research questions
related to secure software engineering provides an answer to our first research question (RQ1)25.
This chapter presents SecEval. It consists of two main parts: one to describe concepts, their
attributes and relations and one for evaluation, i.e., for answering knowledge questions that are
related to these concepts, like comparisons of security engineering methods or tools. We validated
the soundness of our approach by a guided interview and by an evaluation case study.

Structure of security concepts. The Security Context model comprises the following
key concepts: assets, methods, tools, security properties, vulnerabilities and threats (so-called
knowledge objects). A distinguishing characteristic of our evaluation framework SecEval is the
refinement of methods and tools based on the phases of the SDLC. Additionally, for describing
a knowledge object in detail, the model provides typed attributes.

Although the CBK [49] can be seen as a starting point for SecEval’s Security Context model,
we solve some issues in another way. For example, we do not consider standards as first-class
citizens, because almost everything can be standardized. In addition, we aggregate the concepts of
technique and method, as an instance model of SecEval can immediately show whether actions (in
our case called steps) are defined. In contrast to the CBK, SecEval focuses explicitly on security-
related features by providing a fine-grained model. An overview of other books of knowledge can
be found in [76]. In contrast to our work they are not based on a detailed structure of concepts with
attributes, and their relations. However, elements in metamodels of security ontologies usually
feature relations, but few or no attributes, as e.g., [83, 101, 201]. Over the last years, it turned out
that SecEval’s novel structure for connecting and describing security-related knowledge objects
serves as a reliable basis for method and tool evaluation as well as for the ontology SecWAO.

25Which key concepts emerge while developing secure software? Which properties do these concepts have
and how are they related to each other? How can this knowledge be applied to evaluate concepts? (cf.
section 1.2)

3.5 Summary and Related Work 47

question = "Which vulnerability scanners are available for testing security features of web applications?"

q2 : ResearchQuestion

hasFocusOnSecurity = true
isStandardized = false
levelOfFormality = informal
preconditions = "A running web application has to be available for testing."
summary = "Know common vulnerabilities in the system to be able to fix
or attack them"
typeOfSecurityMethod = blackHat, whiteHat
userRoles = tester, attacker

vulnerability scanning of web applications : Method

canBeUsedAutonomously = true
canBeUsedInteractively = false
costs = "Open Source"
examples = "see case study experiments with target Metasploitable, e.g.,
run duration = 0,19minutes"
hasGUI = false
hasStartupParameters = true
hasTextBasedInterface = true
licenses = "GNU General Public License (GPL)"
neededUserExperience = expert
preconditions = "Perl has to be installed (for SSL support with module
Net::SSLeay)"
runsOnOperatingSystems = "Windows, Mac OSX, Linux"
url = "http://www.cirt.net/nikto2"
version = "2.1.5"
writtenInLanguages = "perl"

Nikto : Tool

canBeUsedAutonomously = true
canBeUsedInteractively = true
costs = "Nessus Home: Free
Pro: Commercial"
examples = "see case study experiments with target
Metasploitable, e.g. run duration = 18:04 minutes"
hasGUI = true
hasStartupParameters = true
hasTextBasedInterface = true
licenses = "limited freeware & commercial licences"
neededUserExperience = expert
runsOnOperatingSystems = "Windows, Mac, Linux, Solaris,
BSD, Cisco iOS, IBM iSeries, Check Point GAiA"
url = "http://www.nessus.org"
version = "5.2"
worksWith = Common Vulnerabilities and Exposures (CVE)

Nessus : Tool

data authenticity : SecurityProperty

data integrity : SecurityProperty

data confidentiality : SecurityProperty

detectability = average
exploitability = average
locations = applications
prevalence = widespread
technicalImpacts = severe

broken authentication and session
management : Vulnerability

detectability = average
exploitability = easy
locations = applications
prevalence = common
technicalImpacts = severe

injection : Vulnerability

detectability = easy
exploitability = average
locations = applications
names = "XSS"
prevalence = widespread
technicalImpacts = moderate

cross-site scripting (XSS) :
Vulnerability

supportedMethod

toolSupport

supportedMethod

toolSupport

detectedVs

«use» «use»

relatedSecPs

detectedVs

detectedVs

relatedSecPs

relatedSecPs

Figure 3.15: Vulnerability scanning case study: instances of the Security Context model
(excerpt)

48 3. SecEval: A Framework for Evaluating Security Engineering Approaches

Data collection and analysis. In addition to a customizable process model, SecEval defines
class models for (a) data collection, i.e., planning and documenting research questions, search
process phases, used resources, (concrete) queries on used resources and finally recording sources
that are found; (b) analysis strategies that define analysis algorithms, categories and filters for
analyzing these sources. Resulting information might then be stored in an instance model of the
Security Context model.

The Data Collection and Analysis models are based on Kitchenham’s approach of structured
literature reviews [113]. Both models are not security-specific (contrary to the Security Context
model), which means they can also be applied to other domains. In contrast to Kitchenham’s
approach, our data collection process is iterative, and more specific for a chosen domain as we
specify a detailed structure of the context for which we pose the research questions.

The conceptual framework INCAMI [156] targets the quality of web applications and not the
evaluation of mechanisms for engineering secure software, as SecEval does. Consequently, they
focus on requirements of a web application and on measures that quantify the quality of their
implementation. Nevertheless, INCAMI inspired us to use UML class diagrams for systematically
documenting the evaluation process and to avoid adding too many details to the basic SecEval
models.

Validation. During the development of SecEval, we conducted a guided interview to get feed-
back that helped us to improve the models and to get an impression of how our approach was
received. In addition, we executed a case study about methods and tools from the area of security
focusing on a research question about the selection of vulnerability scanners for web applications.
In the evaluation of web vulnerability scanners Nessus ranked first amongst Arachni, Nexpose
and Nikto according to our requirements.

Outlook. For many purposes, SecEval’s Security Context model can be used without any
changes, be it for evaluation or as a basis for an ontology, as shown in the next chapter. That
is why we are confident that we have chosen the most important elements to be included in
the model by default. However, it is explicitly designed to be adapted to concrete needs to be
as useful as possible for an intended purpose, as shown exemplarily for risk rating and method
evaluation approaches.

For example, for the evaluation of commercial tools, it might be preferable to detail the costs
for using a Mechanism (cf. figure 3.4), as the most convenient level of detail has to be defined
individually for a set of research questions. Sometimes, the overall costs should be recorded;
sometimes it is necessary to split the costs into cost to train personal, yearly license costs for
using proprietary tools, etc. For the sake of clarity and to provide an orderly overview, we limited
the number of attributes per element in the default model to less than a dozen.

Another possibility is to merge existing, specialized models with SecEval. For example, Reggio
et al. [175] present a conceptual model for comparing modeling methods, defining concepts for
“Notation”, “Modeling Method” and “Tool Support” (cf. [175, fig. 1]). All three could easily be
unified with the classes Notation, Method and Tool of the Security Context model, which
would allow the seamless annexation of concepts they additionally specified, as e.g., “Intended
Use of Models”.

Chapter 4

SecWAO: A Secure Web
Applications’ Ontology

It is commonly known that most applications suffer from security holes that are sooner or later
exploited. One reason is that for developers the term “security” is difficult to grasp. Many security
properties exist and there are many methods to enforce them or to avoid implementing common
vulnerabilities in applications. In a keynote talk in 2014, Elçi [79] presented existing security
ontologies (cf. section 2.2.2) and noticed that many researchers focus either on web engineering
or on security, but only few on both.

In this chapter, which is a revised and extended version of one of our papers [48], we use
SecEval to build a domain ontology1 for web application security, i.e., we instantiate SecEval’s
Security Context model to relate relevant assets, methods, tools, security properties, vulnerabili-
ties and threats. This ontology provides a structured overview and it will serve as a basis for our
modeling approach for secure web applications in part III, as already depicted in the introduction
in figure 1.2.

The process of data collection and data analysis while working on SecWAO cannot be recon-
structed in detail, since implicit knowledge became more and more explicit over a long period
while studying literature, discussing with members of the NESSoS EU project as well as meeting
with several security-related regional groups in Munich. The overall research question RQ2, can
be described as stated in the introduction (cf. section 1.2): “How are assets, security engineering
methods, notations, tools, security properties, vulnerabilities and threats related in the domain
of web application security?”. At this point, we extend RQ2 by asking “Is SecEval’s Security
Context model powerful enough to express these relations?”.

We introduce SecWAO by example, before we detail the relationships between web-related
security properties, methods, and vulnerabilities. Note that diagrams depict excerpts of the
ontology by visualizing chosen perspectives. Finally, we present an implementation of a knowledge
base that is based on SecEval. It can be used for describing and relating knowledge objects for
evaluation purposes or for representing an ontology based on SecEval, like our ontology SecWAO.

1“Domain ontologies capture the knowledge valid for a particular type of domain” [82, p. 5]

50 4. SecWAO: A Secure Web Applications’ Ontology

4.1 Overview of SecWAO by Example

In the following, we illustrate relations of Cross-Site Scripting (XSS) to give an insight into
SecWAO. Hence, we extend the small example that was initially presented in chapter 1. As
already mentioned in the introduction, XSS is a kind of injection that aims at adding malicious
script code – usually JavaScript – to a website so that the browser executes the code [195, p.24].
According to OWASP’s Top 10 [161], it is the third riskiest web applications’ vulnerability and
the most widespread and according to Weinberger et al. [226] XSS protection is not sufficiently
prevented by existing web frameworks.

In terms of SecEval, XSS is an instance of the class Vulnerability from the Security
Context model (cf. section 3.2.1). The upper part of figure 4.1 depicts the main elements of this
model and serves as a legend. Instances of these classes and associations are shown in the lower
part, around the aforementioned instance named Cross-Site Scripting (XSS). In UML,
an instance is denoted by an underlined object name, followed by a colon and the name of the
class that it instantiates. In this chapter, the second part is often hidden in the case that a legend
provides distinctive features, like different shades of color.

In figure 4.1 SecWAO helps not only to express that XSS is a kind of injection but also that
it is threatened by JavaScript code provided in a way to be executed2. In practice, the name
of threats and vulnerabilities are often used for both, e.g. the instance of Threat could also be
named “Cross-Site Scripting (XSS)”. There are subtypes of XSS: reflected XSS executes code in a
browser that has (most of the time involuntarily) been sent by a user. Stored XSS is delivered to
all browsers that visit a page that contains vulnerable content, which has been stored at the server
since a successful attack [171, p.10]. A vulnerability would be harmless if it does not jeopardize
security properties. Weakening control flow integrity3 can be especially harmful, because data
security, as confidentiality of the user’s data in the browser and the integrity of the data which is
sent to the server are based on it. For example, JavaScript code injected into an online banking
service might undermine the browser’s Same-Origin-Policy4 in order to secretly report the user’s
account balance to a third party. JavaScript code might also alter the amount of money after a
user submitted a value for a bank transfer, which violates data integrity. In figure 4.1 we model
general SecWAO assets as “user data” and “website in browser”. However, assets can be finer
grained in case developers want to extend SecWAO to model more concrete scenarios for their
web application. General assets, which are not specific to web applications, can be found in [101,
figure 3].

On the lower right of figure 4.1, methods to shield web applications from vulnerabilities like in-
jection are depicted. In general, injection prevention uses data validation, preferably whitelisting,
where allowed inputs are specified and different input is discarded. Other use cases require input
sanitization by blacklisting, where developers struggle to filter all kinds of harmful inputs [167].

2Note that threats are methods, which means they can extend other threats. For example, a JavaScript
injection might threaten the user’s privacy and prepare identity theft in a concrete attack scenario.

3Control flow integrity is the property of software that restricts a user to execute functions in a predefined
order, according to the program logic.

4The Same-Origin-Policy makes sure that “actors with differing origins are considered potentially hostile
versus each other, and are isolated from each other”
(http://www.w3.org/TR/html5/browsers.html#origin)

http://www.w3.org/TR/html5/browsers.html#origin

4.1 Overview of SecWAO by Example 51

SecurityContext

SecurityProperty

Vulnerability

KnowledgeObject

Mechanism

NotationMethod

Threat

Asset

Tool

HTML Purifier Library : Tool

provide JavaScript code

in a way to be executed :

Threat

http-only flag for cookies

input validation libraries

x-xss protection header

control flow integrity

data confidentiality

data integrity

data security

cross-site scripting

(XSS)

injection prevention

website in browser

input validation

by whitelisting

input sanitization

by blacklisting
data validation

XSS prevention

PHP : Notation

reflected XSS

basedOnbasedOn

stored XSS

user data

injection

supportedMethod
endangeredSPs

intendedSecPs
mayExploitVs

shieldedVs

belongsTo

belongsTo

shieldedVs

uses

uses

endangeredAts

uses

supportedMethod

kindOf

belongsTokindOf

uses

uses

uses

Figure 4.1: Upper part: SecEval’s Security Context model, serving as a legend for the
lower part: SecWAO example of relations regarding Cross-Site Scripting (XSS).

52 4. SecWAO: A Secure Web Applications’ Ontology

For web applications, data validation libraries for XSS-blacklisting exist. Additionally, the
http-only flag for cookies5 can be set and the x-xss protection header can advise browsers to
turn on built-in XSS protection [215]. With instances of the Security Context model we can also
specify that the HTML Purifier Library [229] is a data validation library written in PHP [173].

4.2 Security Properties
Security requirements consist of at least two elements: the asset that should be secured and the
kind of security that “secured” refers to. The latter can be expressed in SecWAO as an instance of
the class SecurityProperty from the Security Context model, which is the basis of SecWAO.

In this section, we interrelate common security properties by using instances of SecEval’s
association with the role dependsOn that belongs to the class Security Property (cf. fig-
ure 3.4). For us, “common” means that the security properties are mentioned in Wikipedia6

and in several scientific publications, which was verified with Google Scholar7. In this section,
we provide informal definitions for security properties, as the first goal of SecWAO is to provide
an comprehensive view on knowledge objects and their relations to each other. This is why we
also explain concepts in plain terms and do not refrain from citing Wikipedia in case it provides
comprehensible definitions. In the following, we present SecWAO’s main security properties, as
depicted in figure 4.2, and some security properties in the context of key-agreement protocols,
cryptosystems and digital signatures, as depicted in figure 4.3.

As shown in figure 4.2, availability8 of a system depends on system integrity9, because if
e.g., an attacker has taken over a system, system integrity is not necessarily provided as the
system might be shut down or destroyed to the attacker’s liking. In case an attacker manages
to violate control flow integrity, e.g., by using URLs that directly reference program functions,
system integrity can be at stake. Vice versa, violating the control flow integrity of a program is
possible if attackers control a system, as they can alter program code or the configuration of a
web application firewall.

It is not surprising that data security (depicted as UML package in figure 4.2) depends on
system integrity and control flow integrity and vice versa, especially as insecure data like disclosed
configuration data might provide expedient information for attacks. Note that methods can shield
from related vulnerabilities, as e.g., a JavaScript sandbox in a browser can prevent malicious code
from endangering system integrity.

Data security refers to different security properties; the most common are data confidentiality,
data integrity and data availability (bold in figure 4.2). When methods to ensure confidentiality
and integrity are not implemented properly enough, all security properties that are based on them
can be endangered. For example, disclosing confidential home addresses leads to a violation of

5“The HttpOnly attribute limits the scope of the cookie to http requests. In particular, the attribute
instructs the user agent to omit the cookie when providing access to cookies via “non-http” APIs (such
as a web browser API that exposes cookies to scripts)” [1].

6Wikipedia. https://www.wikipedia.org (English or German)
7Google Scholar. https://scholar.google.com
8Availability “refers to the ability to use the information or resource desired” [25, p.6].
9System integrity is a “condition of a system wherein its mandated operational and technical parameters
are within the prescribed limits”. (Wikipedia: System integrity)

https://www.wikipedia.org
https://scholar.google.com

4.2 Security Properties 53

data security

data availabilityanonymity

Legend Security Properties

SecurityProperty

dependsOn

data freshness

data confidentiality data integrity

data authenticity

non-repudiation

control flow integrity

system availability

non-interference

system integrity

pseudonymity

data retention user identity

user privacy

Figure 4.2: SecWAO security properties: overview

54 4. SecWAO: A Secure Web Applications’ Ontology

user privacy10 as well as anonymity or pseudonymity, in case a web application allows users11 to
interact with a service without a (unique) name or by just using a nickname (cf. [172, p.614f]).
Besides depending on confidentiality, privacy also depends on data retention12. Confidentiality,
integrity and availability are often referred to as “CIA Triad”, although many other security
properties are required and realized these days. Note that in theory data that is not available
by any means can be seen as secure. In practice, we see availability as a requirement that is
crucial for making use of data, thus we model that data security in general “depends on” data
availability.

Non-interference13 is also based on confidentiality, as it must be possible to restrict read or
write access to classified data. Additionally, it depends on data authenticity14, which requires
data freshness15, data integrity and user identity16.

Non-repudiation17 needs data authenticity and is transitively based on the security properties
on which data authenticity depends. The term “traceability” is sometimes used for weaker forms
of non-repudiation like logging [13, p.12]. Non-repudiation can be seen as the security property
required for accountability, which is “the requirement for actions of an entity to be traced uniquely
to that entity”18.

In the main ontology of Kim et al. [112], a list of security objectives is provided19 that also has
more elements than the CIA Triad. Our security properties share some of the concepts, although
we differentiate between methods that help to reach security goals. For example, in SecWAO
“replay prevention” is a method that helps to realize the security property of data freshness (cf.
figure 4.5).

Security properties are closely related to assets they characterize, as e.g., the data, applications
or systems that should be protected. Cherdantseva and Hilton examine how components of an
information system (i.e., information, people, processes, hardware, software and networks) are
related to common security properties in [54, table 1]. Although we decided for SecWAO to
split integrity and availability into “system” and “data” (as these are the most common), another
approach would be to always connect security properties with instances of SecEval’s Asset class,
to express, e.g., hardware or network integrity / availability.

In figure 4.3, we present general data security properties such as data confidentiality and data
authenticity in the contexts of three different assets – corresponding to the boxes in the figure.
10Privacy “is the right to control who knows certain aspects about you, your communications, and your

activities” [172, p.604].
11In this thesis, a “user” denotes a human user as well as actors that are controlled by a computer system.
12Data retention defines which information is stored and how long it will be kept.
13Non-interference “is a property that restricts the information flow through a system” [220, p.605]. This

usually means that information and users are grouped by categories with different levels of security and
information from one level can only affect information of other levels according to policies.

14Data authenticity defines that received data was send from users that are who they claim to be.
15Data freshness is given if data is up-to-date (and not a replay of data that was sent in the past).
16(User) identity “is a set of information that distinguishes a specific entity from every other within a

particular environment” [220, p.584].
17Non-repudiation “refers to an inability to disavow a previous agreement” [220, p.852]. Simplified: a user

cannot deny to have sent or received a message at a given time with a given content.
18NIST SP 800-33. http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf
19Security goals mentioned in [112] are confidentiality, availability, user authentication, message authen-

tication, authorization, message integrity, key management, trust, host trust, replay prevention, covert
channel prevention, separation, traffic hiding and anonymity.

http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf

4.2 Security Properties 55

Cryptosystems

Key-agreement protocols

Digital signatures

Asymmetric-key cryptography

one-wayness of asymmetric encryption

asymmetric key unbreakability

asymmetric key unbreakability

ciphertext indistinguishabilityreal-or-random security

data authenticity

data confidentiality

data confidentiality

forward anonymity

semantic security

non-malleability

non-malleability

forward secrecy

unforgeability

Figure 4.3: SecWAO security properties: details

In the context of protocols for agreeing on a key for future communication (key exchange), data
confidentiality may depend on forward anonymity and forward secrecy. The former means that
recorded data traffic and compromised (long-term) keys do not disclose the identities of the
communication partners. The latter means that “disclosure of long-term secret keying material
does not compromise the secrecy of the exchanged keys from earlier runs” [70, p.7]. In other
words: session keys will not be revealed, even if all data traffic was recorded and long-term keys
have been compromised after the sessions took place.

Confidentiality depends on properties of cryptosystems, as described in a Wikipedia article20.
According to this article, semantic security21, real-or-random security22 and ciphertext indistin-
guishability23 are equivalent and if they are broken, non-malleability24 is also broken. Besides,
typical security properties that are assumed to hold for asymmetric-key cryptography are key
unbreakability25 and one-wayness26.

20German Wikipedia: Sicherheitseigenschaften kryptografischer Verfahren
21Semantic security means that attackers can derive nothing more than the length of an encrypted

message.20
22Real-or-random security means that attackers cannot distinguish two encrypted messages, even if one of

it encrypts a plaintext they provided.20
23Ciphertext indistinguishability means that attackers cannot distinguish pairs of cyphertexts, even if they

know their plaintexts.20
24Non-malleability means that “given the ciphertext it is impossible to generate a different ciphertext so

that the respective plaintexts are related” [72].
25Unbreakability means that attackers cannot calculate the private key from the public key.20
26One-wayness means that attackers cannot encrypt a given ciphertext.20

56 4. SecWAO: A Secure Web Applications’ Ontology

might be used by all main methods

describes methods below

system configuration

session management

logging / auditingdata validation

authentication

error handling

authorization

cryptography

uses

uses uses

usesuses

uses

Figure 4.4: SecWAO: main methods

Security properties for digital signatures are depicted at the bottom of figure 4.3: Strong
unforgeability27 is based on existential unforgeability28. Asymmetric key unbreakability and
non-malleability can also apply to digital signatures. In this context, non-malleability is referred
to as not being able to create a second valid signature for a pair of a message and its valid
signature.20

Other security features that can be modeled with SecWAO, but are not presented here are
e.g., collision resistance, which is a property of cryptographic hash functions, “provable security”,
which means that security properties of an asset are mathematically proven or non-observability,
which means that data is not only transmitted confidentially, but it also remains confidential
whether information has been transmitted. Herzog et al. [101] specify goals that contain trust
and correctness, which we omitted due to the vagueness of these terms.

4.3 Methods

Methods help to implement security properties for an asset. We group the main methods of
SecWAO into three groups according to their mutual usage, as depicted in figure 4.4. In this
section, we present SecWAO’s main methods in general, before going into detail for cryptography,
data validation, authentication, session management, authorization and other methods.

Authorization is a synonym for access control [220, p.2] and uses a successful authentication
to identify users that request access, e.g., to an internal web page. This is represented in the

27Strong unforgeability “ensures the adversary cannot even produce a new signature for a previously signed
message” [28].

28Existential unforgeability means that “an adversary who is given a signature for a few messages of his
choice should not be able to produce a signature for a new message” [28].

4.3 Methods 57

diagram by instantiating the Method’s association with the role uses (cf. figure 3.7)29. The
management of user sessions is also based on authentication, although anonymous sessions are
possible that only require to identify, e.g., a cookie instead of authenticating a user. Cryptography
aims at protecting “a secret from adversaries, interceptors, intruders, interlopers, eavesdroppers,
or simply attackers, opponents, and enemies” [220, p.283]. As the aim of authorization is similar,
it often uses cryptographic methods to enforce access control. For authentication cryptography is
frequently employed to ensure confidentiality, integrity and freshness of requests in authentication
protocols. Sessions require cryptographically strong identifiers that are unpredictable (cf. random
number generators in figure 4.5).

Methods that are used by all depicted methods are placed at the bottom of figure 4.4, hiding
all the linking uses arrows. For example, data validation has to implement error handling for
coping with illegal inputs. Success messages (e.g., a successful authentication) as well as error
messages or status messages (e.g., an expired user session) can be logged. We first thought about
using “state handling” instead of “error handling”, because occurring errors might or might not
lead to a change in the application’s state. However, the relevance of handling errors deliberately
outweighs the advantage of further abstraction in this security-focused ontology.

All tools that support the methods mentioned so far typically need to be configured. Other-
wise, an authentication service might grant access to all users or an error message might disclose
critical confidential information about a system. In short, system configuration is a method that
relates to the secure employment of methods, i.e., it helps to describes how to adjust software and
which hardware should be used. This is modeled using the describes association, although the
links to all other methods are not shown in figure 4.4 for reasons of clarity.

In this thesis, we focus on technical methods, although we think that non-technical secure
development methods are equally important. Examples are security-aware management (granting
time and money for more secure implementations) and a security-aware software development life
cycle, including e.g., security requirements elicitation, secure design methods, code reviews and
penetration testing. Existing “applied security” literature typically includes a set of security prin-
ciples30 like simplicity, open design, minimum exposure, secure-by-default, fail securely etc. [13].
For example, secure-by-default and fail securely belongs to the methods “system configuration”
and “error handling” in SecWAO.

4.3.1 Cryptography
The upper half of figure 4.5 details how cryptography relates to other methods. We use bold
text in the object diagrams to identify methods that we think are central to recognize a certain
set of methods, as e.g., methods related to cryptography. This set of methods support data
integrity, authenticity, confidentiality and freshness, as can be seen at one glance in figure 4.5
(cf. instances of the class SecurityProperty). However, we just exemplarily depict links to
security properties and assets, as we focus on methods and their interrelations.

29It is worth mentioning that role names, such as uses, are referring to a “common case” in our ontology.
For uses, it means that something is “usually used”, but it does not state that it has to be used in any
possible case.

30For a broad overview of practical security principles, the interested reader is referred to https://www.
owasp.org/index.php/Category:Principle.

https://www.owasp.org/index.php/Category:Principle
https://www.owasp.org/index.php/Category:Principle

58 4. SecWAO: A Secure Web Applications’ Ontology

Legend

Method

SecurityProperty

Asset

belongsTo

labeled links

data sanitization by blacklisting

data validation by whitelisting

cryptographic hash functions

SQL injection prevention

http-only flag for cookies

input validation libraries

cryptographically secure

pseudo-random number

generators (CSPRNG)

x-xss protection headercontent security policy

data integrity

control flow integrity

digital watermarking

data validation

injection prevention

data confidentiality

parameterized

prepared statement

website in browser

asymmetric-key

cryptography

symmetric-key

cryptography

hybrid

cryptosystems

hardware random

number generators

replay prevention

output validation

input validation

message

authentication

codes (MAC)

digital signatures
key management

web application

(server-side)

parameterized

stored procedure

SecurityProperty

data authenticity

cryptography data authenticity

cryptographic

protocols /

cryptosystems

XSS prevention

block cyphers

stream ciphers

escaping user

supplied input

escaping user

supplied input

key revocation

key storage

key generation

key exchange

steganography

data freshness

database

Method

browser

cookies

Asset

relatedSecPs

usedAts

relatedSecPsrelatedSecPsrelatedSecPs

securedAts

securedAts

uses

uses

relatedSecPs

usesuses uses

extends

extends uses

uses

usedAts

usesuses

uses

uses

relatedSecPs

usedAtsusedAts

usedAts

relatedSecPs

uses uses

relatedSecPs

relatedSecPs

Figure 4.5: SecWAO methods: cryptography and data validation

A cryptosystem31 can be symmetric, asymmetric or hybrid, which is determined by whether
a single key is used for decryption and encryption, or a public and a private key are used, or
an asymmetric key is used for encrypting a generated symmetric key that encrypts a message.
Especially for asymmetric keys, key management is important, as such keys are often reused
many times in contrast to symmetric ones.

Other methods that belong to cryptography are the mechanisms of random number generators
and cryptographic hash functions (i.e., one-way hash functions). Random number generators can
be implemented in hardware or software. Software implementations are so-called “secure pseudo-
random number generators”: algorithms that produce random numbers in a sequence that is
determined by a seed. The seed has to be given as an input for the algorithm [220, p.995].
Generators are e.g., used for digital signatures that enforce data authenticity.

4.3.2 Data validation
Data validation – as known from the example of section 4.1 – is depicted on the bottom of
figure 4.5. Input and output validation are kinds of data validation. The former denotes that
data is validated when entering an application (possibly by a kind of firewall), whereas the latter
31A cryptosystem “is a system consisting of an encryption algorithm, a decryption algorithm, and a well-

defined triple of text spaces: plaintexts, ciphertexts, and keytexts” [220, p.284].

4.3 Methods 59

refers to the validation just before data is handed over to a component where it could cause
damage. Output validation has the advantage of knowing exactly how benign data should look
like in a certain context and makes sure that data created by the application, as e.g., logfiles, are
also taken into account.

Besides XSS prevention, e.g., supported by the Content Security Policy32, other types of
injection prevention exist. For example, database query injection (referred to as “SQL injection”)
can be avoided by using libraries for prepared statements. Prepared statements are available in
most programming languages and they distinguish between user input33 and SQL statements so
that the former cannot influence the latter. Other options, as stored procedures34 or escaping all
user supplied input according to the database syntax that is used, are considered less secure, as
a single careless mistake can bear a severe security flaw [169].

4.3.3 Authentication

Figure 4.6 focuses on authentication, including typical methods that are used for web applica-
tions, as registering for an account using common types of registration, ways to securely recover
credentials and typical logout mechanisms. Authentication itself is often used as a synonym for
checking the validity of the user’s identification, which we can express by adding a link with the
role ambiguity that belongs to KnowledgeObject (cf. figure 3.4). A less well-known method
is to check if the user enters a password for accessing the application in a so-called “panic mode”.
This mode allows users from unsafe regions around the world to give away a valid password if
threatened. This password permits an attacker to sign in to a web application that does not give
rise to suspicion, while hiding personal user data and restricting access to critical functionality.
That is why the panic mode is also related to state-based access control (cf. figure 4.7) [170].

4.3.4 Session Management

The upper part of figure 4.6 shows knowledge objects related to session management. On the
upper left, common methods like starting or ending a session are depicted. In the case a critical
error occurred during a session, it might be advisable to end the session. Note that sessions
also exist for unauthenticated users; however, the session Identifier (ID) should be changed after
authentication to avoid session fixation35. Other methods to prevent session takeover are depicted
on the right: It can be helpful to enable users to list their active sessions so that they can invalidate

32Content Security Policy is “a mechanism web applications can use to mitigate a broad class of content
injection vulnerabilities, such as Cross-Site Scripting. The server delivers the policy to the user agent
via an http response header or an HTML meta element” [221].

33“User input” refers to any input sent by users or their devices, including input the user entered in a text
field, cookies or protocol headers sent by a browser, etc.

34Stored procedures are located in the database and can be called from a client using parameters, which
shifts the problem of securing SQL statements from the application to the stored procedure.

35Session fixation exploits cases where session IDs are not changed after the login, as an attacker can
access a website to obtain an ID, trick a user to access and sign in to the same website using this ID (e.g.
provided by a URL within an email) and can continue using the – now authenticated – session [168].

60 4. SecWAO: A Secure Web Applications’ Ontology

Legend

Method

SecurityProperty

Asset

belongsTo

labeled links

check validity of identification
(login, sign-in)

human verification (CAPTCHA)

handle authentication failure

require additional
countermeasures next time

session takeover prevention

multi-factor-authentication

synchronizer token pattern

mail verification via
received mail with code

phone call with reset code

session management

request re-authentication

checking origin header

checking referrer header

check for additional
countermeasures

email verification via
received URL

generate new session
ID after authentication

email with reset URL

remote session listing

check for login delay

lock account or IP
(maybe temporarily)

mail with reset code

human verification
(CAPTCHA)

identity verification

authentication

register for account

challenge-response

recover credentials

check geolocation

SecurityProperty

check credentials

adult verification

session timeout

remote session
invalidation

secret questions

x-frame-options

one-time token

check for locks

csrf prevention

single-sign-on

single sign-off

error handling

increase delay

user identity

user identity

start session

user privacy

panic mode

end session

credentials

Method

logout

logout

Asset

uses

relatedSecPs

uses

uses

uses uses

relatedSecPs

uses uses
uses

uses

uses

relatedSecPs

uses

uses

usedAts

uses

uses

uses

ambiguity

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses uses

uses

uses uses

uses

uses uses

uses

Figure 4.6: SecWAO methods: authentication and session management

4.3 Methods 61

them in case a device was stolen. Methods to prevent Cross-Site-Request-Forgery (CSRF)36 are
modeled according to their description in [164].

4.3.5 Authorization
Authorization defines an access source, an access target and actions that are permitted to be
executed. In addition, figure 4.7 depicts an access control enforcement system that decides
whether or not to permit a request for access, according to access control policies, which can be
noted in languages as XACML [149]. These policies can be defined by a provider or by users, as
expressed by the role belongsTo that is played by the category access manager. Access
control capabilities describe common approaches used for authorization, as role-based
access control (the user belongs to roles and access is specified for roles) or state-based access
control (access control policies can, e.g., refer to the current time or the mode an application is
in, like maintenance mode).

For web applications, common usages for cryptosystems are secure connections between a
browser and a server to transmit confidential information. The protocol TLS [211] with its
option for Perfect Forward Secrecy (PFS) (cf. security property “forward secrecy” in section 4.2)
and the browser policy HTTP Strict Transport Security (HSTS)37 are methods that are used in
practice.

Besides, in figure 4.7 we use SecWAO to clarify the difference between types of action:
functions of an application can be executed and data can be accessed. An example is DRM (Dig-
ital Rights Management), which aims at restricting copying, viewing or extracting information
from files or videos. Data access can also be restricted by defining policies for CRUD (create,
read, update, delete) on objects, as e.g., database records. Additionally, web applications focus
on restricting navigational access. This allows to specify whether a user is allowed to navigate to
a so-called “navigational node”, i.e. a (part of) a web page. This avoids dead-ends, as it avoids
navigating to a function a user is not allowed to access.

4.3.6 Logging, Error Handling and System Configuration
In figure 4.8 logging, error handling and system configuration are presented. They closely relate
to system integrity and are used by many other methods (cf. figure 4.4). In the context of
web applications, system integrity is also important for the client. Consequently, it is common
courtesy to provide users with possibilities for download verification, especially when downloading
programs. Digital signatures or cryptographic hashes can verify a download in case it was not
transmitted by a protocol, as e.g., TLS that supports integrity.

Non-repudiation, beyond re-authentication before executing critical actions, has not com-
monly been realized for typical web applications so far. Digital signatures and logging (ideally by
a third party) could ease traceability and forensics for critical actions like purchases, or changes
in the configuration of safety-critical appliances that provide a web interface.
36A CSRF attack “causes a user’s web browser to perform an unwanted action on a trusted site for which

the user is currently authenticated” [164]. For example a user clicks on a link within a junk mail that
uses an active session of an online shop to buy an unwanted product.

37HSTS enables “web sites to declare themselves accessible only via secure connections” [106], which
prevents a man-in-the-middle from hijacking unencrypted requests (http) users sent to servers that
usually redirect from unencrypted pages to an encrypted pages (https) after this first request.

62 4. SecWAO: A Secure Web Applications’ Ontology

L
egendF

orT
hree

M
ethod

N
otation

S
ecurityP

roperty

A
sset

C
ategory

belongsTo

labeled links

cryptographic protocols / cryptosystem
s

H
T

T
P

 strict transport security (H
S

T
S

)

application m
ode-based access control

access control enforcem
ent system

 :
C

ategory

access control capabilities :
C

ategory

transport layer security (T
L

S
)

perfect forw
ard secrecy (P

F
S

)

fram
ew

ork-specific access
control language : N

otation

authorization

navigational nodes
(i.e., parts of w

eb pages)

com
plete m

ediation

least privilege principle

fail securely principle

enforce navigation flow

end-to-end encryption

access m
anager :

C
ategory

access target :
C

ategory

access source (actor) :
C

ategory

data retention strategy

discretionary access
control (D

A
C

)

em
ergency pow

ers
(break glass policy)

m
andatory access

control (M
A

C
)

separation of duties

enforce predefined
w

orkflow

role-based access
control (R

B
A

C
)

data integrity

type of action :
C

ategory

access control
language : N

otation

digital rights
m

anagem
ent (D

R
M

)

C
ategory : C

ategory

tim
ed access control

X
A

C
M

L
 : N

otation

N
otation : N

otation

w
eb application
(server-side)

functionality access
delegation of rights

navigate to
navigational node

data confidentiality

FA
C

PL
 : N

otation

navigational access

encrypted storage

user-defined
access control

state-based access
control

S
ecurityP

roperty

inform
ation flow

policy

usage control

non-interference

location-based
access control

provider-defined
access control

extract contents

privacy settings
data processing

update, w
rite

sum
m

arizing

program
 data

transm
ission

functionality

access quota

user privacy

user privacy

panic m
ode

aggregating

inform
ation

data access

classifying

w
eb server

analyzingvalidating
reporting

execute
function

user data

database

M
ethod

sorting

C
R

U
D

stream

device

create

delete

server

D
R

M

A
sset

clientview file

copy

share

print

save read

user

partO
f

partO
f

relatedSecP
s

uses

usedA
ts

extends

uses

uses

uses

extends

uses

relatedS
ecP

s

usedA
ts

usedA
ts

usedA
ts

relatedSecP
s

uses

relatedS
ecP

s

partO
f

partO
f

uses

extends

uses

uses

uses
relatedS

ecP
s

uses
uses

uses

partO
f

relatedSecP
s

uses

uses

Figure 4.7: SecWAO methods: authorization

4.3 Methods 63

Legend

Method

SecurityProperty

Asset

belongsTo

labeled links

integrity-supporting transmission protocol

cryptographic hash functions

system configuration

transmission management

secure by default principle

web server management

data elimination policy

x-frame-options

content security policy

x-content-type options

restricted port access

database management

browser configuration

fail securely principle

download verification

website in browser

network management

data integrity non-repudiation

system availability

logging / auditing

intrusion detection

intrusion protection

digital signatures

server management

error handling

backup strategy

web application
firewall (WAF)

update policy

DDoS prevention

recovery strategy

SecurityProperty

data validation

system integrity

log sanitization

data retention

log analysis monitoring

Method

client

Asset

relatedSecPs

uses

relatedSecPs

relatedSecPsrelatedSecPs

relatedSecPs

uses

relatedSecPs

securedAts

uses

uses

uses

relatedSecPs

relatedSecPs

uses

uses

uses

relatedSecPsrelatedSecPs

uses

relatedSecPs

uses

uses

relatedSecPs

securedAts

uses

relatedSecPs

relatedSecPs

extends

Figure 4.8: SecWAO methods: logging, error handling and system configuration

64 4. SecWAO: A Secure Web Applications’ Ontology

Monitoring uses logging and log analysis for intrusion detection as well as for intrusion pre-
vention. Log sanitization means that sensitive information is removed38 from log messages. This
can be important for information that has to be deleted after a certain period of time due to legal
regulations and for debugging by developers who are not allowed to access concrete data sets of
the production system. For error handling, a data validation method should be applied to error
messages in order to keep details of the system and the algorithm internal. Consequently, an in-
ternal error message should be replaced by a short message, which does not confuse normal users
and does not allow attackers to gain any insights. Additionally, the instance fail securely
principle reminds developers to carefully consider error states as regular part of their program,
as web applications should be constantly available – meaning that restarts to recover a consistent
state are undesirable.

Regarding system configuration, we provide some examples in figure 4.8, as server manage-
ment and browser configuration. Browsers can be configured by users, but their behavior can
also be influenced by web servers’ responses, as already introduced above, e.g., by using a content
security policy and other http headers [165].

In general, objects of SecWAO can be grouped according to different aspects. For example
methods could also be grouped according to a certain security property like data integrity, to
learn about methods that are related to it. Purists might as well query the tree that contains all
UML elements.

4.4 Vulnerabilities and Threats
Figure 4.9 depicts the ten top vulnerabilities of web applications (according to OWASP [161]) and
relates them with major threats that may exploit these vulnerabilities. The diagram is roughly
grouped according to the main methods we used in the previous section. For example, the instance
of the class Vulnerability that is named unvalidated data (in bold) corresponds to the
method’s instance data validation, depicted in figure 4.5. These correspondences can be
modeled using associations from figure 3.4 (i.e. with the roles detectedVs or shieldedVs),
as presented in figure 4.1. Beyond OWASP’s Top 10, different views on general vulnerabilities
are presented by the CWE [66], e.g., they group them according to reasons for weaknesses39 or
according to diverse development concepts40.

Besides the vulnerabilities from the OWASP Top 10, the diagram in figure 4.9 depicts sev-
eral related vulnerabilities ranging from general vulnerabilities like error-prone memory man-
agement or insecure credentials41 to web-specific vulnerabilities like clickjacking42 or Cross-Site

38Wikipedia: Sanitization (classified information)
39CWE Research Concepts. https://cwe.mitre.org/data/graphs/1000.html
40CWE Development Concepts. https://cwe.mitre.org/data/graphs/699.html
41Insecure credentials are, e.g., passwords that are easily guessable. This can mean that they are either too

short so that a brute-force attack is possible, or too common so that a rainbow-table attack is effective.
Both exploit that brute-force credential guessing is possible, either on stolen password hashes (in case
they are not hashed with an up-to-date cryptographic hash function and salted) or on web applications
that apply no means to restrict credential guessing attempts. (cf. lower right of figure 4.9)

42A web page is vulnerable to clickjacking if an attacker can hide it by layers with arbitrary contents to
trick users into clicking on these layers and thus involuntarily interact with the hidden web page [163].

https://cwe.mitre.org/data/graphs/1000.html
https://cwe.mitre.org/data/graphs/699.html

4.4 Vulnerabilities and Threats 65

Legend Web Vulnerabilities

Vulnerability

Threat

mayBeCausedBy

mayExploitVs

labeled links

password database not properly hashed and salted

insufficient logging and accountability

Number in

OWASP Top 10

of 2013

unvalidated redirects and forwards

provide input in a way to be executed

missing function level access control

exploit missing forensic possibilities

memory management vulnerability

cross-site request forgery (CSRF)

insufficient access control logic

hardcoded function access control

credential guessing not restricted

insufficient control-flow integrity

insecure direct object references

rainbow-table / dictionary attack

distributed denial-of-service

attack (DDoS)

provide JavaScript code in a

way to be executed

detectability = easy

exploitability = average

names = "XSS"

prevalence = widespread

technicalImpacts = moderate

cross-site scripting (XSS)

using components with

known vulnerabilities

security misconfiguration

detectability = average

exploitability = average

prevalence = widespread

technicalImpacts = severe

broken authentication

and session management

insufficient anti-automation

improper error handling

expose time- or resource-

intensive functionality

redirect to malicious page

detectability = average

exploitability = easy

prevalence = common

technicalImpacts = severe

injection

man-in-the-middle attack

unnoticeably launch

action within a page

no or weak cryptography sensitive data exposure

insufficient user privacy

circumventing DRM

sessionID not

renewed after login

sessionIDs

exposed in URL

unvalidated data SQL injection

privilege escalation

insecure credentials

CAPTCHA solver

program logic flaw

brute-force attack

concurrency flaws

outdated software

session hijacking

sessionIDs do

not timeout

buffer overflow

session fixation

race condition
reflected XSS

path traversal

Vulnerability

file inclusion

cryptanalysis

clickjacking

7

1

9

5

4

2

8

3

6

10

analog hole

stored XSS

Threat

kindOf

belongsTo

kindOf

kindOf

kindOf

kindOf

belongsTo

kindOf

kindOf

kindOf

belongsTo

kindOfkindOf

kindOf

uses

kindOf

Figure 4.9: SecWAO vulnerabilities

66 4. SecWAO: A Secure Web Applications’ Ontology

gain page editors' permissions

gain web user permissions privilege escalationbrute-force attack

deface websiteuses

uses

uses uses

Figure 4.10: SecWAO: a sequence of threats

Scripting. Depending on the configuration of a concrete asset, some vulnerabilities, like weak
credentials, can only be exploited in combination with others.

In practice, threats and attacks often share the same name, as e.g., the threat of a brute-
force attack. In Herzog et al. [101, figure 4], a threat classification is provided that uses the
terms “threat” and “attack” interchangeably. Fenz and Ekelhart [83] differentiate in their online
ontology between “low level threats” and “top level threats”. The former correspond to our
definition of threats, the latter are the counterpart to what we express positively as security
property (e.g., data disclosure – confidentiality). For us, attacks are threats that become reality
for a concrete asset.

Successful attacks can give rise to further vulnerabilities, as an attacker can use a found
out password to search for vulnerabilities that are not exploitable from the outside. As the class
Threat descends from Method, the roles uses, steps, extends, etc., can be used. Figure 4.10
shows an example of a sequence of threats that could become reality so that in the end a set
of web pages are defaced. In this way, attack trees [185]43 can be constructed. Such trees can
grow exponentially44, as threats depend on assets: storing illegal data might be a huge threat for
servers with plenty of storage, whereas misconfiguring nuclear power plants might be less relevant
for average server administrators.

A general collection of threat trees can be found in Shostack’s book [197, appendix B], which
follows Microsoft’s STRIDE threat model45. The items of STRIDE stand for Spoofing, Tamper-
ing, Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege.

In the CWE [66] and in CAPEC [212], consequences of a weakness respectively of an attack
pattern can be chosen from: confidentiality, integrity, availability, non-repudiation, accountability,
authentication, authorization, access control and “other”. SecWAO distinguishes between security
properties (the former) and methods (the latter), which makes it possible to provide detailed
information about the location and the consequences of a vulnerability in a structured way. For
example, an unknown conceptual vulnerability in a method might be implemented in a tool. If it
is critical for a piece of software that this tool works like intended, it can be modeled as an asset
itself (cf. roles Vulnerability.includedIn and Asset.includes in figure 3.4).

4.5 Implementation of a Knowledge Base
Using a web application can be more convenient than using UML CASE tools, especially when
it comes to collaborative research. Advantages of a web-based implementation for managing
43Although the term “attack tree” is widely used, the term “threat tree” is more appropriate, as there is

no need for attackers to exploit all theoretical possibilities.
44The growth of the ontology is a reason why SecWAO will never be completely finished; aside from the

fact that the state of the art changes over time.
45The STRIDE Threat Model. https://msdn.microsoft.com/en-US/library/ee823878.aspx

https://msdn.microsoft.com/en-US/library/ee823878.aspx

4.5 Implementation of a Knowledge Base 67

SecEval’s instance models are that connections to existing knowledge objects (e.g., common meth-
ods or vulnerabilities of SecWAO) can easily be added and that data sets of previous evaluations
remain available for future research. In section 4.5.1, we elicit requirements for a Wiki-like knowl-
edge base for software and security engineers and developers and in section 4.5.2 we present our
prototypical implementation.

4.5.1 Requirements
We think that the SecEval Wiki should support the following use cases: (a) viewing knowledge
objects, (b) editing knowledge objects, (c) importing external information and (d) searching for
information to answer research questions, which can result in executing a tool-supported SecEval
evaluation process.

Viewing Knowledge Objects

For the implementation of SecEval’s Security Context model, we imagine a system that provides
three views on each knowledge object:

∙ A tabular view that shows attributes’ values, grouped by classes (presented as boxes) of
SecEval’s models. Which attributes are shown can be defined by the user. This view is
especially useful for comparing knowledge objects.

∙ A UML view that presents an instance model of SecEval’s UML model. The advantage of
this view is that it is easy to examine links between several knowledge objects.

∙ A view that shows continuous text, enriched by boxes that can be placed between para-
graphs or beside the text, similar to Wikipedia46.

The user should be able to switch between these views at any time.

Editing Knowledge Objects

When creating a new element in the Wiki, the page is empty at first and shown in the continuous
text view so that text can by written and structured by headings and paragraphs immediately,
similar to the workflow in traditional Wikis. Additionally, on the side of the screen, common
attributes are presented in a sidebar which can be dragged onto the Wiki page in order to fill
them with actual values and to arrange them within the text or in boxes. These attributes
correspond to attributes from SecEval models. For example, the user can specify some attributes
of the Tool class, as technical requirements, licenses or the language the tool is written in.

Usually, information about knowledge objects has already been stored in continuous text form
(probably imported from another page or document). In such cases, the application should allow
to easily mark text and to click on an attribute on the sidebar. The attribute is then linked to the
text so that it changes automatically when the text is altered. A history not only for continuous
text, but also for attributes, allows users to track how the contents evolved over time.

For the sidebar (which should be resizable up to full-screen) it is also useful to implement
different views, for example:
46Wikipedia. https://www.wikipedia.org/

https://www.wikipedia.org/

68 4. SecWAO: A Secure Web Applications’ Ontology

∙ a UML view, showing the full SecEval class diagrams for experts. This is the counterpart
to the instance view for a concrete entry of the Wiki.

∙ an auto-suggestion view in which single attributes are shown according to an attribute-
based suggestion system. This system can then recommend attributes which seem to be
useful in the current context, as e.g., attributes of testing tools, as soon as it becomes clear
that a user describes a tool from the domain of testing.

Recommendation includes that the system needs to explain rules inferred by SecEval, as e.g.
that it is useful to describe a tool and a corresponding notation in two separate entries, even if
the notation has only been used by this tool so far. A focus is on the connection between several
knowledge objects in our SecEval system and on the possibility to add data which is not only
associated with one knowledge object, as e.g., evaluation results.

Importing External Information

Another useful feature is syndication, i.e. to be able to insert text from other web pages, as from
Wikipedia or from vulnerability management systems, which are correctly cited and updated
automatically. This task could be eased by step-by-step wizards and good attribute recommen-
dation according to the attributes selected so far and the information provided. For example, if
the user inserts the URL of a Wikipedia article, the article is displayed in a window that allows
selecting passages and transferring them to the SecEval system immediately, along with a linked
cite.

Another requirement is the import of text from pdf files. Hereby, a challenge is to deal with
licensed books or papers, because citing small passages is usually allowed, whereas publishing the
whole document in the web might be prohibited.

Searching for Information

In addition to the implementation of the Security Context model, to express elements of SecWAO
or gathered information from evaluations, the application should support the process of collecting
and analyzing data to answer a concrete research question.

Simple questions can be answered using a full-text search. More complex questions can involve
several knowledge objects and their attributes, so that the search function has to be able to rely
on the associations between knowledge objects stored in the knowledge base.

If the requested information cannot be found in the knowledge base, a wizard might suggest
using SecEval’s process to collect and analyze information. Ideally, the wizard allows jumping
between several process steps while offering to record information for SecEval’s Data Collection
and Data Analysis models. The users can decide whether their research question should be
public.47 At the end of a complex evaluation process, artifacts like research questions, used
sources and the concrete approach of a research can be published to save time and money in case
a similar question will arise again in the future. Documenting the process of data collection and
data analysis could avoid misconceptions regarding the validity and reusability of results.

47Discussions can also help to answer a research question, therefore it is desirable to connect the Wiki
with question/answer systems as, e.g., Stackoverflow http://stackoverflow.com/.

http://stackoverflow.com/

4.5 Implementation of a Knowledge Base 69

Figure 4.11: SecEval implementation: continuous text view

A general requirement for our implementation is the usability of the interface. For example,
the CBK provides a complex search function, but it turned out that it is rarely used, because
attributes have to be selected by using their technical short names. For SecEval, it might be
helpful to present descriptions and to suggest attributes according to a catalogue that learns
how users tend to name a concept. Ideally, this search does not require a complex interface, but
supports the user with auto-completion or wizards when typing a query into a text box.

4.5.2 Implementation
In section 2.2.2, we introduced existing knowledge base systems. However, they are not flexible
enough to meet our requirements, especially when it comes to editing knowledge objects’ infor-
mation without being restricted by a rigid structure (as e.g., enforced by the CBK’s Semantic
MediaWiki [120]) or to usability (e.g., drag & drop for inserting referencing tags to knowledge
object’s attributes in a wiki page). Therefore, we developed a prototype of an online knowledge
base, implemented by Martin Reithmayer [176], which is based on the requirements described in
the previous section.

Section 4.5.2 depicts a screenshot of the continuous text view for the method “XSS prevention”
from our SecWAO. The views can be changed in the upper right corner. The introduction
references the vulnerability “Cross-Site Scripting (XSS)” that should be shielded by this method
(cf. UML view, which is depicted in section 4.5.2). The link represents the value of the method’s
attribute shieldedVs. In the edit view, an “attribute picker” allows to select and search for
attributes that can be added to the text using drag & drop, which inserts a reference tag in wiki
syntax, in this case [[attribute:t:shieldedVs]].

70 4. SecWAO: A Secure Web Applications’ Ontology

Figure 4.12: SecEval implementation: UML view

In the “Details” section, information from the OWASP website is cited, which was selected
using the implemented HTML import functionality of the SecEval Wiki. The import dialogue
shows a preview of a website and allows the user to select an excerpt of the text. This excerpt
can then be included in a wiki article using tags, which automatically adds a reference, as shown
at the bottom of section 4.5.2.

Editing attributes is depicted in section 4.5.2: users can drag & drop attributes from a list
on the right to the left, where users can then specify a value for these attributes. If the view is
changed to “text fields”, the general wiki page (continuous text view) can be edited using these
values, as described above.

Technically, the SecEval Wiki was implemented using PHP [173] and a MySQL database [160]
for the back-end and HTML, CSS and JavaScript with the JQuery library [108] for the front-end.
More detailed information about the implementation can be found in [176].

Figure 4.13: SecEval implementation: edit attributes

4.6 Summary and Related Work 71

4.6 Summary and Related Work
In this chapter, we answered our second research question (RQ2)48 by presenting our Secure Web
Applications’ Ontology (SecWAO), which is based on SecEval’s Security Context model. Its main
goal is to raise the awareness for web security concepts and especially for their interconnections.

SecWAO. SecWAO was built as an UML instance model of SecEval’s Security Context model.
No extension of SecEval was needed for modeling complex relations between central web security
concepts, which additionally validated the expressiveness of the Security Context model. For
example, SecWAO models security-related methods like cryptography, data validation, authen-
tication, session management, authorization, logging, error handling, and system configuration.
Instances of associations links them to other knowledge objects, as e.g., to security properties like
confidentiality or vulnerabilities like XSS.

To the best of our knowledge, SecWAO is the first ontology that provides a comprehensive view
of the domain of secure web applications. Main approaches we compared SecWAO with are: the
CWE [66], Kim et al. [112], Herzog et al. [101] and Fenz and Ekelhart [83] (cf. section 2.2.2). For
example, in the extensive CWE [66] and in CAPEC [212], consequences of a weakness respectively
of an attack pattern can be chosen from: confidentiality, integrity, availability, non-repudiation,
accountability, authentication, authorization, access control and “other”. SecWAO distinguishes
between security properties (the former) and methods (the latter), which makes it possible to
provide detailed information about the location and the consequences of a vulnerability in a
structured way.

Implementation. In addition to the representation of SecEval instances as UML diagrams,
we implemented a prototype of a SecEval knowledge base, which is both flexible and simple to
use. Familiarity with CBK [49], which is based on the Semantic MediaWiki [120], was helpful
for figuring out key requirements. In particular, our SecEval Wiki allows viewing knowledge
objects (text view, table view or UML class view) and creating or editing knowledge objects (its
text or attributes). When editing the text view, information from the web can be selected for
citation so that existing pieces of information can be organized with SecEval’s Security Context
model. The focus was on structuring information without limiting the user to the underlying
structure, as enforcing a structure turned out to be an impediment when working with the
CBK’s implementation.

Outlook. In [144], Neuhaus et al. state that the first question to be asked when dealing with
an ontology is: “Can humans understand the ontology correctly?”. According to our experience,
SecWAO reaches this goal due to its clear structure and its common terminology. So far, we
have used SecWAO in two different ways: First, we structured a tutorial about practical IT
security for master students according to SecWAO in the winter terms 2014/2015 and 2015/2016.
Zooming into SecWAO UML diagrams on the slides allowed giving further explanations without
losing track of the context. The students acknowledged the helpfulness of SecWAO for studying,

48RQ2 (extended): How are assets, security engineering methods, notations, tools, security properties,
vulnerabilities and threats related in the domain of web application security? Is SecEval’s Security
Context model powerful enough to express these relations? (cf. section 1.2 and introduction of chapter 4)

72 4. SecWAO: A Secure Web Applications’ Ontology

although they noted that readability naturally depends on a projector with high resolution and
a large projection surface.

Second, we integrated SecWAO into the UML-based Web Engineering (UWE) approach [224],
as will be described in part III. The UWE notation is defined using the UML profile mechanism
and SecWAO allowed us to systematically establish UML stereotypes and tags for modeling secure
web applications. As a result, UWE enables developers to document most important security
design decisions in a graphical way. We expect that this structured and concise documentation
facilitates the development and maintenance of web applications, in particular in the case of
changes in the developer team. Consequently, we can affirm our initial question about the power
of SecEval’s Security Context model as a fundamental structure for SecWAO.

Regarding our implementation of the SecEval Wiki, we think future work could extend it by
a wizard that supports SecEval’s process of collecting and analyzing information, an import from
document file formats like pdf and an attribute-based suggestion system. Furthermore, a more
detailed search engine and a version control system could be integrated.

Part III

Engineering Secure Web Applications

Many general lists of security requirements for web applications exist, e.g. [162, 187]. These
abstract requirements often remain rather vague until being enriched by design instructions, as “If
TLS is used, all components of the web application must be transmitted in encrypted form” [95,
Req 3.06-2]).

Ideally, these statements are refined for concrete (web) applications: Both, developers and
administrators have to know which methods, as e.g. TLS, are (going to be) employed to secure
their web applications and how their applications are structured. This is where our approach
bridges the gap from general requirements (e.g., “sensitive data is always transmitted confiden-
tially”) or general design decisions (“TLS is used”) via concrete requirements of web applications
(“users submit their confidential credit card number to the payment application”) through to
design decisions for these applications (“TLS is deployed for the payment service, but not for
browsing offers”).

Making concrete design decisions is closely related to choosing a method in the sense of a
SecEval method, which is instantiated by SecWAO, e.g., as “Transport Layer Security (TLS)”
(cf. part II: figure 4.7). Our approach, which extends a notation called UML-based Web Engi-
neering (UWE) to answer RQ3, can be used to model applications according to their web-specific
characteristics and to document security-related design decisions directly in these models.

Part III consists of two main chapters:
Modeling Secure Web Applications. UWE, which was invented by Koch et al. [115, 116],

allows for modeling web applications graphically by using different views, such as content
or navigation. We start with an introduction of the UWE approach along with several
case studies we used for validating the soundness and applicability of our approach while
developing it. We continue with the presentation of our UWE security extensions, which
we structured by SecWAO’s main security requirements and methods. In 2010, the author
already started to add some security features (in the course of her master’s thesis [37, 39],
published 2011) which led to a number of security extensions over the years.

Artifact Generation. We explore artifacts that can be generated from UWE models: We sketch
TextualUWE in section 6.1, which is a Domain-Specific Language (DSL) for expressing
UWE models in a textual way. A transformation to convert graphical models in textual
ones was partly implemented in a bachelor’s thesis [181] under the supervision of the author.
Section 6.2 highlights how to export access control policies in two different formats, namely
XACML and FACPL, which is joint work with the inventors of FACPL [43]. In section 6.3
we report on work in which we joined forces with researchers from the domain of policy
testing to build a toolchain that automatically tests generated XACML policies [20]. In
section 6.4 we briefly present the idea of a transformation from UWE to ActionGUI models,
called ActionUWE [38]. ActionUWE is joint work with the inventors of ActionGUI, a
modeling method for secure web applications that allows generating executable code for
models, which are limited to predefined elements. In section 6.5, we present an approach
for testing and enforcing secure navigation paths, which is also joint work [47]. Navigation
paths are the paths a user should stay on while browsing in order to comply with the
intended application logic.

The interested reader can download the UML profile for UWE, our case studies and related
tools from the UWE website [224].

Chapter 5

Modeling Secure Web Applications

In order to pursue the first objective of RQ3 – which is to examine how security aspects of
web applications can be expressed – we need to choose a modeling language that is capable of
representing the architecture of web applications, as well as their requirements and design. We
selected the modeling language UML-based Web Engineering (UWE) [115, 116], as discussed
in section 2.3.2. UWE is flexible due to its views, which are represented as UML models, and
extensible due to UML’s profiling mechanism.

Technically, UWE is a UML profile, which contains a set of stereotypes, tag definitions and
patterns for modeling web applications with UML. Stereotypes can be added to a certain type
of UML elements and they are displayed as ≪stereotypeName≫ or as icon. Stereotype can have
typed tags. If an element is stereotyped, concrete values for tags of this stereotype can be set,
which is denoted by a set of {tag=value} entries. UWE’s UML profile can be downloaded from
the UWE website [224]. Excerpts of the UWE profile are depicted in appendix C. Note that
UWE allows to model the web application itself. Thus, is not designed to model client-specific
security measures, as e.g., up-to-date browsers that users should have installed.

This chapter briefly introduces our case studies and main UWE models, before discussing
how security modeling can be integrated into UWE, i.e., be expressed with the Unified Modeling
Language.

5.1 Overview of Case Studies
Having a number of case studies was helpful for developing and evaluating our modeling approach.
In this chapter, we briefly introduce our case studies and emphasize interesting requirements that
are revisited and modeled in the remainder of this thesis. All UWE models of our case studies
can be found on the UWE website [224].

In the area of SmartGrid, we modeled three scenarios: (1) the Energy Management System
(EMS), which is an appliance that manages energy in a household. We published this case
study and its detailed security requirements in [44] and an extended description can be found in
appendix D. (2) An application that sells normal and special offers, which we published in [20]
and (3) a SmartGrid Bonus application that can show a bonus code after an offer is bought,
which we published in [47]. The Energy Management System (EMS) [64] as well as a patient

76 5. Modeling Secure Web Applications

monitoring system [63]1 were modeled in the scope of the EU project NESSoS. Both are based on
requirements from Siemens. In addition, a model from a Hospital Information System2 that was
created during the author’s master’s thesis [37] was reused as a case study for artifact generation
(cf. chapter 6). Besides, Fritsch [87], a master student supervised by the author, modeled the
open-source web application ownCloud [157]3. The following brief descriptions and figures are
adapted from the aforementioned publications.

5.1.1 SmartGrid
The SmartGrid case study is split into three projects: an Energy Management System (EMS),
an application that sells normal and special offers and a SmartGrid Bonus application that can
show a bonus code after an offer is bought.

Energy Management System (EMS). The EMS is an interface for the SmartGrid cus-
tomer that displays consumption data. Concrete instantiations can be realized by a web appli-
cation that provides functionality for energy trading or for regulating the current drain. Ideally,
most appliances, as e.g., ovens, dishwashers, washing machines or lamps are so-called Smart
Appliances (SAs), which means they contain a small embedded-system that receives control com-
mands from the EMS and that informs the EMS about the current status. Additionally, SAs can
be controlled by pushing a button or by using an integrated touch screen.

For a household, exactly one EMS and one Smart Meter are installed locally, in a place where
they are protected from physical tampering. The Smart Meter is responsible for monitoring the
amount of energy that is sold or bought. As the EMS is connected to the web, remote access to
its web application allows users to interact with the EMS and to monitor energy consumption
from outside their homes.

Requirements for the web application of the EMS are that a user can buy or sell energy,
control local energy consumption by configuring SAs, install plugins to automate tasks or manage
other users. Configuring an SA over the EMS could, e.g., mean to limit the allowed usage time
of a SmartTV by children. Our focus in this case study is primarily on security mechanisms,
like authentication, panic mode, reauthentication, secure connections, authorization, user zone
concept, cross-site-request-forgery prevention, under attack mode and SQL-injection prevention.
An extended description of our EMS case study and its UWE models can be found in appendix D.

SmartGrid Offers. Requirements for the SmartGrid Offers application are that offers can be
bought from a list of offers, which is generated individually for each user. Offers are connected to
energy transactions, i.e. an amount of energy that is provided. Two types of offers exist: normal
offers and special offers. Special offers are promoted, which means they are advertised at the
beginning of the list of offers. Special offers can only be created by commercial users that provide
a great quantity of energy, as owners of power stations do. Normal offers can be submitted by
commercial users as well as by private households, which e.g., want to sell surplus energy from
their solar panels. We assume that a concrete user can play one or both roles (private user or
commercial user) at the same time. The focus in this scenario is on access control.
1Patient Monitoring case study. http://uwe.pst.ifi.lmu.de/examplePatientMonitoring.html
2HospInfo. A secure hospital information system. http://uwe.pst.ifi.lmu.de/exampleHospInfo.html
3OwnCloud case study. http://uwe.pst.ifi.lmu.de/exampleownCloud.html

http://uwe.pst.ifi.lmu.de/examplePatientMonitoring.html
http://uwe.pst.ifi.lmu.de/exampleHospInfo.html
http://uwe.pst.ifi.lmu.de/exampleownCloud.html

5.1 Overview of Case Studies 77

SmartGrid Bonus. Basically, our SmartGrid Bonus application represents a prototype of
an energy offer management including optional bonus handling. It provides two different user
roles namely providers and customers: Providers manage and sell energy packages including
optional bonus programs for customers. Customers have the possibility to buy offered energy
packages. Therefore, our application lists all available energy offers and the customer selects a
specific offer which includes a bonus code. After buying an energy package, the application shows
the corresponding bonus code which contains a gift voucher, e.g., for online shops. Finally, the
customer gets a confirmation for the ordered energy. In this scenario, we focus on the sequence of
events, which corresponds to navigation possibilities in the web applications that are dynamically
locked or unlocked.

5.1.2 Patient Monitoring
Patient monitoring aims to collect health-related data independently of the patient’s location.
This helps not only to sample data under every-day conditions, at work or at home, but also
gives control to the patients, because they can get immediate feedback in critical situations. For
instance, a wrist watch with a wearable sensor (referred to as “wearable” or simply as “(mobile)
device”) can measure vital signs as blood pressure or heart rate and physicians can add context-
related advices and alarms to guide their patients.

In an associated web application, both, physicians and patients can configure uncritical alerts,
as e.g., a ring tone for taking a medicine. Only physicians can configure critical alerts and
asking patients for consent (e.g., ask if their data from the wearable can be used for scientific
studies). When giving a wearable to a patient, ensuring correct authorization is very important,
as otherwise data of one patient might show up in the health records of another patient, someone
might eavesdrop the monitored data or manipulate the wearable in a way that critical alarms are
not shown.

A bootstrap procedure binds a public key and an eHealth system to the wearable. Afterwards,
we assume it knows the IP address (or web address) of the eHealth back-end server, and the server
knows the public key of the mobile device. For assigning a wearable to a patient, two methods
are available: a main variant in which patients authenticate themselves in the web application
and enter the ID of their device, wait until they receive a nonce both on their browser and on
their wearable, and press ok in the web application and on the wearable. A second variant is
using OAuth4. This case study focuses on early design activities regarding access control and
navigation within the web application that is used by patients and physicians.

5.1.3 Hospital Information System
The case study is a prototype of a web-based Hospital Information System, called HospInfo, which
manages patients, wards and users that can play several roles. Stored data is, e.g., a patient’s
name, birth year, gender, address and blood type. The roles identified for this web application
are: visitor, registered user, nurse, receptionist, physician, and admin. Its main requirements are:

∙ staff members should be able to register

∙ an administrator can set roles to staff members
4OAuth 2.0 http://oauth.net/2/

http://oauth.net/2/

78 5. Modeling Secure Web Applications

∙ physicians need the permission to create new patient records or change information of
patients

∙ nursing staff should be able to read the health records of the patients

∙ receptionists can read and update all information with exception of health related data,
while only physicians can update the latter ones

As HospInfo was our first UWE case study with a focus on security, it was used to elicit basic
security modeling requirements that could not be directly expressed with UWE before.

5.1.4 OwnCloud
OwnCloud is an open-source software that is designed to permit end users to run their own file
hosting services. It consists of the ownCloud Server (OCS), which is the file hosting server residing
on a network-accessible host, and clients for a number of different platforms, both mobile and
desktop. The server, at its core, can be considered an alternative to the popular file hosting service
Dropbox5: it allows users to store, download and upload files to and from a server. However, its
functionality can be expanded by installing additional applications, e.g., a calender, task manager
or an address book.

The back-end is written in PHP and uses a SQL database to store internal data. The core
logic of the ownCloud server is written by ownCloud developers, but common functionalities like
routing, dependency injection, database abstraction, etc, are handled by existing frameworks
like Symfony6 and Zend7. The web-accessible front-end is written in HTML and JavaScript and
makes use of the jQuery framework8 and a number of plugins that rely on jQuery.

It is worth mentioning that due to its modular and extensible nature, we focused on modeling
its core functionalities, trying to depict what a typical instance could look like. At the beginning of
the source code analysis the most recent version of ownCloud Server was 7.0.4. The main purpose
of this case study was to validate that all security features of an advanced web application can
be modeled with UWE, which was the case, although it became obvious that UML modeling in
general reaches its limits when highly dynamic processes are involved at runtime.

5.2 UWE Models
This section briefly presents the modeling language UML-based Web Engineering (UWE). The
main characteristics of UWE are the different views that are represented as UML models and the
use of a set of stereotypes and tags, which define UWE’s model elements in its UML profile.

There are mainly two different aims that could be pursued by modeling software: modeling
for code generation and modeling for structuring, discussing and documenting thoughts about
requirements or software architecture/design. In the first case, models have to be as detailed as
code, which can lead to very large and complex models. Advantages are that model checking
5Dropbox. http://dropbox.com/
6Symfony. https://symfony.com/
7Zend. http://framework.zend.com/
8jQuery. https://jquery.com/

http://dropbox.com/
https://symfony.com/
http://framework.zend.com/
https://jquery.com/

5.2 UWE Models 79

Files

extension points

delete

download

move

share

ShowAllUserFiles

DeleteFile

DownloadFile

ShareFile

MoveFile

CreateFile

UploadFile
RegisteredVisitor

«extend»

«extend»

«extend»

«extend»

Figure 5.1: Example: Requirements (OwnCloud File Management)

might be easier than code analysis and that it might be better to generate code if the target
language often requires detailed, but recurring instructions, as e.g., for memory management.
In the second case, generating code often takes a backseat, in favor of a rather high level of
abstraction. In this case, code can only be generated from more elaborated modeling parts or
by using semi-automatic code generation, i.e., further information has to be provided during or
after the generation process.

In our work, we mainly pursue the second goal and at the same time select (mainly security-
related) aspects that are modeled in further detail, as e.g., access control. We recommend this
process especially for web applications, as they tend to change a lot due to new technologies.

In the following, the UWE Requirements model, Content model, the Role model and the Basic
Rights model, Navigation model, the Presentation model, and the Application States model
are presented. Models can use different UML diagram types. UWE mainly employs use case
diagrams, class diagrams and state charts. However, any other UML diagram type can be used
additionally. For example, activity diagrams can be used for process modeling. They even
were enriched by UWE stereotypes, e.g., in [119], but they are not in the focus of this thesis.
However, we agree with OpenSAMM, which suggests developing “data-flow diagrams for sensitive
resources” [52, p. 61], as for other resources the overhead is often too high.

It turned out to be useful to create a UML model for every kind of model in UWE. A model
can contain several UML elements, as e.g., UML classes, associations or diagrams similar to a
folder in an operating system. Models can have arbitrary names, which makes it difficult for
algorithms to recognize the type of a model. That is why we introduced stereotypes for all UWE
models, similar to the UML stereotype ≪useCaseModel≫ (which we use for UWE’s Requirements
Model, but ≪requirementsModel≫ is also defined in UWE): ≪contentModel≫, ≪roleModel≫, ≪ba-
sicRightsModel≫, ≪navigationStatesModel≫, ≪presentationModel≫, and ≪appModeModel≫.

5.2.1 Requirements Model
The Requirements model (sometimes also called use case model) defines functionality for an
application and actors that use it at a high level of abstraction. This can be done by using plain
UML use case diagrams, as depicted in figure 5.1, which shows use cases for the OwnCloud File
Management system.

80 5. Modeling Secure Web Applications

PatientMonitoringWebApp

RemoveWearableFromSystem

ShowRecentAdviceLinks

AssignDeviceToPatientStep1

ConfigureUncriticalAlerts

Ack/DenyPatientConsent

ConfigureCriticalAlerts

AddWearableToSystem

AskForSecondOpinion

AskPatientConsent

AssignDeviceStep2

CreateAdvice

OAuthVariant

MainVariant

Physician
Patient

«extend»

«extend»

Figure 5.2: Example: Requirements (Patient Monitoring)

Additionally, UWE enriches UML’s use case diagram with stereotypes, e.g., the ≪webUse-
Case≫ () stereotype that can be applied on UML packages and use cases. Its {guard} tag
allows to define high-level expressions that have to be true in order to be able to perform con-
tained actions. The stereotypes ≪browsing≫ () and ≪processing≫ () are descendants of
≪webUseCase≫. The stereotype ≪browsing≫ can be applied on UML use cases to express that
a use case only contains “browsing” activities, i.e. queries are executed that do not change ap-
plication data. For example, figure 5.2 depicts9 that showing advices from a physician does not
change the application data. The stereotype ≪processing≫ expresses that, more often than not,
application data is created or changed while the use case is processed. UML use cases can be
grouped by packages. We define the shortcut that whenever a UWE stereotype is applicable
to a package-like structure as well as to its containing elements, it only has to be applied to
the package to denote that all compatible containing elements are stereotyped equally. More
about requirements elicitation with UWE (without security concerns) can be found in the work
from Koch and Kozuruba [117]. They, e.g., annotate UML activity diagrams so that common
web-related requirements like periodic data refresh can be expressed.

Regarding security, threats can be modeled by misuse cases according to Sindre and Op-
dahl [198]. Although modeling activities that should not be successful contradicts the idea of
the positive security model – which only defines what should be allowed – they can be helpful to
draw attention to major risks.

5.2.2 Content Model
The Content model contains the data structure used by the application. “Data structure” usually
refers to the structure of important classes in an object-oriented application or to the logical

9Colors in UWE diagrams are just used for grouping similar items or to increase readability

5.2 UWE Models 81

registeredUser
physician
receptionist
nurse
visitor
admin

«enumeration»

Role

name : String
birthYear : Integer
address : String
healthStatus : String

Patient

A
B
AB
0
undef

«enumeration»

Blood

wardA
wardB
wardC
administrative
notInHospital

«enumeration»

Ward

firstName : String
lastName : String
eMail : String
password : String

User

male
female

«enumeration»

Gender

inheritsRightsFrom*

lastEditedBy

gender

blood

ward 1roles * ward 1

Figure 5.3: Example: Content (Hospital Information System)

structure of data in a database and in many times both are closely related. For non-object-
oriented languages, Content classes can represent main modules or code files and their relations
to each other, in case this turns out to be helpful for planning the structure of the application or
for documentation purposes.

Class attributes or classes themselves can represent types of assets, as e.g., data specific to
the individual. E.g., the patient’s health status is an asset that can be managed by an hospital
information system (figure 5.3). The Content model is used to have no UWE stereotypes, which
will be changed in section 5.3 in order to be able to define security properties and used methods
for these assets.

5.2.3 User Model, Role Model and Basic Rights Model
With the Role model, a hierarchy of user groups (roles) can be described. It is part of a User
model (≪userModel≫) that allows modelers to create default users that should exist when an
application is deployed, or to model example scenarios. UWE’s User model defines the stereotype
≪webUser≫, which can be used on a UML class that should stand for the application’s user. In
the Role model, roles can be modeled as instances (or less frequently as descendants) of the class
stereotyped by ≪webUser≫. Anonymous users can be addressed by using a role instance with a
name like anonymous:Role.

The Basic Rights model describes access control policies. It constrains elements from the
Content model by defining the access rights that should be granted to roles (or default users
or other subjects from the Role model). Figure 5.4 depicts an example from our SmartGrid
EMS case study. In the EMS system, a user can update or delete an instance of User, as
long as it is not the current user. This is expressed by a UML comment that is stereotyped by
≪authorizationConstraint≫ and that contains the expression pre: self <> caller. “Self”
refers to an instance of the constrained element, like the User class, whereas “caller” refers to
the instance of the subject that wants to execute an action. “Pre:” can be used to stress that
the expression has to be true before an action is executed. Note that figure 5.4 depicts default
users. General access control rules for roles in the EMS are modeled in figure D.10 in appendix D.

82 5. Modeling Secure Web Applications

buy()
sell()
startAutoMode()
listRecommendations()
getBill(timeFrame)

TradeSystem

defaultChild : User

defaultUser : User

showHistory()
interactWithSA()
autoRegister()

SmartAppliance

roles [*]
policies [*]

«webUser»
User

useSA()
configureSA()

TV

«comment»
pre: currentTime > 08:00 & currentTime < 20:00

«authorizationConstraint»
pre: self <> caller

«executeAll»

«execute»

«executeAll»

«create»

«delete»
«updateAll»

Figure 5.4: Example: Basic Rights (SmartGrid EMS)

Further information about the Basic Rights model and about common identifiers that are used
in UWE models is provided in section 5.3.

5.2.4 Navigation Model
The Navigation model defines the navigation flow of the application as well as navigational access
control policies. The former shows which possibilities of navigation exist in a certain state (usually
from the view of a user10). The latter specifies roles that are allowed to navigate to a specific
state and the action taken in case access is not granted, as described in section 5.3.2. In a web
application such actions can be, e.g., to logout the user and to redirect to the login form or just
to display an error message, as shown in figure 5.6.

Note that the state-based Navigation model replaces the former class-based Navigation model,
therefore the model uses the stereotype ≪navigationStatesModel≫ instead of ≪navigationModel≫.
An advantage of the newer Navigation (State) model is that, due to UML’s state regions, it is
clear which states are parallel, e.g., because two navigational nodes, i.e., parts of web pages that
may change individually, are displayed at the same time. A disadvantage can be that UML state
charts tend to provoke the feeling of a closed world, i.e. the feeling that all possibilities are defined.
For web application’s navigation, this turned out to be rather inconvenient due to the possibilities
of the browser’s back button, direct access via URL or changing application menus due to the
subset of roles assigned to a user. For these purposes, the author defined shortcuts in her master’s
10However, in practice GUI-related state machines can be enriched by important background-tasks that

help to understand the underlying process logic. In this case, transitions can be stereotyped using
≪logicalLink≫ to express that a transition does not represent a navigation possibility. We recommend
using UML activity diagrams or dedicated UML state charts for redefining application logic in further
detail, to avoid overcrowding the navigation view.

5.2 UWE Models 83

Home

Initial State

AVariable url is set

Example with URL

Home

A
Variable url is set

Example with URL

[url=www.host.de/a]

[url=www.host.de/]

function()

function()

Figure 5.5: Navigation shortcut: a url variable holds the current URL, but the shortcut
below abstracts from these details

thesis [37], as e.g., that a state in a ≪navigationStatesModel≫ that is not stereotyped can be seen
as a ≪navigationalNode≫ (). Figure 5.5 depicts a common shortcut for direct access via URL.
The lower version abstracts from URLs.

In addition, some common actions can be highlighted by stereotypes, such as ≪search≫ ()
on UML transitions or ≪collection≫ () on navigational nodes to express that items of the
same kind are presented. For example, in figure 5.6, a collection of offers is presented to
users. The tag {itemType} references the class EnergyOffer from the Content model. Out-
going transitions that are named with an underscore like buyOffer() are a shorthand for
buyOffer(item:ItemType). Further details can be found in [37, p.48].

5.2.5 Presentation Model
UWE’s Presentation model sketches logical building blocks of a web application’s user interface.
Composite structure diagrams can be used to express composition as nested UML classes and
properties. Figure 5.7 shows an excerpt of the SmartGrid Offers Application. On an offer creation
web page, a form with a text field for a value can be submitted by pressing the SubmitOffer
button. A confirmation page offers two links for accepting or canceling the submission of the new
offer.

We prefer using mock-ups, as they are easier to create, closer to the look and feel of the
resulting application and provide up-to-date widgets. During the work on this thesis, UWE
Presentation diagrams were only used for the transformation from UWE to ActionGUI.

5.2.6 Application States Model
We defined an Application States model to distinguish general modes an application can enter
from states, such as those from the Navigation model. States can be related to the application
logic or to organizational purposes, like “running”, “under Denial of Service (DOS) attack” or

84 5. Modeling Secure Web Applications

ShowConfirmation

«collection»
ShowEnergyOffers

{itemType = EnergyOffer}

ShowBonusCode

CustomerHome

BuyEnergy

offerIncludesBonus

«session»
CustomerArea
{roles = customer,
unauthorizedAccess = Error}

LoginViaPasswordForm

«session»
LoginArea

{isHome}

LaunchNewBonusProgram

ProviderHome

«session»
ProviderArea

{roles = provider,
unauthorizedAccess = Error}

logout()entry /

«navigationalNode»
Error

«session»
SmartGridBonusApplication

{transmissionType = "cif"}

ok()

[no]

listOffers()
back()

buyOffer(_)

confirm()

[yes]

ok()

launchBonusProgram()
confirm()

login(...) [role=customer]

login(...) [role=provider]

logout()

logout()

ok()

Figure 5.6: Example: Navigation (SmartGrid Bonus Application)

: SubmitOffer

: ValueInput: Value

: OfferCreation

«presentationPage»

: OfferCreationPage

: Accept

: Cancel

«presentationGroup»

: ConfirmationPage

Figure 5.7: Example: Presentation (SmartGrid Offers Application)

5.3 Security Extensions for UWE 85

UnderAttackDefault

Figure 5.8: Example: Application States (SmartGrid EMS)

various maintenance modes. E.g., in our EMS case study, we used a default mode and an
UnderAttack mode, as depicted in figure 5.8.

5.3 Security Extensions for UWE
This section describes UWE’s model elements for modeling the requirements and the design of
web applications and introduces common identifiers that can be used in string expressions. Note
that the UWE profile contains much more model elements than introduced in this chapter, as we
focus on security-related elements. Further information can be found, e.g., in [115, 116] and on
the UWE website [224].

In the requirements phase (or phases) in the development process, the main task of software
engineers is to analyze the whole scenario, as depicted in section 5.3. They elicit user’s needs
and have to find out which assets are influenced or managed by the software. Risk rating helps
to discover security properties that should apply while the software is working with these assets.
Unfortunately, some vulnerabilities result from errors so commonly made that these vulnerabilities
tend to be in many applications that are not thoroughly overseen regarding security during
development [161].

Modeling threats and thinking about the motive and ability of potential attackers can be
simplified for applications that are online, as attacking common vulnerabilities can be automated
to a large degree. Many attackers are not even interested in the kind of application they attack
or the kind of data they could steal, but automatically scan for common vulnerabilities 24 hours
a day to find, e.g., servers that can be taken over and used for criminal purposes like spamming,
further vulnerability scanning, or (distributed) DOS attacks [92]. With UWE’s security modeling
elements, we focus on modeling assets and their security properties (cf. figure 4.2) together with

Software

ThreatThreat

AssetAsset
SecurityPropertySecurityProperty

VulnerabilityVulnerabilityVulnerability

Threats

analyze
scenario

software engineers

potential attackers

user’s needs

Assets

Security Properties

Vulnerabilities

Figure 5.9: Secure software engineering: requirements

86 5. Modeling Secure Web Applications

Software

software engineers

AssetAssetAssets
SecurityPropertySecurityProperty

VulnerabilityVulnerabilityVulnerabilityMethod

ToolNotation

Method

ToolNotation

Mechanisms

select

e.g., secure

ThreatThreatThreats

potential attackers

user’s needs

Security Properties

VulnerabilitiesMethods

Notations Tools

Figure 5.10: Secure software engineering: design

the web application’s architecture. Concrete assets can be modeled using plain UWE (e.g., using
components or classes in the Content model or states in the Navigation model). Assets can have
security properties (cf. figure 3.3), which we express by using UML stereotypes and tags on the
assets’ UML elements. Therefore, the first subsection of this section is structured by the main
security properties that we presented in SecWAO (cf. chapter 4).

In the design phase (or phases) of the development process, software engineers select mecha-
nisms, i.e., methods, notations and tools. Section 5.3 depicts that mechanisms can “secure” the
software under development, which means that required security properties hold and that the
attack surface is minimized, which leads to fewer exposed vulnerabilities. Note that mechanisms
can be selected and used in all activities of the development process. For example, it is common
that tools that are used for testing are selected during testing activities and not during the design
phase. However, in the design phase many mechanisms are selected that influence not only the
implementation, but also define the context for running applications due to decisions regarding
their configuration and needed environment. As all mechanisms are related to methods, the sec-
ond subsection is structured according to SecWAO’s main methods (cf. figure 4.4). The process
of selection is usually preceded by a kind of evaluation process, which can be structured and
documented using SecEval (cf. part II).

Mechanisms define how a security property, as e.g., confidentiality is realized. For example,
it is not sufficient to demand that data should be kept confidential, but developers have to know
which mechanisms they should employ. Modelers decide, how detailed the documentation with
UWE is, so that supporting confidentiality could mean to model authorization (a Method), but it
could also mean to define that a designated data should only be stored encrypted with a certain
library (a Tool). One might think that software security is not important in the late design
phase, as some vulnerabilities can be avoided by good programming practice and modern web
application frameworks. However, “some of the most damaging web application vulnerabilities “in
the wild” are still as widespread and just as damaging over 10 years after being discovered” [171,
p. 1] and we experienced that our UWE extensions can bring application security more into focus.

Generally, security features are cross-cutting concerns that cannot be separated completely
from a software’s design. If detailed processes are considered, aspect-oriented modeling can
be used for weaving restricting state machines into state machines that describe application

5.3 Security Extensions for UWE 87

workflows, as described by Zhang et al. [230]. Other attempts to model security using aspects are
surveyed by Dehlinger and Subramanian in [67]. Note that for UWE “separation of concerns” does
not refer to considering security separately, but to the different views on the system’s architecture
(cf. section 2.3.2).

We selected the following modeling elements according to SecWAO’s main methods and secu-
rity properties (cf. figure 1.3, lower arrow). To find beneficial modeling solutions, we experimented
with our case studies to find out, which way of modeling is useful in practice. Note that although
we demonstrate how to model requirement and design decisions using UML, most concepts could
similarly be added to other modeling languages, as long as they are as expressive as UML.

For describing UWE’s model elements, we use the following template:

≪stereotype≫ : List of UML Metaclasses it can be applied to (UWE model it is used in)
{a tag that belongs to this stereotype : its type}
{another tag : its type}

In addition, these modeling elements are depicted in relevant excerpts of the UWE profile in
appendix C, grouped by UWE model. For the sake of brevity, we favor small examples in this
section instead of examples from our case studies. These and other examples that explain UWE’s
model elements can also be found in the UWE profile at the UWE website.

5.3.1 Modeling Required Security Properties
In chapter 4, which introduces SecWAO, figure 4.2 depicts the following security properties:
system and data availability, system and control flow integrity, data confidentiality and integrity,
data authenticity and freshness, user identity, user privacy (a vague term that is often related to
anonymity and pseudonymity), non-repudiation, non-interference and data retention. As our goal
with UWE is to be able to express common security properties and system’s requirements at a
rather abstract level, we do not include non-interference. For modeling non-interference in detail
with UML state charts, the interested reader is referred to work from Ochoa et al. [154]. System
integrity is also left out, because aiming at it is self-evident – even for systems that run honey
pots, otherwise their logging functionality might be compromised. In many cases, requirements
tend to be much more abstract than design decisions, which means that models are not only
getting enhanced by design-related elements in section 5.3.2, but are also redefined over time, so
that modeled requirements get replaced or deleted.

System Availability and Data Availability

Both, data availability and system availability are foundations for secure web applications. The
application itself might be programmed accurately, but in case it is not available when needed,
or in case the underlying data is not available, the application is useless.

≪webUseCase≫ () : UseCase, Package (Content model)
{availability:String} importance of availability, availability goals, or planned measurements.

≪storage≫ : Comment (Content model)
{availability:String} maps general data availability requirements to components, packages,

88 5. Modeling Secure Web Applications

classes or attributes. To extend UML comments reduces duplications, as one comment can
be connected to several UML elements, as shown in figure 5.14.

≪component≫ : Component (Content model)
{scalability:String} planned measures to ensure scalability, e.g., through horizontal / ver-
tical scaling.

In later phases of the SDLC, scaling can also be described in detail for a concrete scenario using
UML nodes and node instances and describing their hardware requirements using comments.

Control Flow Integrity

Control flow integrity can be as difficult to grasp as system integrity. However, modeling can
shine a light on valid control flows by making them explicit. For example, navigation-related
control flows determine the paths a user can follow while browsing through a web application.
Originally, UWE aimed at expressing navigation at a high level of abstraction, meaning that
only the most important navigational nodes and navigation possibilities in between are modeled.
However, the Navigation model also allows modeling all navigational paths of a critical part of
an application in detail, such that they can be enforced at runtime. This is explained in further
detail in section 6.5.

To know which part of the navigation is modeled exhaustively, the following tag can be set
to a surrounding navigation state, i.e., a UML state machine or state:

≪navigationalNode≫ () : StateMachine, State (Navigation model)
{enforceNavigationFlow:Boolean} is true if the navigation flow inside of the tagged element
is modeled exhaustively and no other navigation possibilities should be allowed at runtime.
An example is depicted in figure 5.11.

Data Confidentiality and Data Integrity

At the level of first requirements, it might not be clear, which data structure will be used for
storing data. To express the requirements of data confidentiality or data integrity in general, a

LA

LB

LC

«navigationalNode»
L

{enforceNavigationFlow}

Figure 5.11: Enforcing navigation flow: The user cannot leave the predefined navigation
path, i.e., the user cannot navigate to LC without navigating to LB directly before that.

5.3 Security Extensions for UWE 89

«component»
AppPart

{csrfPrevention = SynchronizerTokenPattern,
outputSanitization = "error numbers only"}

-text : String

«file»
DocumentA

{downloadVerification = signature,
isDownloadable}

Figure 5.12: Security in the Content model

first step can be to model a high-level activity diagram with UML object nodes that represent data
in the UWE Requirements model. Another possibility is to model data as classes or attributes in
the Content model. For both cases, data confidentiality or integrity can be modeled by connecting
a comment:

≪storage≫ : Comment (Content model, Requirements model)
{confidentiality:Boolean} is true if the data should be stored and transmitted confidentially.
{integrity:Boolean} is true if the data should be stored and transmitted such that loss of
integrity can be detected.

Modeling techniques for a more detailed view on confidentiality can be found in section 5.3.2,
which covers several methods of authorization. For transmitting files11 and checking their integrity
after a user downloaded them, the following tags can be used:

≪file≫ : Class (Content model)
{downloadVerification:Verification} where predefined entries for the Verification enu-
meration are: hash, transportSecurity or signature (as used in figure 5.12). All these
methods can help to ensure that a file a user downloaded kept its integrity.
{secureTransportOnly:Boolean} True means that confidentiality as well as integrity should
be guaranteed by a protocol that provides transport security, as e.g., TLS.

To express that confidentiality and integrity are required for all data that is transmitted in a
certain situation, the Navigation model can be used, as described in the following section.

Data Authenticity and Data Freshness

When implementing an application, the transmission protocol between servers and clients does
not have to be modeled in detail, as it is just a building block to be used. Nonetheless, it is
necessary to think about required security properties in order to be able to choose an appropriate
protocol.
11A file can be tagged as downloadable ≪file≫ with the tag {isDownloadable:Boolean} or as stream with

{isStream:Boolean}.

90 5. Modeling Secure Web Applications

≪webUseCase≫ () : UseCase, Package (Requirements model)
{transmissionType:String} similar, but usually described at a higher level of abstraction
than the following tag:

≪navigationalNode≫ : StateMachine, State (Navigation model)
{transmissionType:String} describes how data is secured that is transmitted while being
in this navigational node. In the beginning, we used the abbreviation “cif” for confidential-
ity, integrity and freshness, but it turned out, that unabridged terms like “confidentiality,
integrity, data authenticity and freshness” are more useful, as they are unambiguous.

After engineers reach a design decision upon which transmission method should be used,
general requirements can be replaced by an encryption method like
“TLS ECDHE RSA WITH AES 128 GCM SHA256, 128 bit keys, TLS 1.2”.

User Identity

A unique user in UWE is represented as a UML class with the stereotype ≪webUser≫. In UWE,
we focus on users that can play various roles, thus a user can have not only attributes, but also
roles (a default Role class can be used or copied from the UWE profile) and the user and the
role are often also related to classes from the Content model. A ≪webUser≫ can be referred to
as caller when defining access control (cf. section 5.3.2).
≪webUser≫ : Class (Role model)

{verifiedIdentityBy:String} Methods to verify the user’s identity in the first place (related
to registration, cf. paragraph “Authentication and Session Management” in section 5.3.2).
Common methods are depicted in the lower left corner of figure 4.6 in section 4.3.

User Privacy: Pseudonymity and Anonymity

As user privacy is too wide a subject to be modeled in all its facets in UWE, we concentrate on
pseudonymity and anonymity. When creating a web account, several properties can be distin-
guished:
≪webUser≫ : Class (Role model)

{pseudonymity:Boolean} True means that users do not have to use their real names. Relates
to {verifiedIdentityBy}, cf. previous section.
{enforceAnonymity:String} describes requirements users must fulfill regarding the network
they use. An example would be a web service that should only be accessible by TOR12

users.

It is worth mentioning that classes that are stereotyped by ≪webUser≫ can have attributes
for a name or a pseudonym or other user-related data. However, omitting user attributes in a
web application does not mean that no user-related data is collected. E.g., IP addresses can
often be found in web servers’ logfiles. It is worthwhile noting that it has to be decided towards
whom anonymity or pseudonymity should hold, which goes hand in hand with user-defined access
control (cf. section 5.3.2).
12TOR. https://www.torproject.org/

https://www.torproject.org/

5.3 Security Extensions for UWE 91

Non-Repudiation

A basic requirement for implementing non-repudiation is having a trusted third party. It can
be modeled as a UML node in a deployment diagram using the UWE stereotype ≪trustedThird-
Party≫. To use the feature of non-repudiation for an operation execution or for attribute access,
the following tag can be used on dependencies that connect roles to elements like classes, at-
tributes or operations from the Content model, as shown in figure 5.13:

≪accessType≫ : Dependency (Basic Rights model)
{nonRepudiation:trustedThirdParty} A ≪trustedThirdParty≫ node can be referenced. A
request should only be processed any further, if the trusted third party has logged it.

Note that in this context non-repudiation does not apply to messages, but to the concept of
access. For its implementation, logging failures and successes by the trusted third party after the
process can be advisable to be sure that access had been granted. For operations in UWE we
model this directly on operations with the following stereotype:

≪non-repudiation≫ : Operation (Content model)
{trustedThirdParty:trustedThirdParty} A ≪trustedThirdParty≫ node can be referenced.
As documenting successful execution is a complex task, we assume that operations are
used, which means that e.g., for logging successful access to attributes getters or setters
have to be introduced.

Data Retention

Data retention defines which information is stored and how long it will be kept.

≪storage≫ : Comment (Content model, Requirements model)
{retention:String} defines the time span data should be kept. It is advisable to point to
an external documentation that includes all cases, as e.g., data retention in the case that
users request to delete their accounts.

from a content model from a role model

«non-repudiation»+methA()
+methB()

B

«trustedThirdParty»

My3rdParty
roleX : Role+methA()

+methB()

A

documents successful execution

documents access attempt

«execute»

{nonReupdiation = My3rdParty}

Figure 5.13: Non-Repudiation: Executing methA is allowed for roleX and the attempt
is documented by the trusted third party My3rdParty. (The stereotype ≪execute≫ is a
descendant of ≪accessType≫, cf. “Authorization” in section 5.3.2).

92 5. Modeling Secure Web Applications

«webUser»

User

ElementA

«storage»

{backupStrategy = "included in daily incremental backup",
retention = "stored until user deletes account"}

Figure 5.14: Data retention: the comment applies to user data and data of ElementA

{backupStrategy:String} Having a backup strategy is not only important in case of data
loss, but also interacts with the retention strategy, as in some cases, laws like the Bundes-
datenschutzgesetz13 can make it necessary to delete or block the access to all occurrences
of personal data.

5.3.2 Modeling Applied Mechanisms
Figure 4.4 from chapter 4 depicts the following methods: authentication, session management,
authorization, data validation, error handling, logging, system configuration and cryptography.
In this section, we describe how to document selected methods together with the application’s
design using UWE.

Authentication and Session Management

In her master’s thesis [37], the author modeled patterns for common authentication scenarios,
such as registration for an account, login and credential recovery processes. We added a pattern
for listing remote sessions that allows users to invalidate their sessions and several patterns to
model how a user can be verified, as shown in figure 4.6 in section 4.3. Additional to remote session
invalidation, another method preventing the takeover of active sessions is CSRF prevention (cf.
figure 5.12):

≪component≫ : Component (Content model) and
≪session≫ () : StateMachine, State (Navigation model)

{csrfPrevention:CSRFprevention} where CSRFprevention is an enumeration that lists
common strategies for CSRF prevention, as depicted in figure 4.6. We hope that tags
like this quickly become obsolete, because modern web frameworks take care of CSRF per
default.

A session can be modeled in detail using the stereotype ≪session≫ ():

≪session≫ (descendant of ≪navigationalNode≫) : StateMachine, State (Navigation model)
{sessionData:sessionClass}, where sessionClass can be modeled in the Content model
to show which session-related information is held.
{reauth:Boolean} True requires a user to re-authenticate when entering this state.
{reauthIf:String} re-authenticates a user when entering this state, but only, if the given
expression does evaluate to true. For example, re-authentication should only be required,
if the previous authentication process is longer ago than 15 minutes.

13Bundesdatenschutzgesetz. http://dejure.org/gesetze/BDSG

http://dejure.org/gesetze/BDSG

5.3 Security Extensions for UWE 93

{newSessionID:Boolean} True means that a new session identifier is used. Note that session
states that are nested in other session states do not start a new session by default, unless
the state of authorization changes from unauthorized to authorized (which is necessary to
avoid session fixation attacks).

The login and logout process can be indicated in the Navigation model by labeling transitions.
We suggest using login(), logout() and after(time span)/logout, which is used as an
equivalent for idle(time span)/logout.

Authorization

In the following, we cover general authorization issues, access control rules for content elements
(i.e., classes, attributes and methods), and rules for navigational nodes (cf. figure 4.7).

General Authorization. The following two tags may serve as a reminder for complete me-
diation14, i.e., the principle that access control rights have to be checked for each access.
≪component≫ : Component (Content model)

{objectRefManager:String} decides for a central component or library with the aim to
avoid insecure direct object references [161], i.e., direct access to data while bypassing the
authorization system.
{accessControlEnforcementSystem:String} generally states which access control system is
used. Examples are tools like Spring [91], or DRM enforcement systems.

The tags {confidentiality} and {integrity} of the ≪store≫ stereotype introduced in the para-
graph “Data Confidentiality and Data Integrity” in section 5.3.1 can be defined in further detail:

≪storage≫ : Comment (Content model, Requirements model)
{confidentialityStrategy:String} The strategy can be, e.g., access via an access management
system or the deployment of encryption. It usually elaborates on the general information
given in {accessControlEnforcementSystem} of ≪component≫.
{encryption:Boolean} is true if targeted data may only be stored and transmitted in an
encrypted way.
{integrityStrategy:String} describes the strategy for integrity more precisely.

For files, an arbitrary number of Digital Rights Management (DRM) actions can be allowed:
≪file≫ : Class (Content model)

{drm:DRM} where literals of the DRM enumeration include the following actions for digital
rights management: view, delete, copy, share, print, save and extractContents.

Access Control Rules for Content Elements. The main stereotype for defining access
control rules for elements from the Content model is the ≪accessType≫ stereotype, which serves
as an ancestor for allowed actions. The stereotyped dependency is designed to connect a source
(usually a role instance) with a target (usually a class, attribute or method).
14Complete Mediation.

https://buildsecurityin.us-cert.gov/articles/knowledge/principles/complete-mediation

https://buildsecurityin.us-cert.gov/articles/knowledge/principles/complete-mediation

94 5. Modeling Secure Web Applications

roleX : Role-attribA
-attribB

A
«readAll»

{accessibleInAppModes = Normal}

Figure 5.15: Restricting access to application modes: here to a mode called “Normal”

≪accessType≫ : Dependency (Basic Rights model)
{accessibleInAppModes:appMode} References application modes, in which access to the
target is allowed, as depicted in figure 5.15.
{notAccessibleInAppModes:appMode} References application modes, in which access to
the target is not15 allowed.

Common descendants of ≪actionType≫ describe actions on the following targets:

attributes: ≪read≫, ≪update≫

methods: ≪execute≫

classes: ≪delete≫, ≪create≫ and ≪readAll≫, ≪updateAll≫, ≪executeAll≫. Stereotypes ending
with “All” refer to all attributes or methods of a class, except those that are specified using
a tag called {except}15.

Access can be defined in more detail using UML comments with the UWE stereotype ≪au-
thorizationConstraint≫.

Usually, defined actions are “or” actions, which means that if two roles are allowed to, e.g.,
execute a particular method, they can do so independently. However, there are situations, where
more than one user should be needed to perform an action. This concept is called separation of
duties16 or many-eyes principle. In UWE, we model that a role can demand to execute an action
using the stereotype ≪separationOfDuties≫:

≪separationOfDuties≫ (descendant of ≪authorizationConstraint≫) : Comment
(Basic Rights model)
{timeFrame:String} The final execution of an action is deferred until eligible users have
requested it within the given time frame. The time frame starts with the first request and
ends with the successful access or the elapse of the given time.
{roles:String} The stereotype ≪separationOfDuties≫ can define eligible users in two ways,
as depicted in figure 5.16:

∙ If the {roles} tag is not set, the stereotyped UML comment can be connected to two
or more dependencies with ≪actionType≫ stereotypes. This means that all connected
actions have to be requested at least once for the action to be executed. Note that
the requested ≪actionType≫ stereotype has to be in the set of stereotypes of each
connected dependency.

15 Use with care, as it contradicts a positive security model, which defines allowed actions instead of
defining exclusions.

16Wikipedia: Separation of Duties. https://en.wikipedia.org/wiki/Separation of duties

https://en.wikipedia.org/wiki/Separation_of_duties

5.3 Security Extensions for UWE 95

-attribA
-attribB

+methA()
+methB()

A

-attribA
-attribB

+methA()
+methB()

A roleY : Role

roleX : Role

«separationOfDuties»

{roles = "1, roleX", "1, roleY",
timeFrame = "4h"}

«separationOfDuties»

{timeFrame = "4 h"}

«execute»

«execute»

Figure 5.16: Separation of duties: In both modeling alternatives, the function methA()
is executed, if two users playing roleX and a user playing roleY both demand its execution
within four hours

∙ If the {roles} tag is set, the stereotyped UML comment has to be connected directly
to the target that should be accessed. A flexible way of adding eligible users is to use
a list with entries formatted like “number of unique users, role name”, which means
that a number of unique users from a certain role has to request the action. If no
number is given, it is assumed to be 1.

For the sake of consistency with SecWAO (figure 4.7), we also created a stereotype with tags
for the following data processing actions:
≪dataProcessing≫ (descendant of ≪accessType≫) : Dependency (Basic Rights model)

{aggregating}, {analyzing}, {classifying}, {summarizing}, {reporting}, {validating} and
{sorting} Although we do not use them in our case studies, they might be useful as shortcuts
for distinct methods within a software project with a focus on data processing.

Many web applications allow their users to co-determine access rights for other users on parts
of their data. To clarify on which data the access can be user-defined and to set granularity and
to specify default actions, the following tags can be used. Note that the source of the dependency
can be arbitrary, in case it represents a user-defined group of users or roles.

≪userDefined≫ (descendant of ≪accessType≫) : Dependency (Basic Rights model)
{selectionRange:Enumeration} references an enumeration whose literals represent actions
that can be selected by users to grant access to the target, as shown in figure 5.17.
{defaultSelection:EnumerationLiteral} specifies a default selection in case the user does not
personalize anything. The literal has to be part of the enumeration that is referenced by
{selectionRange}.

Access Control Rules for Navigational Nodes. Theoretically, it would be possible to
model access to data during data transmissions or access to navigational nodes in the Basic Rights
model. In practice, it turned out to be useful to model both mainly in the Navigation model,
although this does not mean that data has to be transmitted over the internet for each state
change that occurs in the navigation.

96 5. Modeling Secure Web Applications

navigationalNode : StateMachine, State (Navigation model)
{accessibleInAppModes:appMode} references application modes, in which access to this
state should be allowed.
{notAccessibleInAppModes:appMode} References application modes, in which access to
this state should not be allowed.
{accessPrecondition:String} Access is only granted, if the given expression evaluates to true.
In previous versions this tag was called “rolesExpression”, as precondition often depended
on roles a user plays.

As the most common case for access control is to grant access according to a certain role a
user plays, the following tag was introduced in [37] as a shortcut for (user.roles→includes(𝑟1) |
. . . | user.roles→includes(𝑟𝑛)), where 𝑟1, ... , 𝑟𝑛 are a list of role names for which access should
be allowed.

≪session≫ (descendant of ≪navigationalNode≫) : StateMachine, State (Navigation model)
{roles:InstanceSpecification} To access a node, the users must have at least one role in
their assigned roles that also exists in the set of the {roles} tag. An example is shown in
figure 5.6.

In the paragraph “Error Handling”, we introduce tags for pointing to an error state that gets
activated in case access is denied on a navigational node.

Data Validation

Many common vulnerabilities in web applications are related to insufficient data validation, as
e.g., SQL injection, Cross-Site Scripting (XSS) or information disclosure via error messages or
forged logfile entries.

≪component≫ : Component (Content model)
{inputValidation:String} states how untrusted input should be treated in this component.
{inputValidationType:InputValidationType} where InputValidationType contains the
enumeration literals “blacklisting” and “whitelisting” to describe the general method that
should be used, e.g., especially to raise the awareness for locations where blacklisting is
used and thus has to be maintained.
{outputSanitization:String} describes how output should be sanitized, which may include
guidelines for logfile entries and error messages. The simple example in figure 5.12 states

userDefinedGroup : Role
readAll
noAccess

«enumeration»

UserAccessActions
-attribA
-attribB

A
«userDefined»

{defaultSelection = readAll,
selectionRange = UserAccessActions}

Figure 5.17: User-defined access control: The default right for a user-defined group is to
read all attributes of class A. Users can change this and grant “noAccess” instead.

5.3 Security Extensions for UWE 97

that only error numbers should be shown, which can have a severe impact of usability, but
may be useful for critical core components.

{sqlInjPrevention:SQLinjectionPrevention} where SQLinjectionPrevention is one of
the common three countermeasures to SQL injection, as already depicted in SecWAO, at
the bottom of figure 4.5 in section 4.3.

{injectionPrevention:String} documents other countermeasures for injection attacks.

{xssPrevention:XSSprevention} where XSSprevention is a selection of methods we al-
ready introduced in section 4.1.

Unfortunately, UML does not allow to specify that both enumeration values and as strings
are allowed as value types. Thus, we decided that it is more important for us to be able to select
predefined items from an enumeration than to enter free text. Free text (e.g., for specifying a
library that should be employed) can be added additionally by using a UML comment.

Error Handling

Handling errors is a task that is immanent to software development. Errors can range from
hardware failures over software failures, successful attacks, up to error cases in the application
logic. The Application States model can be helpful to structures general modes an application
can be brought into and to define actions that should be taken in certain states and conditions
that lead to transitions. Regarding user navigation, typical error cases result from access requests
while having insufficient permissions:

navigationalNode : StateMachine, State (Navigation model)
{unauthorizedAccess:navigationalNode} the navigation state that should be navigated to
in case access to the current state is prohibited.

In case the target state is shown nearby in the same diagram, a transition stereotyped
unauthorizedAccess can be used instead, as shown in figure 5.18.

Logging

Writing logfile entries is often associated with application logic, application state changes or
reporting errors. For general purposes, we introduce the stereotype ≪logged≫ on UML comments.
For logging actions, the tag {logged} can be set to true.

E

«navigationalNode»

Z

{unauthorizedAccess = ErrorNode}

«navigationalNode»

ErrorNode

«unauthorizedAccess»

Figure 5.18: Unauthorized access: In case unauthorized access to navigational nodes E or
Z occurs, the application should navigate to ErrorNode.

98 5. Modeling Secure Web Applications

roleX : Role
-attribA
-attribB

A

«read»

{logged}

Figure 5.19: Logged access: access attempts are logged

≪accessType≫ : Dependency (Basic Rights model)
{logged:Boolean} is true if a log entry should be written for each access attempt, no matter
if successful or not (cf. figure 5.19). Note that this does not guarantee non-repudiation, as
for non-repudiation, an infrastructure with a trusted third party is needed, cf. paragraph
Non-Repudiation in section 5.3.1.

System Configuration and Cryptography

It is not always easy to distinguish decisions in the requirements and design phases that will
affect the code itself from those that will have effects on the application or system configuration.
Common locations for hints regarding the system and web server configuration can be found
in availability or scalability tag descriptions (cf. section 5.3.1) and in the {transmissionType}
description of navigational nodes. Additionally, a strategy for software updates can be set:

≪component≫ : Component (Content model)
{updatePolicy:String} refers to a policy describing how the component is going to be up-
dated.

UWE does not aim at modeling cryptographic algorithms. However, UWE can model cryp-
tographic methods that should be deployed, e.g., for data transmission (cf. paragraph “Data
Authenticity and Data Freshness” in section 5.3.1), or for encrypting files (cf. section 5.3.2).

5.3.3 Identifiers in UWE
Although expressions in UML can be written in OCL, OCL was poorly received in practice and it
has its limitations regarding real-world scenarios, as it mostly requires a closed-world assumption,
which means that every detail needs to modeled. For web applications, modeling every detail in
UWE in many cases is an absurd waste of time, especially as the main advantages of UWE models
for web applications turned out to lie in their clarity and comprehensibility that can be achieved
by abstraction. Thus, in order to be useful, expressions have to be quickly understandable by
humans, although best practices regarding common identifiers can help both, the humans and
algorithms that parse UML diagrams. While modeling with UWE, the following identifiers turned
out to be useful:

caller or user. Current instance of a content class that is stereotyped by ≪webUser≫, which is
navigating through the web application.

role. Shortcut for, e.g., user.roles→includes(r) – or similar, according to the structure of user or
role classes, which can then be used as role=r in guards or other expressions.

5.4 Summary and Related Work 99

self or this (in the Basic Rights model). Refers to the target element, i.e., to the element
the expression constrains access to.

url. A variable that contains the current URL the browser navigated to.

request.region. Geographical location of the region a request comes from (although it can easily
be changed by proxies).

time or currentTime. Current server time.

date or currentDate. Current server date.

pwd.type. Can be “normal” or “panic”. Panic refers to panic mode, where a user is threatened
to use the application and enters a predefined password for a panic mode. Note that “pwd”
can be seen as an abbreviation for a User class containing a UML role name called “pwd”
that refers to a class that manages password metadata.

appModes.currModes. The current modes the application is in. Note that this does refer to
general application modes from the Application States model, not to modes like the panic
mode, which is individually be entered by a user.

appModes.StateName. StateName refers to an existing state, called “StateName” in the
Application States model.

element.timesOfAccessWithin(timeSpan). Number of times the element was accessed dur-
ing the given time span.

5.4 Summary and Related Work
In this chapter, we presented our modeling approach for secure web applications using several case
studies: SmartGrid EMS, SmartGrid Offers, SmartGrid Bonus, a patient monitoring application,
a hospital information system and ownCloud, which is an open-source web application. Major
UWE models are the Requirements model, Content model, the Role model and the Basic Rights
model, Navigation model, Presentation model, and the Application States model. The expansion
of the UWE profile with security-related model elements and patterns gives an answer to the
first part of RQ3: “How can security aspects of web applications be expressed?”. UWE’s secu-
rity features filled the gap between general security requirements and mechanisms and concrete
requirements and mechanisms relevant for a web application in practice. Thereby, our ontology
SecWAO served us well for structuring UWE’s stereotypes and tags. The full case studies and
the UWE profile can be downloaded from the UWE website [224].

UWE’s security extensions. The UWE profile enables web designers and engineers to
model security properties and mechanisms together with functional issues. This serves as a
means of decision making and documentation.

To the best of our knowledge, we are the first who provide means to systematically model used
security methods and required security properties for web applications. However, modeling appli-
cations and access control rules is not new [199, 33], as we have already discussed in section 2.3.2.
For example, the SecureUML approach [125] is similar to the Basic Rights model, although the

100 5. Modeling Secure Web Applications

latter specifies role-based access control using dependencies instead of association classes. This
avoids the use of method names with an access-related return type. However, UWE’s Basic Rights
models can easily be transformed into a SecureUML representation, as long as no UWE-specific
identifiers are used in authorization constraints. ActionGUI [11] uses SecureUML and although
complete web applications can be described in detail with ActionGUI, most security methods
cannot be expressed in models, but are predefined by the code generator or its target framework,
which severely limits the variety of resulting web applications.

Outlook. It turned out that most UWE modeling concepts can also be used for other types of
software than for web applications alone. For example, mobile applications and desktop applica-
tions can also transmit data over connections that have to be secured, authentication via online
services is common and many applications incorporate web-like navigation structures. In the
end, the differences of web, mobile and desktop applications become increasingly blurred; a trend
which is accelerated by frameworks that allow for developing an application for several architec-
tures, mostly by making use of HTML5. Examples for these frameworks are jQuery Mobile17 or
Apache Cordova18.

17jQuery Mobile. https://jquerymobile.com/
18Apache Cordova. https://cordova.apache.org/

https://jquerymobile.com/
https://cordova.apache.org/

Chapter 6

Artifact Generation

In order to pursue our second objective of RQ3 – which is to examine how resulting security
models can be used in the development process – we present various possibilities to generate
artifacts that can be used in implementation and testing activities. The main idea is to generate
helpful security artifacts from models representing a web application at a rather high level of
abstraction, so that the models can remain small enough for practitioners to be able to diminish
inconsistencies better than in code or other artifacts like configuration files.

Already in a master’s thesis supervised by the author in 2012, Wolf [228] tested how UWE’s
Basic Rights model and Navigation model can be transformed so that the (navigational) access
control rules that are specified can directly be added to an implementation. In that work, we
used frameworks supporting separation of concerns, namely Apache Wicket1 (a Java web appli-
cation framework), Apache Shiro2 (for implementing access control), Hibernate3 (for persisting
application data) and Google Guice4 (for dependency injection). As this test turned out to be
successful, we continued to aim at the generation of artifacts, instead of all-in-one solutions for
generating code, which are rather inflexible and unsuitable for web applications due to the fast
advancement of technologies.

In this chapter, we sketch how UWE can be represented textually and how UWE models
can be transformed into this textual representation. Additionally, we introduce two toolchains
related to access control and have a look at a transformation to the modeling method ActionGUI.
Finally, we demonstrate the enforcement and testing of secure navigation paths. All generation
algorithms presented in this chapter take at least the UML containment tree5 of UWE models as
an input.

1Apache Wicket. http://wicket.apache.org/
2Apache Shiro. http://shiro.apache.org/
3Hibernate. http://hibernate.org/
4Google Guice. https://github.com/google/guice
5The containment tree comprises UML modeling elements and their properties, but provides no information
about the graphical layout of UML diagrams.

http://wicket.apache.org/
http://shiro.apache.org/
http://hibernate.org/
https://github.com/google/guice

102 6. Artifact Generation

6.1 TextualUWE: A Domain-Specific Language
TextualUWE is a textual alternative to the graphical UWE notation, which is easy to read for
humans and to exploit by algorithms. It was created in 2013, with the thought in mind that
UML with its inaccuracies might not be the best choice for modeling security. However, it
turned out that at the high level of abstraction that UWE models are located at, possible model
inconsistencies due to the nature of UML do not play a major role. Nonetheless, we provide some
background, briefly sketch TextualUWE’s structure, validation possibilities and a transformation
from UWE to TextualUWE. This section extends the description we provided in [205] and uses
the SmartGrid Bonus application (cf. section 5.1.1) as an example.

6.1.1 Background
On the one hand, machine-readable modeling languages like XML Metadata Interchange (XMI)
exist. Most times, XMI is used to export models (i.e. the tree of modeling elements and their
properties) in order to analyze them or use them as input for another tool. Unfortunately files
in the XMI format tend to be very complex and long, and thus hard to read.

On the other hand, Domain-Specific Languages (DSLs) and web frameworks are used that
aim at producing executable software, usually providing only a rather low level of abstraction
from technical details. Examples are WebDSL [93], a DSL from which Java web applications
can be generated; Jif (Java + information flow) “a security-typed programming language that
extends Java with support for information flow control and access control”6 and a similar frame-
work for web applications, called Sif [55]); and web security frameworks that claim to be resistant
to common vulnerabilities, as e.g., Lift7 for web applications written in Scala; Shiro8 for Java;
or HDIV9 for Spring, Grails, Struts and JSF. The OWASP project “OWASP Secure Web Ap-
plication Framework Manifesto”10 started to list security requirements for developers of web
application frameworks. Despite efforts to adhere to the principle “secure by default” (cf. Mi-
crosoft SDL [124]), most security methods and tools have to be configured and to be used on
purpose, as security design decisions have to be taken prior to using them, as e.g., not every web
application needs authentication.

6.1.2 Structure
As we started by pursuing the idea of abstract models that are better readable than XMI, but
less technology-dependant than existing web frameworks or DSLs, we decided in favor of a direct
textual equivalent to graphical UWE models and created an internal DSL. “An internal DSL is
a DSL represented within the syntax of a general-purpose language. It is a stylized use of that
language for a domain-specific purpose” [85, ch. 1]. As we want to open the way to expressive
algorithms, we decided to use Scala11, a multi-paradigm programming language that supports
6Jif. http://www.cs.cornell.edu/jif/
7Lift. http://liftweb.net/
8Apache Shiro. https://shiro.apache.org/
9HDIV. http://www.hdiv.org/
10OWASP Secure Web Application Framework Manifesto. https://www.owasp.org/index.php/OWASP

Secure Web Application Framework Manifesto
11Scala. http://scala-lang.org/

http://www.cs.cornell.edu/jif/
http://liftweb.net/
https://shiro.apache.org/
http://www.hdiv.org/
https://www.owasp.org/index.php/OWASP_Secure_Web_Application_Framework_Manifesto
https://www.owasp.org/index.php/OWASP_Secure_Web_Application_Framework_Manifesto
http://scala-lang.org/

6.1 TextualUWE: A Domain-Specific Language 103

object-oriented programming in both functional and imperative style. We restricted our approach
to Scala’s functional style, because of its conciseness. The data structure for our DSL is also plain
Scala so that there is no need for a special DSL editor.

The textual version of UWE is located in two Scala packages: one specifying the DSL and
another one containing functional verification algorithms. Classes, attributes and methods in
UML are translated into Scala classes, values and function definitions. For additional information,
e.g., from UWE stereotypes and tags, we define Scala annotations12. As an example, we detail
how the Navigation model is described by TextualUWE.

As the Navigation model is based on a UML state machine, we have to express state machines,
states and transitions. In addition, stereotypes can be set on states and transitions. States can be
“simple” or “composite”. Composite states contain state machines which are executed in parallel.
The following listing shows an excerpt of our definition:

object NavigationStateMachine {
sealed abstract trait State
case class SimpleState(name: String,

stereotypes: Set[StateStereotype] = Set()) extends State
case class CompositeState(name: String,

regions: Set[StateMachine],
stereotypes: Set[StateStereotype] = Set()) extends State

case class Transition(source: State,
target: State,
leftCStates : Int = 0,
guard: String = "",
stereotypes: Set[TransStereotype] = Set(),
enteredCStates : List[CompositeState] = List())

case class StateMachine(initialState: State, transitions: Set[Transition])
...

}

Transitions connect two states and additionally they record which composite states were
entered and how many composites states were left by this transition (which is denoted by the pa-
rameter leftCStates). This is necessary due to the nesting of state machines within composite
states.

Already in section 5.2 we depicted the Navigation model of our SmartGrid Bonus application
in figure 5.6. The SmartGrid Bonus application was briefly introduced in section 5.1.1: The
application, represents a prototype of an energy offer management including optional bonus
handling. It provides two different user roles namely Provider and Customer : Providers manage
and sell energy packages including optional bonus programs for customers. Customers have the
possibility to buy offered energy packages and to get associated bonus codes. Details of the
customer’s navigation possibilities are omitted at this point, because they do not contribute to
the understanding of TextualUWE.

The textual version of our example is listed in the following.

12Scala Annotations. http://docs.scala-lang.org/tutorials/tour/annotations.html

http://docs.scala-lang.org/tutorials/tour/annotations.html

104 6. Artifact Generation

object NavStateSmartGrid {
val loginViaPF = SimpleState("LoginViaPasswordForm")
val loginArea = CompositeState("LoginArea",

Set(StateMachine(loginViaPF, Set())),
Set(new NavigationalNode(true)))

val customerArea = SimpleState("CustomerArea",
Set(new Session(Set("customer")))) // shortened

val providerHome = SimpleState("ProviderHome")
val launchNewBonusProgram = SimpleState("LaunchNewBonusProgram")
val innerTrans = Set(Transition(providerHome, launchNewBonusProgram),

Transition(launchNewBonusProgram, providerHome))
val providerArea = CompositeState("ProviderArea",

Set(StateMachine(providerHome, innerTrans)),
Set(new Session(Set("provider"))))

val errorState = SimpleState("Error")

val interTrans = Set(
Transition(providerArea, errorState, 0, "unauthorized"),
Transition(customerArea, errorState, 0, "unauthorized"),
Transition(errorState, loginArea),
Transition(providerArea, loginArea),
Transition(customerArea, loginArea),
Transition(loginArea, providerArea, 0, "role = provider"),
Transition(loginArea, customerArea, 0, "role = customer"))

val ts = interTrans ++ innerTrans
val outerState = CompositeState("SmartGridBonusApplication",

Set(StateMachine(loginArea, ts)),
Set(new Session(Set(), "", TThsts)))

val sm = StateMachine(outerState, ts)
}

6.1.3 Validation

Additionally, we worked on algorithms to check security features of TextualUWE models, as e.g.,
which part of the web application can be reached by a user which is associated to a certain role.
Further verifiable features are to find inconsistencies in the model or to check what happens when
navigational nodes are illegally accessed.

For the verification of model features, we use Scala functions. An example is the query which
states can be reached if the user takes on certain roles (or other conditions are met, which have to
be defined separately). The algorithm is simple: each state can be a simple state or a composite
state. For simple states, an inner function makes use of sentry functions to decide whether or
not the state is accessible. Sentry functions can, e.g., test for roles, or they can allow to enter all
transitions and states, which results in a list of all reachable states, regardless of the roles, a user
plays. For complex states, each state machine is examined.

6.2 UWE2FACPL Toolchain: Generating Access Control Policies 105

6.1.4 Transformation from UWE to TextualUWE
A prototypical transformation for converting graphical UWE models into TextualUWE models
was implemented in a bachelor thesis [181] under the supervision of the author. For the transfor-
mation, we used the Acceleo framework13, which is an open-source text generator that implements
a template-based approach for extracting information from input models. Thus, existing UWE
diagrams can automatically be transformed into TextualUWE. In theory, the other way around
is also possible and needs to employ diagram layout algorithms.

6.2 UWE2FACPL Toolchain: Generating Access Con-
trol Policies

The aim of modeling access control rules with the Basic Rights model is to have them enforced
in a piece of software they were defined for. One way of enforcing access control is to use a Policy
Decision Point (PDP), “which evaluates access requests against authorization policies before
issuing access decisions”14. We present the transformation of access control rules from the Basic
Rights model into two kinds of textual policies, namely XACML and FACPL. Thus, a PDP can
use the generated policy for deciding at runtime which requests are permitted or not.

In this section, which is based on joint work with Nora Koch, Massimiliano Masi, Rosario
Pugliese, and Francesco Tiezzi [43], we introduce a model-driven process that transforms access
control policies from the UWE Basic Rights model to XACML. These XACML policies are then
translated into FACPL, a policy language with formal semantics, and the resulting policies are
evaluated by means of a Java-based software tool, as depicted in section 6.2.

In the following, we present background and the two transformations UWE2XACML and
XACML2FACPL, before coming to the evaluation of policies and access requests. As an example,
we use our Hospital Information System case study that has already been introduced briefly in
section 5.1.3. Detailed policies and our tools can be found at the UWE web page [224].

6.2.1 Background
For this toolchain, two tools are used, which we briefly introduced in section 2.3.2: MagicUWE,
which eases modeling UWE in MagicDraw [147] and the Service Development Environments
(SDEs) [193], which is a tool workbench in eclipse [74] that allows executing integrated tools in
a row. Many tools that were used in the NESSoS project are integrated in the SDE. Beyond
others, we added the tools for web vulnerability scanning we compared in section 3.4, namely
Arachni, Nikto, Nessus and Nexpose [122]. Figure 6.6 shows a screenshot of a toolchain in the
SDE. Integrated tools can be downloaded from the NESSoS web page [193].

The XACML Standard

XACML permits decoupling the access control from the application’s flow. In its underlying
access control model, the access to each resource is regulated by one or more policies, i.e. XML
documents express the capabilities and credentials that a requestor must have to access a resource.
13Acceleo. http://www.eclipse.org/acceleo/
14Wikipedia: XACML. https://en.wikipedia.org/wiki/Xacml

http://www.eclipse.org/acceleo/
https://en.wikipedia.org/wiki/Xacml

106 6. Artifact Generation

Modelling access
control with UWE

UWE model

FACPL policy
decision point

FACPL policies

request decision

XACML2FACPL
transformation

XACML policies

FACPL policies

UWE2XACML
transformation

UWE model

XACML policies

Figure 6.1: UWE2FACPL: toolchain

A request to access a resource can be created by, e.g., a remote-access gateway, a web server
or an email user-agent. A XACML access requests is evaluated as follows: The authorization
decision is made by the Policy Decision Point (PDP) by checking the matching between values
of request’s attributes and the corresponding values retrieved from the policies. The decision can
be one among permit, deny, not-applicable and indeterminate: the first two values have an obvious
meaning, while the third means that the PDP does not have any policy that applies to the request
and the fourth means that the PDP is unable to evaluate the request.

Let us now consider the policy language provided by the standard. The basic element of this
language is Policy. A Policy is composed of a Target, which identifies the set of credentials
that the requestor must expose, and some Rules. Every Rule contains the logic for the access
control decision and has an Effect, which can be either Permit or Deny. A Policy also
specifies a combining algorithm that defines what is the final decision for a request when there
are contradictory rule decisions (e.g. both permit and deny results are returned).

The most relevant algorithms are: deny-overrides, if any rule in the considered pol-
icy evaluates to deny, then the result of the policy is deny; permit-overrides, it is like
deny-overrides, but permit takes precedence over the other results.

A Target is made of four sub-elements: Subjects, Actions, Resources, and Environ-
ments. Each category is composed of a set of target elements, each of which contains an attribute
identifier, a value and a matching function. Such information is used to check whether the policy
is applicable to a given request. Specifically, the matching function retrieves a value from the
designed attribute in the request and matches it with the values specified in the target element,
according to the function’s semantics. If, for all four categories, at least a matching of a target
element succeeds, then the policy is applicable to the request.

6.2 UWE2FACPL Toolchain: Generating Access Control Policies 107

Policies ::= {Alg ; target :{ [Targets] } ; Policies}
| ⟨𝐴𝑙𝑔 ; target :{ [Targets] } ; rules :{𝑅𝑢𝑙𝑒𝑠}⟩
| Policies Policies

𝐴𝑙𝑔 ::= deny-overrides | permit-overrides | . . .

Targets ::= MatchId(value,name) | Targets ∨Targets
| Targets ∧ Targets | Targets ⊓ Targets

MatchId ::= string-equal | integer-equal | . . .

𝑅𝑢𝑙𝑒𝑠 ::= (Effect [; target :{Targets}][; condition :{expr}])
| 𝑅𝑢𝑙𝑒𝑠 𝑅𝑢𝑙𝑒𝑠

Effect ::= permit | deny
Table 6.1: FACPL syntax

Besides the Effect, a Rule may specify a Target, which refines the applicability established
by the target of the enclosing policy, and a Condition, i.e., a combination of functions that
operate on values coming from the request. The Effect is propagated to the upper level policy
if the Target of the rule matches and the Condition holds.

Policies can be combined into a PolicySet, which specifies a combining algorithm and a
Target. The latter is evaluated before the targets of the included policies are.

The FACPL Policy Language

The Formal Access Control Policy Language (FACPL) [130] we describe in this section, which
was originally written by the FACPL inventors and coauthors of [43], provides a manageable
alternative syntax to XACML through a BNF-like grammar. FACPL syntax is reported in
table 6.1. As usual, square brackets are used to indicate optional items.

To base an authorization decision on some characteristics of the request, like, e.g., the subject’s
identity or the resource’s identifier, FACPL provides (structured) names, ranged over by name.
They permit to identify specific values (called attribute values) contained in the request. The
language is also equipped with expressions that permit to specify conditions.

FACPL policies can be simple policies of the form ⟨𝐴𝑙𝑔 ; target :{ [𝑇𝑎𝑟𝑔𝑒𝑡𝑠] } ; rules : {𝑅𝑢𝑙𝑒𝑠}⟩
or, recursively, policy sets of the form {Alg ; target :{ [𝑇𝑎𝑟𝑔𝑒𝑡𝑠] } ; Policies}. Both policies and
policy sets specify the algorithm for combining the results of the evaluation of the contained
elements and a target to which the policy/policy set applies.

A target identifies the set of access requests that a rule, a policy or a policy set is intended to
evaluate. Specifically, a target specifies the set of subjects, resources, actions and environments
to which the corresponding rule/policy/policy set applies. In the XML-based syntax of XACML,
the target element may contain four separate elements, one for each of the above categories.

To obtain a more compact notation, FACPL represents a target as an expression built from
match elements, i.e., terms of the form MatchId(value,name), by exploiting an operator for logical
disjunction, ∨, and two operators for logical conjunction, ∧ and ⊓. Each match element spells out
a specific value that the subject/resource/action/environment in the decision request (identified
by the given name) must match, according to the matching function MatchId. A disciplined use
of structured names and the three logical operators permits properly expressing XACML targets.
For further details on this topic, the reader is referred to [130].

108 6. Artifact Generation

A single policy contains a (non-empty) set of rules such as
(Effect [; target :{ 𝑇𝑎𝑟𝑔𝑒𝑡𝑠 }][; condition :{expr}]), each specifying: (i) an effect, which indicates
the rule-writer’s intended consequence of a positive evaluation for the rule (the allowed values
are permit and deny), (ii) a rule target, which refines the applicability established by the target of
the enclosing policy, and (iii) a condition, which is a Boolean expression that may further refine
the applicability of the rule. In a rule, target and condition may be absent.

Regarding works on XACML’s formalization, a largely followed approach is based on “trans-
formational” semantics (see, e.g., [118, 35, 34]). The target formalisms have in their turn their
own semantics. This makes it more difficult to understand the formal meaning of policies with
respect to FACPL formal semantics, which directly associates mathematical objects (i.e., 4-tuples
of request sets) to policies. These concepts are easier and more understandable than terms like,
e.g., description logic expressions. In fact, FACPL semantics has been conveniently exploited to
drive a formal-based XACML implementation. It differs from many XACML implementations
(see, e.g., the OASIS website15), because it enables the development of reasoning tools. Besides,
when policies do not change frequently, the FACPL implementation enables a faster decision
because it does not need to parse the same XML tree at each request, but instead instantiates a
Java object already in the classpath. In more dynamic scenarios, however, the generation of the
PDP may add a constant time to policy evaluation. Finally, the use of a non-XML syntax for
XACML is not new; e.g., a syntax similar to that of FACPL is proposed in [158], while a ‘display’
notation that combines a graphical interface with a natural language like format is introduced
in [207]. However, such approaches do not rely on a formal semantics.

6.2.2 Policy Transformation
In this section, we describe our approach for generating XACML and FACPL policies from UWE
models. As an example, we use our Hospital Information System case study (cf. section 5.1.3).
The SDE is used to connect and execute all tools’ methods that are presented in this section to
a toolchain.

The focus of interest in HospInfo’s Content model, which is depicted in figure 6.2, is on the
Patient class with attributes like name, address, ward or gender. The classes User and Role
(from the UWE User model) are included as well in figure 6.2, for showing the associations to the
Content model elements. The user’s attribute id is added to clarify that identity is equivalent
to having the same identifiers.

Figure 6.3 depicts the Basic Rights model of HospInfo with access specifications for the
classes User and Patient. The rule that administrators cannot change their own user account is
depicted with the OCL [151] authorizationConstraint in the center of the UML diagram. Thereby,
the variable caller stands for the operating user, i.e. the ≪updateAll≫ dependency between
Receptionist and Patient specifies that the updates on all other attributes of Patient
are permitted. Conversely, physicians can update all Patient attributes without any {except}
restrictions.

Figure 6.4 shows a simplified excerpt of the main navigation state diagram for HospInfo.
Basically, HospInfo consists of the two navigation areas depicted in figure 6.4: a visitor area (on
the left) and an internal area (on the right), which is guarded according to the existing roles.

15Available XACML Implementations.
https://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml#other

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#other

6.2 UWE2FACPL Toolchain: Generating Access Control Policies 109

registeredUser
physician
receptionist
nurse
visitor
admin

«enumeration»
Role

name : String
birthYear : Integer
address : String
healthStatus : String

Patient

wardA
wardB
wardC
administrative
notInHospital

«enumeration»
Ward

A
B
AB
0
undef

«enumeration»
Blood

firstName : String
lastName : String
eMail : String
password : String
id : Integer

User

male
female

«enumeration»
Gender

inheritsRightsFrom*

lastEditedBy

ward 1

gender

blood

ward 1roles *

Figure 6.2: HospInfo Content model

registeredUser : Role

name : String
birthYear : Integer
address : String
healthStatus : String
lastEditedBy : User
gender : Gender
blood : Blood
ward : Ward [1]

Patient

eMail : String
firstName : String
id : Integer
lastName : String
password : String
roles : Role [*]
ward : Ward [1]

User

admin : Role

nurse : Role

receptionist :
Role

visitor : Role

physician : Role

«authorizationConstraint»
pre: caller.id == self.id

«authorizationConstraint»
pre: caller.id <> self.id

«readAll»

«updateAll»
{except = healthStatus, blood}

«delete»
«create»
«readAll»

«updateAll»

«create»

«updateAll»
{except = roles, ward, id}

«update»

«update»

Figure 6.3: HospInfo Basic Rights model

110 6. Artifact Generation

«session»
: RegisteredVisitorArea

{navigationMenu = RegisteredVisitor,
roles = registeredUser}

«session»
: NurseArea

{navigationMenu = Nurse,
roles = nurse}

«session»
MultipleRolesArea

{unauthorizedAccess = AccessDenied}

LoginViaPasswordFormdo /

Login success

AccessDeniedExternal

ShowHome

«session»
HospInfoVisitorNode

{isHome,
navigationMenu = Visitor,
roles = visitor}

«navigationalNode»
AccessDenied

«session»
HospInfo

{transmissionType = "cif"}

idle(30min) / logout()

home()

logout()

login()

Figure 6.4: HospInfo navigation states (excerpt)

UWE to XACML

Technically, we extend MagicUWE to export XACML policies from UWE models. After trans-
forming our HospInfo example to XACML policies, the length of the resulting XACML file exceeds
several hundred lines. Thus, we sketch the rough structure of the file below.

PolicySet . root element, permit-overrides
PolicySet for each role

Target role and all sub-roles
Policy for each pair of role and target

Target constrained element
Rule permission for each action

Resources e.g. attributes of a class
Actions permitted action
Condition transformed constraint

Policy . deny all

Intuitively, the transformation generates a PolicySet for each role, each of which con-
tains one Policy for any class connected to the considered role (e.g. both PolicySet for
Receptionist and Physician includes one policy for the content class Patient). Further-
more, a single Policy is used to deny access to all resources not specified in the PolicySet,
which is the default behavior of UWE’s Basic Rights models.

To allow a sub-role of a given role to use the permission specified by the super-role, the target
of the PolicySet corresponding to the super-role is extended to also match requests from the
sub-role (e.g. the target of the PolicySet for receptionist specifies two subjects, with roles
receptionist and physician, respectively).

6.2 UWE2FACPL Toolchain: Generating Access Control Policies 111

Each Policy for a constrained class contains one Rule for each action between the role
and the class. For example, the receptionist policy comprises rules for actions ≪delete≫,
≪create≫, ≪read≫ and ≪updateAll≫ {except = healthStatus, blood}. Attributes targeted by
*All actions are divided into a set of Resources, omitting those from the {except} tag. OCL
constraints inside UML comments with ≪authorizationConstraint≫ stereotype are transformed
to a Condition. The condition is located within a Rule representing the appropriate action.
For the time being, we implemented only a few basic OCL constraints.

Technically, our UWE2XACML transformation from UML projects modeled with the UWE
profile v.2.2 to XACML 2.0 is implemented using the modeling framework of Eclipse Juno16. We
also used Xpand 1.2.117, a language specialized on code generation based on models defined by
the modeling component of Eclipse. Xpand is based on workflows, which apply templates in order
to parse the model and to produce the desired code.

To be able to use the project files of MagicDraw 16.8 for the transformation with Xpand, they
have to be exported as Eclipse UML 2 (v3.x) XMI file. For complex tasks as the transformation
to XACML, Java extensions are used from within the Xpand templates, because Java enables us,
e.g., to group several dependencies with equal constraints to only one Rule. This is also needed for
our HospInfo example regarding both update permissions (roles and ward) from administrators.

Our algorithm transforms not only the Basic Rights model, but also states with a {roles}
tag from the Navigation model (see figure 6.4). The aim is to constrain whether or not a user is
allowed to navigate to a certain area.

XACML to FACPL

The transformation, performed by the XACML2FACPL component (cf. section 6.2) loops over
the policy sets creating the necessary data structures for the FACPL representation. The original
XML document is read by using JAXB18. The loop over the elements is driven by the XACML
schema definitions by traversing its data types. We show below the FACPL policies resulting from
the transformation of the HospInfo Basic Rights model (only for receptionist and physician).

{permit-overrides ;
target :{ string-equal(“physician”, subject.role) } ;
⟨permit-overrides ;
target :{ string-equal(“patient”, resource.id) } ;
rules :{(permit ;

target :{ string-equal(“update”, action.id)
⊓ string-equal(“name”, resource.attr)

∨ string-equal(“birthYear”, resource.attr)
∨ . . .
∨ string-equal(“ward”, resource.attr) })

(deny) } ⟩
⟨permit-overrides ; target :{ } ; rules :{(deny) } ⟩ }

{permit-overrides ; target :{string-equal(“receptionist”, subject.role)
∨ string-equal(“physician”, subject.role)};

. . .

16Eclipse. http://www.eclipse.org/
17Xpand. http://wiki.eclipse.org/Xpand
18JAXB. http://jaxb.java.net

http://www.eclipse.org/
http://wiki.eclipse.org/Xpand
http://jaxb.java.net

112 6. Artifact Generation

. . .
⟨permit-overrides ;

target :{ string-equal(“patient”, resource.id) } ;
rules :{ . . .

(permit ; target :{ string-equal(“delete”, action.id) })
. . .

} ⟩ }

6.2.3 Policy Evaluation
In this section, which was originally written by coauthors of [43], we sketch the formal semantics
of FACPL, which is at the basis of the FACPL policy evaluation tool.

The semantics of FACPL policies is given in a denotational style, i.e., it is defined by a function
[[·]]𝑅 that, given a policy/policySet and a set 𝑅 of access requests, returns a decision tuple of the
form

(permit :𝑅𝑝; deny :𝑅𝑑; not-applicable :𝑅𝑛; indeterminate :𝑅𝑖)
where 𝑅𝑝, 𝑅𝑑, 𝑅𝑛 and 𝑅𝑖 form a partition of 𝑅 according to the results of the requests’ evaluation.
Notably, 𝑅 can contain, e.g., all possible requests, only requests with a given structure or a single
request. The definition of [[·]]𝑅 relies on an auxiliary function (| · |)𝑅 that, given a target, returns
a matching tuple of the form

(match :𝑅𝑚; no-match :𝑅𝑛; indeterminate :𝑅𝑖)

where 𝑅 is partitioned into 𝑅𝑚, 𝑅𝑛 and 𝑅𝑖 according to the results of the target evaluation. We
refer the interested reader to [130] for a full account of the FACPL semantics.

As an example, let us consider the following access requests:

request :{ request :{
(subject.lastName,“House”) (subject.lastName,“Cameron”)
(subject.role,“physician”) (subject.role,“receptionist”)
.
(resource.id,“patient”) (resource.id,“patient”)
(resource.attr,“healthStatus”) (resource.attr,“healthStatus”)
(action.id,“update”) (action.id,“update”)
} }

The request on the left is made by the physician House for updating the health record of a pa-
tient, while the request on the right is made by the receptionist Cameron for performing the same
action. Given the above requests and the HospInfo policies generated by the XACML2FACPL
component of our toolchain, the FACPL semantics returns a decision tuple where the request on
the left is in the permit set while the request on the right is in the deny set (indeed, receptionists
have no permission to update patient health records).

The implementation19 of the FACPL language is made in Java. The workflow of such a tool
is graphically depicted in figure 6.5. It “compiles” a policy written in the syntax presented in
19Source and binary code of the FACPL implementation are available from http://rap.dsi.unifi.it/xacml

tools

http://rap.dsi.unifi.it/xacml_tools
http://rap.dsi.unifi.it/xacml_tools

6.3 ACT Toolchain: Testing Access Control Policies 113

compile request
.req file

.java request

compile policy

.java policy

xacml file

compile Java

.java request.java policy

.class request .class policy

make decision

result

.class policy.class request

Evaluate a
request?

no

yes

Figure 6.5: UWE2FACPL: FACPL Policy Decision Point

section 6.2.1 into a Java class following the semantics rules defined in [130]. Thus, a repository
storing some policies, and the related PDP, consists of a Java archive containing all the Java
classes generated from the policies. Similarly, an access request is compiled into a Java class. A
policy decision is then computed by executing the generated policy code with the request code
passed as parameter to an entry method. The generated PDP can then be integrated as a module
into the code of the main web application.

6.3 ACT Toolchain: Testing Access Control Policies
In this section, which is based on joint work with Antonia Bertolino, Said Daoudagh, Francesca
Lonetti, and Eda Marchetti [20], we aimed at automatically testing access control policies that
are generated from UWE Basic Rights model. We therefore introduce an Access Control Testing
toolchain (ACT) for designing and testing access control policies that includes the following
features: (i) the graphical specification of an access control model and its translation into a
XACML policy; (ii) the derivation of test cases and their execution against the XACML policy;
(iii) the assessment of compliance between the XACML policy execution and the access control
model. Thus, the execution of the full toolchain tests the tools in the toolchain themselves, which
eases the replacement of tools. We illustrate the ACT toolchain using our SmartGrid Offers case
study that has already been introduced in section 5.1.1.

6.3.1 Background
Background about XACML, the use of a PDP and the SDE can be found in section 6.2.1. We
used the SDE to connect the tools that constitute the ACT Toolchain.

114 6. Artifact Generation

The complexity of the XACML language prevents the manual specification of a set of test cases
capable of covering interesting critical situations or faults. This implies the need of automated
generation of test cases. Martin presents the Targen tool [128] that derives the set of requests
satisfying all possible combinations of truth values of the attribute id-value pairs found in the
subject, resource, and action sections of each target included in the policy under test. Cirg [129] is
able to exploit change-impact analysis for test cases generation starting from policies specification.
In particular, it integrates the Margrave tool [84] which performs change-impact analysis so to
reach high policy structural coverage. The X-CREATE tool [19, 18, 21] exploits the XACML
Context schema defining the format of the test inputs, and also applies combinatorial approaches
to the policy values. In [19] a comparison between X-CREATE and the tool Targen [129] has
been performed in terms of fault-detection capability, and the results showed that X-CREATE
has a similar or superior fault detection effectiveness and yields a higher expressiveness, as it can
generate requests showing higher structural variability. [18, 21] present the advantages in terms
of fault detection effectiveness of the testing strategies that are implemented into X-CREATE
tool. Therefore, we selected X-CREATE to be part of our ACT toolchain.

6.3.2 The Access Control Testing Toolchain (ACT)
In this section we present the proposed Access Control Testing toolchain “ACT”, which includes
the following main functionalities:

Model-driven Policy Design. The possibility to design a graphical specification of access con-
trol requirements and to convert the model into an XACML policy.

Test Case Generation and Execution. The selection of different testing strategies useful for
deriving test cases and the possibility of executing them on the XACML policy.

Trace Analysis and Model Compliance. The analysis of test results and the consequent
derivation of the traces sets, i.e. the execution of test cases on the XACML policy. The
assessment of the compliance of the traces sets with the graphical access control model is
also included.

For these steps, different tools are developed and integrated into the SDE. The SDE realizes
the ACT Toolchain by executing functions of these tools in a row. Therefore, a function’s output
can be graphically connected to another function input, as shown in figure 6.6. In this figure, the
toolchain is depicted in the SDE’s graphical orchestrator.

As shown in figure 6.6, different activities are considered, each one involving a tool’s function
available in the SDE. In the following, we list functions and briefly describe the corresponding
services (tools) that implement them:

editProjectWithMagicUWE. MagicDraw[147] this is a modeling framework for specifying
access control requirements, i.e. a graphical access control model, to simplify the designing
of authorization constraints. MagicUWE is integrated as a plugin into MagicDraw.

transformUwe2xacml. UWE2XACML [43] provides an automatic translation of the graphi-
cal access control model into a XACML policy to avoid common errors and problems of
manually written XACML policies.

6.3 ACT Toolchain: Testing Access Control Policies 115

Figure 6.6: ACT Toolchain in the SDE: designing and testing access control policies

116 6. Artifact Generation

multipleCombinatiorialStrategy. The X-CREATE tool [19, 18, 21] enables automatic tests
generation (i.e. XACML request generation) according to different testing strategies to
speed up and improve the verification by reducing as much as possible time and effort due
to test cases specification.

checkXACMLRequestWithPDP. The Sun PDP [209] is used to automatically execute test
cases. Its output are XACML responses.

createTraces. The Trace Creator provides an automatic analysis of test results for deriving the
model of the test execution called traces sets, followed by a transformation of the traces
sets into sets of requests and responses expressed in the JSON format.

checkConsistency. MagicUWE offers this function (also called the “Checker”) to automatically
assess the compliance of the traces sets with the graphical access control model.

More technical details about the tools used for the implementation of the toolchain are pro-
vided in the following. Please note that X-CREATE’s “multipleCombinatiorialStrategy”, the
functionality to “checkXACMLRequestWithPDP” and “createTraces” were created by coauthors
of [43].

Model-driven Policy Design

The tool MagicDraw, with the plugin MagicUWE allows to graphically specify access control
requirements whereas the tool UWE2XACML automatically transforms the derived model into
a XACML policy.

MagicUWE. As has already been described in the previous section, MagicUWE supports the
UWE notation and the UWE development process. For our toolchain, we use MagicUWE’s
support for modeling UWE diagrams. In particular, the toolchain first opens an existing UML
project for modeling access control using the Basic Rights model of UWE. When the user finished
modeling, he or she uses MagicUWE’s menu to export the project as XMI [150]. In the same
step, a link to the exported project is sent back to the SDE so that the toolchain can continue
with the transformation to XACML.

UWE2XACML. The prototype UWE2XACML [43] is a tool for transforming role based access
control policies modeled in the UML-based Web Engineering (UWE) language into XACML
policies. As already described in section 6.2.1, UWE2XACML is written using the transformation
language XPand [73] with Java extensions.

The input for UWE2XACML is an XMI-formatted UML model of an application modeled
using the UWE profile. UWE2XACML iterates over the available roles while taking the role hi-
erarchy into account. Additionally, the UML dependencies between the roles and the constrained
elements are examined, i.e., the allowed actions are extracted. While iterating over the structure
of the UML model, the XACML policy is written. In the end, it is formatted automatically
according to the nesting of XML tags.

In our toolchain, UWE2XACML is immediately followed by X-CREATE for generating
XACML requests for the newly generated XACML policy.

6.3 ACT Toolchain: Testing Access Control Policies 117

Test Case Generation and Execution

The automatic test cases generation and execution is implemented by means of the tool X-
CREATE and the use of an access control system implementation called Sun PDP [209].

X-CREATE. The XACML policy derived by the tool UWE2XACML is used for deriving a set
of test cases. For this we used the tool X-CREATE (XaCml REquests derivAtion for TEsting) [19,
18, 21], which implements different strategies for deriving XACML requests from a XACML policy.
These strategies are based on combinatorial analysis [58] of the values specified in the XACML
policy with the aim of testing policy evaluation engines and access control policies.

In the toolchain implementation, we decided to use X-CREATE’s Multiple Combinatorial
test strategy, because it provides a good compromise between test effectiveness and cost reduc-
tion [22]. In particular, for each policy, four sets are generated, the SubjectSet, the ResourceSet,
the ActionSet, and the EnvironmentSet, containing the values of elements and attributes of the
subjects, resources, actions and environments respectively. Random entities are also included in
each set so that the resulting test plan could be used also for robustness and negative testing
purposes. The entities are then combined to derive the XACML requests.

However, to avoid the possibility of an exponential cardinality of requests X-CREATE allows
to fix the number of entities to be considered in each subset. Indeed, the necessary condition for
a XACML request to be applicable on a field of the XACML policy (rule, target, condition) is
that this request simultaneously includes all entities that are specified in that policy field. Thus
X-CREATE exploits the minimum and maximum number of entities of the same type that have
to be included in a request for reducing the set of generated test cases. The XACML requests
are then generated by combining the subject, resource, action and environment subsets applying
first a pair-wise, then a three-wise, and finally a four-wise combination, obtaining all possible
combinations. In this process X-CREATE automatically eliminates duplicates. For more details,
the interested reader is referred to [19, 18, 21].

Sun PDP. This component integrates a Policy Decision Point (PDP), which provides a support
for parsing both policy and request/response documents, determining applicability of policies,
and evaluating requests against policies giving the corresponding response (Permit, Deny, No-
tApplicable or Indeterminate). In ACT we included the Sun PDP [209], which is an open source
implementation of the OASIS XACML standard, written in Java.

Results Analysis and Verdicts Generation

The XACML requests and the corresponding PDP responses are used to trace the policy execution
and to assess the compliance of the derived policy with the graphical access control model.

Trace Creator. The Trace Creator gets as input the set of XACML requests together with
the corresponding responses from the Sun PDP components and derives the traces sets. Different
methodologies for classify the couples (request, response) are available, which rely on the oppor-
tune combination of the subjects, resources, actions, environments and corresponding responses.
In our ACT Toolchain we consider the classification according to the PDP responses. Thus the
couples (request, response) are divided into three groups: those having Permit as response (i.e.

118 6. Artifact Generation

Figure 6.7: ACT Toolchain: output of the MagicUWE Checker

the Permit set), those having Deny as response (i.e. the Deny set), and those having either No-
tApplicable or Indeterminate (the Other set) as response. To simplify the validation process the
elements of the traces sets are translated into Java Script Object Notation (JSON)-formatted cou-
ples. The choice of the JSON notation instead of XML was made because JSON is a lightweight
format that is easier to read and parse than XML20.

MagicUWE Checker. The final element of our toolchain is the MagicUWE Checker, which
checks that the elements of the traces sets comply with the original graphical access control model,
i.e. UWE’s Basic Rights model.

The main function of the MagicUWE Checker is checkConsistency, which takes two
arguments: the UML project and the JSON-formatted traces sets. The Checker’s functionality
is implemented as a part of MagicUWE. This means that the first and the last element of our
toolchain are functions that execute MagicDraw with the plugin MagicUWE installed.

The Checker tests if each couple (request, Permit) of the Permit set can be associated to
stereotyped dependencies between roles and concepts expressed in the model. In particular, if a
request contains a user that has more than one role, the Checker verifies if there exists at least
one stereotyped dependency between one of the mentioned roles and concepts expressed in the
model. Additionally, each couple (request, Deny) is tested, to make sure that there is an action
in the request which does not appear in the UWE model. If a user requested more than one
action, the Checker verifies if at least one of these actions is not shown in the UWE model (i.e.
denied in the model). The elements belonging to the Other set of traces are not considered.

As depicted in figure 6.7, MagicDraw provides three main windows: on the right, a UWE
Basic Rights diagram is shown, which will be covered in our case study (cf. figure 6.9). On the
top left, the element tree of the model is depicted, together with the root of the UML profile and
UWE profile. On the lower left, the log of MagicUWE’s Checker provides details of the requests
20Comparisons of JSON and XML. http://www.json.org/xml.html

http://www.json.org/xml.html

6.3 ACT Toolchain: Testing Access Control Policies 119

under test. There, it is indicated if the PDP allows a request that is not permitted in the model
or the PDP denied a request that is modeled in the Basic Rights diagram. In the latter case,
the Checker also flags mistakenly denied dependencies in the graphical model. These bold, (red)
dependencies and the Checker’s log can then be used for debugging.

In the end, the log is automatically handed back to the SDE where it is shown as result of
the ACT Toolchain. In the future, new tools could extend our toolchain, as e.g., a dashboard
tool that parses the log to show a green light if the Checker reported no errors.

Toolchain Integration

For the assembly of our toolchain, we integrated the tools in the SDE, i.e., we created a SDE
wrapper for tools that were not yet integrated. Finally, we connected function of these tools to a
toolchain using the SDE’s graphical Orchestrator. As depicted in figure 6.6, the SDE Orchestrator
is easy to use: we created a new Function, called “actToolchain” using the Palette on the right
hand side. Using drag & drop, we added an input and an output pin and the tools’ functions (e.g.
MagicUWE: checkConsistency). After connecting inputs and outputs with Links, the toolchain
can be executed using the green play-button on the upper right corner. At the moment, there is
a minor drawback, as plugins based on XPand, such as UWE2XACML, only function when they
are executed in the Eclipse development mode.

6.3.3 Case Study
In this section we apply the ACT Toolchain on the SmartGrid Offers application, which allows
offers to be created and bought, as already described in section 5.1.1.

Step 1: modeling access control. In the first step of our toolchain, we use MagicDraw
with MagicUWE installed to model the classes and their associations, as shown in figure 6.8. It
is noticeable that Role and its subclasses are located in UWE’s Role model and are just shown
in the Content diagram in order to present the connection between roles and content.

Figure 6.9 depicts the Basic Rights diagram of our case study. For example, a user with the role
PrivateUser is allowed to read all attributes of an instance of ListOfApplicableOffers,
which refers to the customized list of energy offers that is presented to a user.

However, nobody should be allowed to access a list of someone else, which is expressed using
the OCL [151] authorization constraint: “pre: self.user = caller”. The term self is defined as a
referrer to the current class, user is an attribute of ListOfApplicableOffers (cf. figure 6.8)
and caller refers to the user which is executing an action.

Step 2: transforming the UWE model to a XACML policy. After the UWE model
is exported as XMI, the tool UWE2XACML transforms it to a XACML policy.

According to the description in section 6.2, the transformation intuitively works as follows:
It generates a XACML PolicySet for each role, each of which contains one Policy for any class
connected to the considered role. Furthermore, a single Policy is used to deny access to all
resources not specified in the PolicySet, which is the default behavior of UWE’s Basic Rights
model.

120 6. Artifact Generation

ListOfApplicableOffers

+buy()

SpecialOffer

CommercialUser

+buy()

NormalOffer

PrivateUser

«webUser»
Role

create normalOffers *

commercialSeller

1
buy

boughtSpecials*

buyer1

specialOffers

*

1

user 1

normalOffers

*

create

specialOffers *

seller 1

create

createdOffers *

seller 1

buy

boughtOffers*

buyer1

Figure 6.8: ACT Toolchain: SmartGrid Offers – Content model with roles from Role model

energyTransaction : EnergyTransaction [1..*]
seller : PrivateUser [1]
buyer : PrivateUser [1]
commercialSeller : CommercialUser [1]

NormalOffer

energyTransaction : EnergyTransaction [1..*]
seller : CommercialUser [1]
buyer : PrivateUser [1]

SpecialOffer

user : PrivateUser [1]
specialOffers : SpecialOffer [*]
normalOffers : NormalOffer [*]

ListOfApplicableOffers

: CommercialUser

: PrivateUser

«authorizationConstraint»
pre: self.commercialSeller = caller

«authorizationConstraint»
pre: self.user = caller

«authorizationConstraint»
pre: self.seller = caller

«authorizationConstraint»
pre: self.seller = caller

«readAll»

«create»

«create»

«delete»
«updateAll»

«delete»
«updateAll»

«delete»
«updateAll»

«create»

Figure 6.9: ACT Toolchain: SmartGrid Offers – Basic Rights model

6.3 ACT Toolchain: Testing Access Control Policies 121

XACML policies generated by UWE2XACML are structured as follows (in brackets we show
the policy for the uppermost ≪readAll≫ dependency in figure 6.9, which connects PrivateUser
and the class ListOfApplicableOffers):

PolicySet . root element, permit-overrides
PolicySet for each role (e.g., contains what a PrivateUser is allowed

to do)
Target role (and sub-roles if any) (e.g., PrivateUser)
Policy for each pair of role and target (e.g., for actions a Priva-

teUser can do on ListOfApplicableOffers)
Target constrained target element (e.g.,

listofapplicableoffers, as we use lower cased class names in
the policy)

Rule permission for each action (e.g., concrete permission what
to read)

Resources attributes of the target class (e.g.,
listofapplicableoffers.user,
listofapplicableoffers.specialOffers,
listofapplicableoffers.normalOffers)

Actions permitted action (e.g., read)
Condition transformed OCL constraints (e.g., we use the XACML

function integer-equal to make sure that self.user.id
equals caller.id). Besides, we restrict the number of actions
and the number of classes per request to 1.

Policy . default: deny all, which is not allowed explicitly

Step 3: generating requests for the XACML policy. Using the tool X-CREATE a
set of XACML requests is derived starting from the XACML policy. A large number of requests
are generated using the Multiple Combinatorial testing strategy provided by X-CREATE, which
combines all the possible values of elements and attributes of the subjects, resources, actions and
environments respectively. In the following, we present two generated request examples. In the
first, a user with the role PrivateUser wants to create an instance of the class NormalOffer.
In the second, a private user requests the creation of a SpecialOffer.

Request . root element
Subject the subject is PrivateUser
Resource the resource is NormalOffer
Action . the action is create

Request . root element
Subject the subject is PrivateUser
Resource the resource is SpecialOffer
Action . the action is create

Step 4: checking XACML requests on the PDP. The set of requests generated with
X-CREATE are evaluated against the XACML policy on the Sun PDP and the corresponding

122 6. Artifact Generation

XACML responses containing the access results are collected. In our two cases, the responses are
Permit for the first and Deny for the second request.

Step 5: creating traces. A request / response values based filter is applied for deriving the
traces sets. Then the couples (request, response) are divided into three groups: the Permit set,
the Deny set, and the Other set. The traces are then converted to JSON.

In the following, we give an example for a JSON-formatted trace.

{"XacmlRequest":{
"Attributes":[],
"InstanceIDs":{"self.seller.id":"94","self.caller.id":"94"},
"Classes":["normaloffer"],
"Decision":"Permit",
"Actions":["delete"],
"Roles":["PrivateUser"]}

}

Step 6: checking consistency of responses and initial model. The resulting differ-
ences between the XACML responses and the initial model are shown, if any. In case a faulty
transformation tool in step 2 would have altered the XACML policy so that it is not allowed to
create normal offers, the first request in step 3 (and all other requests for creating normal offers)
would be denied in step 4. Thus, in step 6, the Checker can detect an inconsistency between the
access control model and these requests, as, in the access control model of figure 6.9 users are
authorized to create a normal offer. MagicUWE highlights the inconsistency with bold and red
lines in the Basic Rights model, as depicted in figure 6.7. Consequently, the developer can start
debugging by studying the Checker’s log which points to the faulty trace file(s). Backtracking
along the toolchain is possible, as the intermediate data that is handed over from one tool to the
next is saved locally.

In practice, developers can also get the advantages of parts of the ACT toolchain. For example,
already existing XACML policies can be modeled with UWE, as long as they are restricted to
role based access control. This might help developers to regain an overview of their policy and to
debug it. In this case, a part of our toolchain would be used, starting with the tool X-CREATE.
UWE’s Basic Rights model, which is needed by the Checker, would then be the new model of
which the developers want to know if it is yet compliant to the XACML policy they provided. If
it is not, the Checker’s log would provide hints to missing or misplaced modeling elements.

6.4 ActionUWE: Transforming UWE to ActionGUI
Both, ActionGUI [11] and UWE are web engineering approaches for modeling secure web appli-
cations. They provide a graphical notation for the representation of the models: a UML profile
for UWE and a proprietary notation for ActionGUI. UWE focuses on a high level of abstraction,
whereas ActionGUI models can directly be transformed to code. This section, which is an ex-
cerpt of joint work [38] with Miguel Ángel Garćıa de Dios (an expert for ActionGUI), sketches
main ideas of a transformation, called “ActionUWE”, which aims at semi-automatically gener-
ating secure code from high-level UWE models by transforming them into ActionGUI models.

6.4 ActionUWE: Transforming UWE to ActionGUI 123

Semi-automatically means that UWE models have to be enriched by certain elements before the
transformation takes place and that the generated ActionGUI models have to be refined so that
they contain all details needed for an application’s actual execution.

In our technical report [38], we use our HospInfo case study to detail the transformation.
However, in this section we just briefly present the main ideas of ActionUWE, without going into
detail, as it turned out that implementing and using ActionUWE in practice (in order to generate
code from ActionGUI models) would not be truly efficient. At least not when compared with
traditional coding of the limited kind of applications that could be generated.

6.4.1 Background
As already discussed in section 2.3.2, most modeling approaches do not support modeling security
features, whereas the UWE approach and the ActionGUI approach by Basin et al. [12] define
models for security mechanisms like access control. In ActionGUI, the whole application logic
is represented using OCL, which allows to generate complete web applications. ActionGUI’s
proprietary notation comprises the following models:

The ActionGUI model contains not only the graphical layout of the application, but also the
application logic, which is specified using OCL.

The ComponentUML model describes the data structure.

The SecureUML model defines a role based access control policy.

No model-driven solution for secure web applications exists that unite the advantages of UWE
and ActionGUI: On the one hand, the advantages of the high-level of abstraction of UWE with its
many views (separation of concerns) that help practitioners to model an application’s architecture
along with its security features. Thus, developers immediately get an overview of requirements
that have been elicited and design decisions that have already been taken. On the other hand,
the advantages of a modeling language like ActionGUI which is based on a formal specification of
the whole application logic and its access control policies. For basic user interfaces, these policies
allow the generation of secure web applications where the security policies are automatically
embedded in the user interface, which means that elements are only shown if the user is allowed
to read the underlying data or to execute the functionality behind.

6.4.2 Transformation
Our model-driven approach ActionUWE combines the approaches UWE and ActionGUI by a
transformation. Before the transformation, the UWE model has to be redefined to connect views,
e.g., by linking elements of the UWE’s Presentation model to states and transitions (representing
method calls) of the Navigation model. Therefore, we added new UML tags like {navState} or
{navTrans} to presentation elements in the UWE profile that can point to concrete states or
transitions.

The ActionUWE transformation itself is executed in four steps:

Step 1 initializes the ActionGUI model and transforms available UWE menus to ActionGUI
Menu classes.

124 6. Artifact Generation

Step 2 adds further information of the Presentation model to ActionGUI.

Step 3 transforms the UWE Navigation model to ActionGUI without regarding security fea-
tures.

Step 4 translates and adds the Role-Based Access Control (RBAC) constraints and the naviga-
tional access control features to ActionGUI.

Afterwards, validation checks that are available for ActionGUI models can be used to examine
the model before it is subjected to ActionGUI’s model-to-code transformation.

As ActionGUI and UWE use a different way of grouping features to models, the ActionGUI
model itself contains most of the transformed elements:

The UWE Content model is mapped in a straightforward way to a ComponentUML model
in ActionGUI.

The UWE Presentation model is mapped to a SecureUML model in ActionGUI.

The UWE Presentation model is mapped to a set of Widgets that are part of an Ac-
tionGUI model.

The UWE Navigation model is mapped to certain Action and Event elements of the
ActionGUI model.

To make the transformation possible, we had to slightly extend the metamodel of ActionGUI
and the profile of UWE and to specify additional preconditions for the UWE models, as Ac-
tionGUI models cannot represent all kinds of web applications. An example for such a precon-
dition is that we assumed that one menu exists and this menu changes exactly one other panel.
In future versions of ActionGUI this restriction might disappear, but this would lead to a rather
complex way of describing which panel (or subordinated panel) should be exchanged at runtime.
For a more detailed description of the ActionUWE transformation the interested reader is referred
to our technical report [38], which can be found online.

6.5 SNPs: Modeling, Testing and Securing Naviga-
tion Flow

Although robust solutions for managing authentication, authorization and session management
in web applications exist, the question of effectively controlling the navigation flow for different
users remains challenging. In this section, which is based on joint work with Mart́ın Ochoa
and Roman Schwienbacher [47], we propose a methodology that allows testing and enforcing
Secure Navigation Paths (SNPs) that were modeled with UWE. We focus on the integrity of the
navigation paths as intended by the application owner, i.e., the order in which authorized resources
of an application should be accessed by a given user. In addition, we automatically generate a
server-side monitor enforcing such policies and discuss how models can be used to generate tests
in case a monitor is absent. Finally, we report on tool support for this methodology and apply it
to the SmartGrid Bonus case study we have already introduced in section 5.1.1.

6.5 SNPs: Modeling, Testing and Securing Navigation Flow 125

6.5.1 Background
In this section we briefly recall the addressed challenge of enforcing secure navigation paths and
approaches related to business workflow integrity.

Among the most challenging web application vulnerabilities are the ones involving the misuse
of the application logic itself. As stated by the Common Weakness Enumeration (CWE) [60]:

Errors in business logic can be devastating to an entire application. They can be
difficult to find automatically, since they typically involve legitimate use of the ap-
plication’s functionality.

Exploiting flaws in the business workflow is a common attack to the application logic. These
exploits typically consist of jumping to certain URLs, bypassing critical controls of an intended
flow or manipulating the parameters of legal requests. The consequences of those attacks can
be diverse: bypassing log-in controls result in authentication breaches whereas skipping certain
controls in a trading operation might result in monetary benefits to the attacker. Examples of
documented vulnerabilities in popular web applications include the Yahoo SEM Logic Flaw [99]:
if one deposited USD $30 into an advertising account, Yahoo would then add an additional
USD $50 to that account. The sign-up process was able to be circumvented such that failing to
deposit the USD $30 still allowed to receive the additional USD $50. Other examples include
bypassing of age restrictions in Youtube, access to private photos in MySpace (resulting in attacks
to celebrities) among others (see [8]).

In recent years, much attention has been given to validating user input to web applications
to prevent code-injection (i.e. SQL, XSS), but very few tools and methodologies are available to
prevent and test logical errors.

Braun et al. [31] published a robust approach for SNPs for MVC-based web applications
where policies are specified using an ad-hoc textual notation. They also tackle race-conditions
and handling of multiple tabs within a browser, which is currently outside of the scope of our
approach. The parameter constraint in our approach was partially inspired by their textual policy
language, although our approach is mainly based on web pages, not on methods. In UWE, some
problems are inherently solved, as e.g., superstates exist so that all transitions can be easily
specified and there is no need to invent extra notations for the ability to change decisions later
or for the availability of the back button.

In 2002, Scott et al. [192] described a system which is also based on a solution using a monitor.
A textual policy specifies validation constraints, mainly for parameters and cookies, in a language
called Security Policy Description Language (SPDL). This policy is then compiled to code which
is executed by the monitor when a page is accessed. Additionally, Message Authentication Codes
(MACs) can be added by the monitor when delivering a page so that, e.g., hidden form fields can
be secured from changes at the client-side.

Halle et al. [98] define a navigation state machine with session traces with a focus on a formal
model. However, the state machine is only a simple one with no further information than a
sequence of states which does not include parallel states. If desired, their formal approach might
be extended to describe UWE’s Navigation model, including information given by the stereotypes,
tags and parallel states.

In [140] a method for secure design of business application logic is sketched. It comprises
strategies such as analyzing weaknesses caused by misconfiguration of server-side components or
by errors in the application logic. They suggest to test several kinds of parameters, however,

126 6. Artifact Generation

they do not provide tool support. Furthermore, it is recommended to define a clear design of the
architecture, especially for components which update session data. The authors aim to provide
a good practice which certainly can be combined with our approach.

Additionally, a tool for servlet-based web applications is provided by Felmetsger et al. [81].
The tool, called Waler uses a composition of dynamic analysis and symbolic model checking:
Regarding the dynamic analysis, it observes the normal operation of a web application in order
to infer behavioral specifications that are filtered to reduce false positives. Afterwards, symbolic
model checking is used to identify program paths that are likely to violate these specifications.
Compared to our approach, models do not have to be created manually, which is convenient,
especially for legacy applications. However, the price is that flaws in the navigation paths can
only be detected with a certain possibility. SPaCiTE [36] is a tool that generates concrete attack
tests based on model checking and mutation operators. It has been applied so far for testing
RBAC and XSS, but not for business workflow integrity.

6.5.2 Modeling Approach
We focus on how to model basic SNPs and on a notation for specifying parameters for web pages.

Basic SNPs

As introduced in section 5.2, UWE provides several views. For each view, an appropriate UML
diagram is selected. In UWE, UML state machines are used to model the navigation structure
of a web application in the Navigation model. In our case, states correspond to navigational
nodes that are implemented as web pages. Transitions define all possibilities to navigate from
one page to another and thus specify a policy for the navigation. By using the UWE approach, it
is also possible to annotate transitions and states with necessary permissions required to access
a resource.

Building on UWE’s Navigation model, we define SNPs as follows (cf. figure 5.11): In case
a transition leads from state 𝐴 to 𝐵, a user can visit page 𝐵 after having visited page 𝐴. If it
should be possible to go back (e.g. with the back-button in the browser), another transition has
to connect 𝐵 with 𝐴. For more than one option, an arbitrary number of transitions can be used.

We use the behavior of UML composite states to model links which should be available within
a certain area at any time. “Composite” means states can be nested within a composite state. If
state 𝑌 and 𝑍 and an initial node are nested inside a state 𝐴 and the initial node is connected
to 𝑌 , then transitions to 𝐴 activate 𝑌 (because of the inner initial node). A transition that leads
from 𝐴 to an arbitrary new state 𝐵 can be fired from inside 𝐴, no matter if 𝑌 or 𝑍 is active.
Consequently, 𝐴 does not correspond to a web page itself, but groups others. An example of a
UWE Navigation diagram expressing SNPs is depicted in our case study. In this way we model
SNPs at a high level of abstraction, as no technical details have to be given.

We also use the Navigation model of UWE to specify navigational access control (cf. sec-
tion 5.3). For each ≪session≫ stereotype, denoting a user’s session, a tag called {roles} can point
to a set of roles from UWE’s Role model. In order to be able to access the web page represented
by a state, a user has to have at least one of the roles that are allowed to access this state. If
this is not the case, the tag {unauthorizedAccess} specifies which state should be used instead.
This state can then represent, e.g., a page with an error message or an advertisement for a more
expensive account.

6.5 SNPs: Modeling, Testing and Securing Navigation Flow 127

ShowConfirmation

BuyEnergy

«navigationalNode»
OrderProcess

{fixedParam = "POST(item:numeric)"}

«collection»
Offers

{itemType = EnergyOffer}

«navigationalNode»
B

«navigationalNode»
A

a)

b)

[param = GET(item:numeric)]

Figure 6.10: SNPs: expressing SNPs with UWE’s Navigation model

SNPs with Checked Parameters

However, many web pages use parameters to pass, e.g., user input or session IDs to the next page.
To model allowed parameters specifically, we extend UWE’s Navigation model so that a minimum
of technical information can be specified, if needed. Our extension is inspired by Braun et al. [31],
who came up with a textual control-flow definition language for Model-View-Controller (MVC)-
based web applications. As our approach does not specify method names, but page names, it is not
restricted to MVC-based applications. Furthermore, information about allowed parameters can
easily be added to existing Navigation diagrams, so that related information about authentication,
secure connections, navigational control as well as SNPs can be conceived at a glance. We add
parameters to transitions using a guard like [param = GET(par1:type1, par2:type2)]. GET or
POST are allowed and types can be Boolean, numeric or string (cf. part 𝑎 of figure 6.10).

Sometimes, a parameter should be added to requests within a certain area, using the same
value as at the first occurrence. For instance, a session Identifier (ID) is not allowed to change
during a session and selected items should not change during the payment process. This can be
modeled by a composite state which comprises all transitions that should use fixed parameters.
All navigational states in UWE inherit from the stereotype ≪navigationalState≫, for which a tag
called {fixedParam = POST(par1:type1, par2:type2)} can be set. Global parameters are applied
to all transitions where the target state is located within the composite state. The choice of
GET / POST for the composite state and affected transitions has to be coherent in case inner
transitions specify further parameters. When leaving and entering the composite state again, the
values of the fixed parameters can of course be different than before.

Part 𝑏 of figure 6.10 depicts this behavior: the bold transitions inherit the fixed parameter.
This means the value of {item} is set by the transition targeting BuyEnergy. Afterwards, it
cannot be changed until the OrderProcess is left. The stereotype ≪collection≫ denotes that
several Offers are shown. Each offer is of the type EnergyOffer, which is defined by the tag
{itemType}. If an offer is bought, the confirmation cannot be shown for another one.

For simplicity, in the remainder of this section we focus on modeling and enforcing SNPs on
web applications without imposing constraints on the parameters. This is reasonable since impor-

128 6. Artifact Generation

Figure 6.11: SNPs: test generation

tant security parameters such as the session ID are already handled automatically by development
frameworks.

6.5.3 Testing
In this subsection, we describe how to generate navigational test cases for web applications with
access control policies regarding SNPs. The main goal is to cover every possible navigation context
considering navigation history, current navigational node, user role and access permission result.
Comparing these results with given access control policies, we can detect possible access control
misbehavior issues.

In order to build navigational test cases we use the following approach based on an UWE
SNP policy given input: for each user role we walk through every available SNP starting at the
entry node which is marked as {isHome}. We navigate from node to node inside the SNP until we
come back to an already visited node. This way we can test if the application behaves according
to the specification (we can identify false negative access control behavior by collecting occurring
access denials). In order to detect possible violations of the integrity of the policy, we simply
try to leave the SNP on every node by requesting each node which is currently not accessible by
an outgoing transition and thus not allowed. In this context, every granted access represents an
incorrect behavior. Figure 6.11 depicts such a navigation through a SNP including illicit node
requests on every node.

However, with every violating request we cause a navigation history which does not correspond
to the original SNP, and we possibly harm the state of the application. Therefore, we need to
reconstruct the previous SNP-valid navigation context to go ahead: First, we have to fall back to
the current entry node to clear the navigation history. Second, we have to repeat the navigation
progress on the SNP until we achieve the previously visited node inside the SNP to reconstruct
the navigation context.

This testing process is efficient, since it has a complexity of 𝒪(𝑟𝑛3). Assuming there are 𝑛
possible navigational nodes and 𝑟 user roles: Every navigational node has up to 𝑛 − 1 neighbors
which are not accessible by an outgoing transition. By testing all roles, we get an amount of
𝑟𝑛(𝑛 − 1) test cases which gives an upper bound of 𝒪(𝑟𝑛2) tests. Considering the backtracking
behavior to reconstruct the navigation context we have to visit up to 𝑛 − 1 additional nodes
for every forbidden node. Consequently, we get a final complexity of 𝒪(𝑟𝑛3). However, testing
parameters cannot be exhaustive, as parameters can contain arbitrary values. Extending our
approach to consider constraints on parameters is thus left as future work.

6.5 SNPs: Modeling, Testing and Securing Navigation Flow 129

6.5.4 Tool Support
This subsection presents tool support that we developed to validate our approach. In a bach-
elor’s thesis, supervised by the author, Schwienbacher [190] implemented MagicSNP to export
navigational access control rules that can be enforced by our SNPmonitor. For tests, our SNPpol-
icyTester is employed.

MagicSNP. In order to validate a Navigation model and moreover to extract the correspond-
ing access control semantics we developed a CASE tool plugin for MagicDraw called MagicSNP.
By iterating through all hierarchical states and analyzing incoming transitions, state names and
tags, our tool fetches relevant information about navigational access control and SNPs. The
JSON-structured result can be taken as input for a security framework for a specific web applica-
tion. In our case, the exported rules are read by the server-side monitor. An example of a result
file can be found in section 6.5.5.

SNPmonitor. The SNPmonitor is our generic monitor module approach which provides
RBAC with SNPs for web applications considering modeled access control semantics. Basically,
this module is responsible to decide whether or not a user is allowed to get access to a protected
resource. The decision making is based on the web user’s session information (e.g., previously
visited location, assigned user roles etc.) and a policy file (e.g., generated by MagicSNP). In order
to ensure robustness, our monitor module also handles any kind of access constraint violation:
the web user is redirected to a corresponding error page including an appropriate error message
with possibility to go back to its previously visited navigation context.

Technically, our SNPmonitor is implemented as a Java EE application, using the Spring
Framework [91]. The code of a client application which should be safeguarded does not have to
be touched; the monitor just has to be added as a filter to the Java EE deployment descriptor.
Using a URL-pattern, it is also possible to shield a certain part of a web application, e.g., web
pages stored in a protected/* directory.

SNPpolicyTester. In order to test already defined SNP policies for a specific web application,
as mentioned in section 6.5.3, we developed a testing tool called SNPpolicyTester. It parses a
given security policy file and searches for false positive and false negative access control behavior.
Therefore, it navigates through every available SNP with every defined user role trying to leave
the SNP on each navigational node by requesting every possible illegal node in this context. As
a result, we get a detailed log file which allows a quick identification of traces that are possible
although they should be prohibited.

Additionally, we analyzed the runtime performance of our testing tool using a benchmark
client based on the TPC-W Benchmark[216]. Consequently, we are able to compare the result
with the complexity of our test generation process according to section 6.5.3: figure 6.12 depicts
the average result of benchmarks we performed with two user roles regarding ten, twenty, thirty
and forty navigational nodes. The result corresponds to the expected complexity of 𝒪(𝑟𝑛3).

6.5.5 Case Study
Smart grids use information and communication technology to optimize the transmission and
distribution of electricity from suppliers to consumers, allowing smart generation and bidirectional

130 6. Artifact Generation

Figure 6.12: SNPs: average benchmark result of SNPpolicyTester

power flows – depending on where generation takes place. Thus, the smart grid enables financial,
informational, and electrical transactions among consumers, grid assets, and other authorized
users [141]. The smart grid integrates all actors of the energy market, including the customers,
into a system which supports, for instance, smart consumption in cars and the transformation
of incoming power in buildings into heat, light, warm water or electricity with minimal human
intervention. Smart grids represent a potentially huge market for the electronics industry [184].
Two basic reasons why the attack surface is increasing with the new technologies are: (a) The
smart grid will increase the amount of private sensitive customer data available to the utility
and third-party partners and (b) Introducing new data interfaces to the grid through meters,
collectors, and other smart devices create new entry points for attackers. For a more detailed
discussion on security issues arising in this context see [62]. See also [104] for a current version
of proposed technologies to solve this power systems management and associated information
exchange issues. In the following, we model a scenario in this domain, the SmartGrid Bonus
Application.

Basically, our SmartGrid Bonus Application represents a prototype of an energy offer man-
agement including optional bonus handling, as already described in section 5.1.

In order to model the data structure managed by our case study, we use UWE’s Content
model. Basically, it comprises two domain classes, EnergyOffer and BonusProgram, which
are also used in figure 6.13. An instance of the class EnergyOffer represents a specific energy
offer launched by an energy provider including start and end date. Each object of EnergyOffer
can include an arbitrary number of BonusProgram instances. A BonusProgram instance
stands for an additional bonus customers get, after buying the corresponding EnergyOffer.

In order to model RBAC constraints we use UWE’s Basic Rights model, depicted in fig-
ure 6.13. Basically, it uses classes of the Content model on the left-hand side in combination with
user roles on the right-hand side. Access permissions were defined by stereotyped dependencies:
for our application, a provider has no restricting constraints. By contrast, there is only a limited
set of permissions for users taking on the role of a customer: they are only allowed to read instances
of the class EnergyOffer and to call the methods buyOffer() and generateBonusCode().
These permissions represent the basis for a customer to list all available energy offers, to buy a

6.5 SNPs: Modeling, Testing and Securing Navigation Flow 131

-id : Integer
-vValue : Double
-active : Boolean

+deactivateBonusProgram()
+generateBonusCode()

BonusProgram

-id : Integer
-name : String
-startDate : Date
-endDate : Date

+buyOffer()
+launchOffer()
+launchBonusProgram()

EnergyOffer

provider : Role

customer : Role

«create»
«updateAll»

«delete»
«executeAll»

«execute»

«execute»

«create»
«updateAll»

«delete»
«executeAll»

«readAll»

Figure 6.13: SNPs: SmartGrid Bonus – Basic Rights model

specific offer and to eventually get a bonus code. In order to define constraints like “a customer
can only get access to a bonus code after he bought an energy package” we now have to define
navigational access control policies using SNPs.

Therefore, we use UWE’s Navigation model as described in section 6.5.2. For our web appli-
cation, the navigation structure should start at a login page. After completing the authentication
successfully, customers should be redirected to an internal page where they can have a look at a
list of offers. If they decide to accept an offer they have to give their consent, before a confirma-
tion is shown. In case the energy offer was connected to a bonus program, a page containing the
bonus code is displayed before the final confirmation.

Notice that for our case study we make the assumption that names of pages correspond
to names of states and we do not model parameters – our monitor then just forwards given
parameters, if any.

Figure 6.14 depicts our Navigation model. The outermost state stands for the whole appli-
cation and is called SmartGridBonusApplication. Navigational nodes, represented by the
states on the innermost level, are grouped by three main areas or parent states: LoginArea,
ProviderArea and CustomerArea.

Every web user can access the login context node loginViaPasswordForm which is inside
the LoginArea indicated by the {isHome} tag. Inner states are tagged by {unauthorizedAccess=
Error} which represents the default violation node. Logged in users with the role customer can
access the whole CustomerArea indicated by the inherited {roles} tag. In addition, they must
follow the SNPs as defined by the transitions between the navigational nodes to be allowed to
request a protected node. This means, e.g., to get access to showBonusCode the user has to be
associated to the role customer and he must have been on buyEnergy right before. In order
to get access to customerHome the user needs to have the same role but must have been on one
of the nodes loginViaPasswordform, showEnergyOffers or showConfirmation right
before and so on. Otherwise, the user gets redirected to the error state as defined in the tag
{unauthorizedAccess}. Each user which enters the constraint violation node error gets logged
out automatically as indicated by the entry event entry / logout().

SNPs for providers are modeled in an analogous manner as depicted in the lower-left corner
of figure 6.14.

132 6. Artifact Generation

ShowConfirmation

«collection»
ShowEnergyOffers

{itemType = EnergyOffer}

ShowBonusCode

CustomerHome

BuyEnergy

offerIncludesBonus

«session»
CustomerArea
{roles = customer,
unauthorizedAccess = Error}

LoginViaPasswordForm

«session»
LoginArea

{isHome}

LaunchNewBonusProgram

ProviderHome

«session»
ProviderArea

{roles = provider,
unauthorizedAccess = Error}

logout()entry /

«navigationalNode»
Error

«session»
SmartGridBonusApplication

{transmissionType = "cif"}

ok()

[no]

listOffers()
back()

buyOffer(_)

confirm()

[yes]

ok()

launchBonusProgram()
confirm()

login(...) [role=customer]

login(...) [role=provider]

logout()

logout()

ok()

Figure 6.14: SNPs: SmartGrid Bonus – Navigation model

6.6 Summary and Related Work 133

The following listing shows an excerpt from the navigation rule file which is generated by our
tool MagicSNP from the state machine shown in figure 6.14.

navigation.file={
"_comment":"Build time: 10.10.2012 11:12:38",
"application":"SmartGridBonusApplication",
"locations":[...
{"location":"showEnergyOffers","violation":"error","home":false,
"rules":[{"role":"customer",

"pre_visited":["customerHome"]}]},
{"location":"buyEnergy","violation":"error","home":false,
"rules":[{"role":"customer",

"pre_visited":["showEnergyOffers"]}]},
{"location":"showBonusCode","violation":"error","home":false,
"rules":[{"role":"customer",

"pre_visited":["buyEnergy"]}]},
{"location":"customerHome","violation":"error","home":false,
"rules":[{"role":"customer",

"pre_visited":["showEnergyOffers",
"showConfirmation",
"loginViaPasswordForm"]}]},

{"location":"showConfirmation","violation":"error","home":false,
"rules":[{"role":"customer",

"pre_visited":["buyEnergy",
"showBonusCode"]}]},

...],
"default_violation":"error"}

The rule file contains information for a generic monitor to provide navigational access control
including SNPs for a web application: The default violation node is error, defined by the
attribute default violation on the outermost level. Furthermore, every single location entry
holds the corresponding violation node and a list of access rules. Each rule entry represents a
user role that is allowed to access the current navigational node. In addition, the attribute
pre visited specifies navigational nodes the user is allowed to come from. The rule file can be
imported in our SNPmonitor as well as in our SNPpolicyTester.

6.6 Summary and Related Work
We answered the second part of RQ3, namely “How can resulting models be used in the develop-
ment process?”. Security models can serve as a basis for manual implementation of applications,
as well as for a model-driven process. In this chapter, we showcased the generation of various
artifacts based on UWE security models.

Artifact Generation. First, we experimented with a textual notation for UWE called Tex-
tualUWE that is represented as an internal DSL in Scala. It was created with the thought in
mind that UML with its inaccuracies might not be the best choice for modeling security. How-
ever, it turned out that at the high level of abstraction that UWE models are located at, possible
model inconsistencies due to the nature of UML do not play a major role. An example of a DSL

134 6. Artifact Generation

in the area of web applications is WebDSL [93], a DSL from which Java web applications can be
generated. It implements access control, but does not focus on the configuration of other security
mechanisms. Second, we introduced the UWE2FACPL toolchain, which consists of an export
of access control rules from the UWE Basic Rights model to policies written in XACML [149]
and a transformation from XACML policies to more formal FACPL policies [130]. Third, we
created the ACT toolchain. For exported XACML policies, requests were generated and tested
using a Policy Decision Point (PDP). Thereby, the final step of the toolchain is able to detect
inconsistencies. We integrated the ACT toolchain as well as the UWE2FACPL toolchain in a
tool workbench, called SDE [193]. Many other approaches exist that address the complexity
of XACML, as e.g., graphical editors like a Scratch-based graphical policy editor [142] or the
UMU-XACML-Editor21. The advantage of starting our toolchains at UWE’s Basic Rights model
is that it abstracts from the complex, tree-like structure of XACML policies and not only from
writing XML, like these editors do. Fourth, we sketched a transformation called ActionUWE that
transforms UWE models to ActionGUI models [11]. However, we abandoned our original plan to
implement a transformation from UWE to ActionGUI in order to generate code from ActionGUI
models, as it turned out that it would not be efficient, when compared with traditional coding of
the limited kind of applications that could be generated. Fifth, we modeled, tested and enforced
navigation paths, i.e., the sequence of navigational nodes a web user visits within a web applica-
tion. The closest related work is published by Braun et al. [31], who created a robust approach
for SNPs for MVC-based web applications where policies are specified using a textual notation
instead of UWE’s Navigation model.

Most transformations that are described in this chapter have already been published as joint
work. Special thanks go to all coauthors of these publications.

Outlook. As our tools to generate artifacts serve as proofs-of-concepts, there is room for im-
provement. In addition, future work could examine, how tools can assist in round-trip engineering,
i.e. in keeping UWE models up-to-date in case associated code implies that design decisions might
have been changed. It also would be interesting to extend MagicUWE in a way that it derives
security features from tools that manage security goals, like Adamant22. These features could
then be suggested to the modeler for refining or adding them to an application’s UWE model.

21UMU-XACML-Editor. https://sourceforge.net/p/umu-xacmleditor/
22Adamant. http://adamant.q-e.at/

https://sourceforge.net/p/umu-xacmleditor/
http://adamant.q-e.at/

Part IV

Conclusion

Chapter 7

Summary

The approach presented in this thesis consists of three parts, as depicted in figure 7.1: SecEval,
a security-aware conceptual evaluation framework; SecWAO, an ontology for the domain of web
engineering, which instantiates SecEval, and a security extension for the modeling language UWE
that references concepts of SecWAO in order to document design decisions for secure web appli-
cations. In the following, we briefly summarize the answers to the research questions posed in
the introduction (section 1.2).

RQ1 Which key concepts emerge while developing software? Which properties do
these concepts have and how are they related to each other? How can this
knowledge be applied to evaluate concepts?

We identified the key concepts for developing software as assets, methods, tools, notations,
security properties, vulnerabilities and threats (so-called knowledge objects). Our Security
Context model represents knowledge objects with their properties and relations. For exam-
ple, a method can be supported by a tool to detect a vulnerability that endangers a security
property, which was intended to be a property of an asset (cf. figures 3.4ff.). Properties
of methods and tools can best be described with attributes according to the phases of the
Software Development Life Cycle (SDLC) they are used in, e.g., for a design method it is
worth knowing if it is able to generate artifacts. The Security Context model is part of our
novel conceptual framework, called SecEval.

In addition to the Security Context model, SecEval supports the process of evaluating
concepts, as e.g., selecting appropriate methods or tools within the development process.
Therefore, the Data Collection model can be used to plan and document research questions
and queries on used resources, such as search expressions for search engines. The Data
Analysis model involves the analysis strategy that is used, which includes filtering and
categorizing data. As the Data Analysis model is connected to the Security Context model,
data can easily be reused from previous evaluations or compared with them.

We demonstrated that the Security Context model can also smoothly be used as an under-
lying structure for an ontology or a knowledge base, which was implemented as a wiki-like
web application. Furthermore, SecEval models can easily be extended to meet needs of ad-
ditional domains, as shown for Moody’s method evaluation approach and OWASP’s Risk
Rating Methodology.

138 7. Summary

SecEval

Conceptual Evaluation Framework

IT security concepts
with their relations & attributes;

evaluation process

SecWAO

Secure Web Applications’ Ontology

web engineering security
concepts and relations

UWE

Modeling for Secure Web Applications

secure web applications’
modeling elements;

artifact generation tools

RQ2

RQ1

RQ3

instantiates

references

Figure 7.1: The presented approach, including SecEval, SecWAO and our UWE extension

RQ2 How are assets, security engineering methods, notations, tools, security prop-
erties, vulnerabilities and threats related in the domain of web application
security?
Even without any extensions, SecEval’s Security Context model turned out to be expressive
and yet concise enough to serve as an appropriate TBox for our Secure Web Applications’
Ontology (SecWAO). Consequently, we present concrete relations in the ontology, e.g.,
the security property “control flow integrity” can be endangered by Cross-Site Scripting
(XSS), a vulnerability that may be exploited by a common threat like JavaScript code that
steals assets such as user data displayed on a website (cf. figures 4.1ff.). By presenting
a comprehensive view of web engineering security, SecWAO can give thought-provoking
impulses for security-related decisions that should be taken during the development process
of web applications.

RQ3 How can security aspects of web applications be expressed? How can resulting
models be used in the development process?
Security of web applications can be expressed using distinct models that provide different
views on the architecture of a web application, including its security aspects. We thus
extended the existing modeling technique UWE that already provided different views on
web applications. Beyond others, UWE defines the Requirements model for modeling use
cases, the Content model for the application’s data structure and the Navigation model
for defining the paths that a web user can navigate on through the web application. We
systematically explored SecWAO’s security properties and methods in order to model them
as UML stereotypes and tags in UWE. This creates the possibility for web engineers
to document security requirements, abstract design decisions as well as concrete plans

139

regarding employed methods or tools. For example, the methods or tools that are used or
should be used to prevent XSS vulnerabilities within a certain web application’s component
can be documented using the {xssPrevention} tag. This is possible due to the UWE
profile where we added this tag to UWE’s stereotype ≪component≫ that inherits from
UML components – a stereotype that is supposed to be used in UWE’s Content model.
The resulting models can be used in the development process in various ways, as our case
studies in the areas of smart grid, cloud and patient monitoring confirmed. Besides of
modeling, several artifacts can be generated from UWE models, as e.g., access control
policies can be generated from UWE models, such as XACML or FACPL policies. In
addition, tools can export artifacts for testing and enforcing secure navigation paths, i.e.,
the sequences a web user is restricted to while using a web application.

In the end, we think that the basis for developing complex and yet sufficiently secure software
is not only the acquisition of professional knowledge about IT security, but also the awareness of
dependencies and the willingness to consciously make, document and implement design decisions.
Our approach supports diligence in secure software development, as it bridges the gap between
vague security knowledge and the conscious protection of web applications. Therefore, all methods
and notations we provide are designed to be usable as a whole or in parts in any software
development process, whenever practitioners want to take advantage of them.

Chapter 8

Future Work

In this chapter, we like to point out starting points for future research and indicate open questions.
On the one hand efforts should be made to adapt our approach to future changes and to extended
tool support. On the other hand, securing software is not a purely technical endeavor and it would
help to better understand long-term human interactions with development methods that try to
raise security awareness as well as social expectations regarding the protection of data and the
accepted dependence on technology in favor of technical progress.

Continuous Adaptation and Further Development. Security of web applications is a
dynamic field; every year new threats, new vulnerabilities and new security methods are emerging.
In order to remain useful, SecWAO should encompass arising concepts. As a consequence, it might
be desirable to further extend UWE to cope with these concepts. Consequently, it could also be
interesting to compare different versions of SecWAO in the distant future to analyze what has
been considered central for the domain of web application security over time.

Beyond mere adaptation, further development of SecEval and SecWAO might be used for
structuring and illustrating the contents of a kind of “Guide to the Software Engineering Body
of Knowledge (SWEBOK)” [29] for secure software engineering. Besides, it would be interesting
to bring together some concepts of SecEval and SecWAO and existing ontologies, structures
and standards from, e.g., threat databases, weakness databases, vulnerability databases, threat
intelligence approaches, safety (IEC 615081) or general quality factors (cf. ISO/IEC 250102). In
addition, the use of UWE models in quickly evolving environments, as e.g., in agile projects, could
be examined. Breu’s work [32] and other research that focuses on change propagation between
modeling views, between model and code and within code (i.e., refactoring approaches) could be
a source of inspiration for this task.

Extended Tool Support. In general, UML tooling could be improved to a great degree, as
even working with commercial tools like MagicDraw [147] is often time-consuming and annoying,
because it is not possible to use layers for hiding momentarily irrelevant details and the styling
options are very limited. This experience is consistent with findings from Mohagheghi et al. [135]
and Chaudron et al. [53]. The latter conclude that the “decision whether or not to modeling in a

1IEC 61508. http://www.iec.ch/functionalsafety/
2ISO/IEC 25010. http://www.iso.org/iso/catalogue detail.htm?csnumber=35733

http://www.iec.ch/functionalsafety/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

142 8. Future Work

software project is not so much driven by cost factors. Instead, this decision is strongly influenced
by a hygiene factor: inadequate tooling.”. Ideas for future work regarding modeling and modeling
tools are elaborated by Mussbacher et al. [139].

Regarding the further development of UWE, a closer connection to code is desirable, not only
for round-trip engineering, but also for drawing the developers’ attention to general decisions
that were made, without the need to leave the IDE, as also discussed by France et al. in [86]. We
think it could be worthwhile to investigate in warnings that appear in the IDE on the basis of the
models. Another approach would be to provide means for marking parts of code or configuration
files that are key for realizing a certain security property and should only be changed with
increased attention, e.g., requiring the 4-eyes principle.

For working with SecEval, we suggest enhancing our wiki-like knowledge base. Regarding the
maintenance of SecWAO, collaborative editing and simple accessibility is crucial, which could be
achieved by porting the ontology to a web-based system. A tagging system that allows to tag
(or briefly comment) every bit of information on the spot including the possibility for subsequent
visitors to vote tags / comments up or down could help to find out if new relations should be
introduced (cf. [225, ch. 4.1]). It might be worth a try to extend semantic editors, such as
WebProtégé [206], in a way that elements of our ontology can be browsed in a 3D tag cloud
that can be filtered and rotated. For each element, links to existing information (from OWASP,
Wikipedia, Cybrary3, . . .) could be made available and it should be possible to create high-quality
snapshots that can be used as infografics or for discussions with peers.

Long-term Evaluation. From our practical experience in using our approach, a well-inform-
ed choice is easier to be made if it is feasible to get an overview of existing security engineering
methods, notations and tools as well as security properties, vulnerabilities and threats. Further-
more, the web applications’ level of security is assumed to benefit from having a comprehensive
view of decisions that were made, as long as they are connected to relevant parts of the applica-
tion’s architecture. However, long-term evaluation is needed to show that the effect we observed
in our case studies can be repeated in large projects that run over many years.

It would also be interesting to conduct empirical studies in order to find further ways to
support conscious, secure software development, i.e. methods to make practitioners aware of im-
portant facts, and decisions that should be taken. Thereby, the challenge is to develop techniques
that are able to rate risks in a certain context so that practitioners are guided to pay attention
to high-priority tasks first.

Examining Connections to Other Disciplines. As it is not possible to secure all systems
and applications a hundred percent and to restrict all functionality in a way that it can only be
used for legal purposes, collaboration with social sciences is essential. But then, legal and political
requirements influence the work of software and security engineers as well.

In the areas of politics and law, two contrary social expectations collide: On one side, protec-
tion of data and with that privacy, and on the other fair jurisdiction and prosecution of criminals
who intercepted critical data, which usually requires traceability. Article 12 of the Human Rights
Declaration4 states that “No one shall be subjected to arbitrary interference with his privacy,
family, home or correspondence, nor to attacks upon his honor and reputation. Everyone has
3Free IT and cyber security learning. http://cybrary.it/
4The Universal Declaration of Human Rights. http://www.un.org/en/documents/udhr/

http://cybrary.it/
http://www.un.org/en/documents/udhr/

143

the right to the protection of the law against such interference or attacks.” In the realm of web
security, conflicting examples can easily be found, as crimes can be committed using the Internet,
where the actor’s actions can be concealed using the same technical means as those that ensure
the privacy of innocents. Thus, we think that this field needs careful consideration of technical
feasibility and its practical implications to counteract what Will et al., the authors of the book
“Blackhatonomics”, describe as “a great time to be a cybercriminal: Not only have the laws of
most countries not yet caught up with the technology (let alone the crime), but the politics of
creating cybercrime laws are mired in a power struggle between agencies in single countries, and
are struck in an absolute gridlock when more than one country is involved” [92, p.2].

Another huge research topic considers social expectations regarding technical progress and the
thereby increasing dependence on technology (especially on cyber-physical systems) that cannot
yet be secured adequately. Daily news continuously report on recent, severe security incidents
as data theft on web applications or successful attacks on critical infrastructure like cars [134],
central heatings5 or cardiac pacemakers6.

Many questions arise from this situation, as e.g., the following: Is it wise to do everything
that is technically possible? To what extend does our society profit, due to cost reduction
and additional features, from interconnected, “smart” devices that can be controlled via web
applications or mobile apps, despite high security and hence safety risks? If everything gets
connected and controlling technological systems means exercising power, how does this interfere
with the principles of democracy? How big is the willingness of users to refrain from using certain
features, because they cannot be appropriately secured? When do people start to despair or stop
to speak out freely, because they feel helpless regarding the fact they might be spied upon without
noticing? Could the overall situation be improved by intensifying product liability, including legal
responsibility for data breaches in commercial software7? For software and security engineers,
all these questions are relevant for taking an unequivocal stand on software features they are
inclined work on, which could mean to speak up, in case professional ethics are violated, e.g.,
by a technical security risk that seems to be irresponsibly high. In any case, we think it is of
supreme importance to examine how a basic understanding and awareness of web security can be
brought not only to developers, but also to users so that they can take informed decisions.

We expect IT security to remain an important topic, in particular as humans tend to un-
derestimate risks (optimism bias), due to the feeling that outcomes can be controlled, even if

5Vaillant-Heizungen mit Sicherheits-Leck. (German) http://www.heise.de/-1840919.html
6Hacking Pacemakers. http://spectrum.ieee.org/podcast/biomedical/devices/hacking-pacemakers
7“Information insecurity is costing us billions. We pay for it in theft: information theft, financial theft.
We pay for it in productivity loss, both when networks stop working and in the dozens of minor security
inconveniences we all have to endure. We pay for it when we have to buy security products and services
to reduce those other two losses. We pay for security, year after year.
The problem is that all the money we spend isn’t fixing the problem. We’re paying, but we still end
up with insecurities. The problem is insecure software. It’s bad design, poorly implemented features,
inadequate testing and security vulnerabilities from software bugs. The money we spend on security is
to deal with the effects of insecure software. And that’s the problem. We’re not paying to improve the
security of the underlying software. We’re paying to deal with the problem rather than to fix it. The
only way to fix this problem is for vendors to fix their software, and they won’t do it until it’s in their
financial best interests to do so. Today, the costs of insecure software aren’t borne by the vendors that
produce the software. In economics, this is known as an externality, the cost of a decision that’s borne
by people other than those making the decision” [186, ch. 1, p. 12].

http://www.heise.de/-1840919.html
http://spectrum.ieee.org/podcast/biomedical/devices/hacking-pacemakers

144 8. Future Work

sufficient influence through controls is unrealistic [131]. However, approaches like those presented
in this thesis provide support for taking security into consideration from the beginning of the
development process, aiming at the prevention of vulnerabilities in the first place.

Part V

Appendix

Appendix A

Attribute description of SecEval’s
Security Context Model: Methods
and Tools

In section 3.2.1, SecEval’s Security Context model is introduced including most class’ attributes.
However, we just briefly mentioned some attributes that describe methods or tools according
to the phases in the SDLC they belong to. In the following two sections, these attributes are
described successively.

A.1 Methods
In the following, attributes shown in figure 3.5 (MAreasofDev) are detailed:

RequirementsM.comprisesElicitation is set to true if a method is used for requirement elic-
itation.

RequirementsM.comprisesAnalysis is set to true if a method comprises the analysis of re-
quirements.

RequirementsM.comprisesSpecification is set to true if a requirements specification is part
of a method.

RequirementsM.comprisesManagement is set to true if the management of requirements is
defined by a method.

RequirementsM.levelOfDetail describes how detailed the method’s requirements features
are. As this is a subjective value, we recommend adding a short explanation.

DesignM.isUsedForCommunication is set to true if a design method is also used for com-
munication purposes, as e.g., UML.

DesignM.canGenerateArtifacts is set to true if the method specifies the generation of arti-
facts (code, configuration files, . . .) out of the design of an application.

148 A. Attribute Description of SecEval’s Security Context Model

ImplementationM.supportedLanguageTypes types of languages supported by a method.
An example would be: “functional programming languages” are supported by a method
that auto-completes fragments of code.

ImplementationM.inspectsArtifacts is true if the method relies on read access to artifacts,
as e.g., program code.

ImplementationM.writesArtifacts is true if the method writes artifacts, as in the above-
mentioned example of code completion.

ImplementationM.changesArtifacts is true if the methods changes existing artifacts.

ImplementationM.completesArtifacts is true if the method completes already existing ar-
tifacts. An example is the auto completion used in development environments.

ImplementationM.givesSecurityAdvice is true if security-related hints are provided during
the implementation.

TestingM.isTestingWebApp is true if a method describes how to test web applications.

TestingM.isTestingNetwork (same with network-related testing)

TestingM.isTestingSystem (same with system-related testing; the system refers to a soft- or
hardware system)

TestingM.isWhiteboxTest is true if the method is based on white-box tests, which means
that the tester has full access to all internal details of a system.

TestingM.isBlackboxTest is true if the method is based on black-box tests, which means that
code and other internal details cannot be accessed by a tester.

TestingM.isGreyboxTest is true if the method uses tests that are a mixture of white-box and
black-box tests, which means that the tester can access some internal details of the system,
but not all.

DeploymentM.versionTrackingApproach describes the approach that is used for tracking
available versions of a piece of software.

DeploymentM.adaptionProcessToNewEnv describes the process that is specified for adapt-
ing software to a changed environment, e.g., if hardware is changed.

DeploymentM.updateProcess describes the process for updating software.

AssuranceM.usedFormalisms lists the formal methods that are used by an assurance-related
method. This is a shortcut in case we do not want to model those formalisms as a method
on its own.

AssuranceM.assuranceCriteria gives the criteria the assurance process relies on.

A.1 Methods 149

AssuranceM.canProvideCounterExample. In case formal methods are applied, it often
makes sense to provide a counter example. The attribute is true in case the method can
give at least one.

AssuranceM.canProvideProof is true if a formal proof for a certain criterion can be given.

ProtocolVerification.usedAdversaryModels. Protocol verification is an example how to go
into more detail without changing the core of SecEval: e.g., the used adversary models
can be specified with this attribute.

ProtocolVerification.usedEquation describes the equation that is used.

ProtocolVerification.usesFixedProperties is true if fixed properties are used for the protocol
verification.

RiskAndCostM.usedIndicators names the indicators used to analyze security-related risks
and costs.

RiskAndCostM.supportsRiskIdentification is true if the method gives advice how to iden-
tify risks.

RiskAndCostM.supportsRiskAssessment is true if the method supports risk assessment
approaches.

RuntimeM.worksWithLanguages lists programming languages on which the method can be
applied. Usually, methods that define techniques related to the runtime behavior of the
targeted system are rather language-specific.

RuntimeM.canDamageSystem is true if the method describes how to damage a running
system. This applies especially for attack-related methods.

RuntimeM.canInsertData is true if the method allows data to be inserted into the running
system so that the system uses it.

RuntimeM.canAlterData is true if the method comprises changing data.

RuntimeM.canStealData is true if the method defines how to steal data.

RuntimeM.canInspectData is true if the method assumes that inspecting data is possible.
This does not include that data can also be transferred outside of the system, which would
be stealing.

RuntimeM.canInspectFlow is true if the flow of data can be inspected.

RuntimeM.canGenerateFlow is true if a data flow chart can be generated.

RuntimeM.canBlockFunctionCalls is true if the method specifies how to block function calls.

ServiceCompositionM.supporedTypesOfServices names services that are eligible to be
composed.

150 A. Attribute Description of SecEval’s Security Context Model

ServiceCompositionM.securesServiceComposition is true if the method describes how to
secure a service composition.

ServiceCompositionM.knowsAvailableServices is true if the concept is to know available
services.

ServiceCompositionM.isCentralized is true if the method anticipates a centralized instance
for being applied.

A.2 Tools
Attributes that describe methods also describe tools, due to the fact that tools (partially) support
methods. This means, a tool is implicitly described by method’s attributes, which leaves fewer
attributes that are tool-specific. In the following, these attributes, which are depicted in figure 3.6
(TAreasofDev), are detailed:

RequirementsT.supportsHandwrittenSketches is true if handwritten sketches can be man-
aged with the tool.

DesignT.generatedArtifacts lists artifacts (like code) that can be generated by the tool.

ImplementationT.worksWithLanguages names languages that are supported by the tool.
Examples are tools that perform auto-completion on the code. The related method might
be called “auto-completion on imperative languages” and a tool could support Java.

TestingT.targetLanguages lists languages the target system can be written in so that the
testing-related tool can be applied.

TestingT.targetArchitectures describes how the system architecture has to look like in order
to test it with the tool.

TestingT.targetFrameworks names target frameworks that are supported by the tool.

TestingT.usedExploitDatabases refers to databases containing up-to-date exploits.

DeploymentT.canInstallSoftware is true if tool is able to install software.

DeploymentT.canConfigureSoftware is true if tool is able to configure software.

DeploymentT.canAdaptSoftwareToChangedEnv is true if the tool can adapt software to
a changed environment, e.g., a changed hardware environment or a changed server config-
uration.

DeploymentT.canUpdateSoftware is true if the tool can update software.

DeploymentT.canUninstallSoftware is true if the tool can uninstall software.

DeploymentT.hasVersionManagement is true if the tool can track versions of software,
which means it manages versions of different software that can be used together.

A.2 Tools 151

DeploymentT.canCheckSecureInstallation is true if the tool can make sure that software
was installed correctly so that security requirements are fulfilled.

DeploymentT.canCheckCorrectInstallation is true if the tool can make sure that software
was installed correctly.

DeploymentT.isConnectedToConfigurationMngt is true if the tool is connected to or im-
plements a configuration management system.

AssuranceT.canExportLaTeXproof is true if a proof is part of the assurance-related method
and it can be exported as LATEX formulae.

AssuranceT.canVisualizeAttacks is true if attacks can be visualized using graphical models.

RiskAndCostT.usedManagementInterfaces lists management interfaces used by the tool,
e.g., an interface to an Enterprise Resource Planning (ERP) system.

RuntimeT.isInstalledOnTargetSystem is true if the tool is installed on the same system
where the target software is installed which is accessed at runtime.

RuntimeT.canCoverOwnTraces is true if the tool is able to cover the own traces, as e.g.,
logfile entries or additional files that were downloaded. This usually applies to tools that
are used for attacks.

RuntimeT.usedExploitDatabases lists databases containing known exploits.

ServiceCompositionT.supportsOfflineServices is true if the tool supports services that run
offline, i.e., are not running at a server.

ServiceCompositionT.supportsOnlineServices is true if the tool supports services that run
online, i.e., are running at a server (which is usually not the host where the service com-
position tool is installed).

Appendix B

SecEval Questionnaire

In the following, the questionnaire about SecEval’s Security Context model is reprinted [42,
appendix]. It was handed out at the NESSoS plenary meeting in Málaga (29.5.-31.5.2013). In
the original version of the questionnaire, there was more space after each question so that the
answers could be handwritten.

B.1 Security Engineering Method and Tool Evalua-
tion

Our aim is to provide an approach for the evaluation of methods and tools for the engineering of
secure software systems. In our approach we do not only distinguish methods and tools, but also
notations. For an evaluation and comparison approach we need to define (1) the process of how
to conduct a comparison and (2) the structure used to collect security-related data and metrics
to analyze it. Therefore, we define a conceptual framework that comprises these three aspects:
Security Context, Data Collection and Analysis. We depict the concepts and their relationships
as a model (see Figure B.1 for an overview), so that we can instantiate concrete methods, tools
and notations.

Additionally, we will compare other approaches with our framework in order to further adapt
or extend it with the objective to make it more general. The basic structure of our model of
the Security Context is as depicted in figure B.2.

The classes Method, Notation and Tool are depicted in the center. They inherit general
attributes, as e.g., names and URLs, from the abstract class Mechanism (we are still looking for
a better name to replace “mechanism”, suggestions are welcome!). A tool can support methods
and a notation can be used for several methods.

154 B. SecEval Questionnaire

Figure B.1: Overview

Security features are shown on the left hand side of Figure B.2.

∙ A Security Property can be, e.g., authorization, authentication, integrity, etc. Several
security properties can be enforced or attacked by a method.

∙ A Vulnerability can endanger security properties. Examples are XSS, SQL Injection,
Buffer or Overflows, etc.

∙ A Threat can exploit vulnerabilities. Threats are kind of methods which are vicious.

In Figure B.3 resp. B.4, the classes Tool and Method are refined according to their usage
in the Software Development Life Cycle (SDLC).

B.1 Security Engineering Method and Tool Evaluation 155

Figure B.2: Security Context

156 B. SecEval Questionnaire

Figure B.3: Security Context: Details of Tools

Figure B.4: Security Context: Details of Methods

B.2 Questions and Suggestions 157

B.2 Questions and Suggestions
1. Name:

Partner:

2. Areas of security you are working in?

3. Can methods from your area be represented using our model?
Provide examples of methods.

Are concepts or relationships missing? Which?

4. Can tools from your area be represented using our model?
Provide examples for tools.

Are concepts or relationships missing? Which?

5. Can notations from your area be represented using our model?
Provide examples of notations.

Are concepts or relationships missing? Which?

7. Would you use our structure to evaluate tool, methods or notations in your area? If not, what
would your approach look like?

If yes, where do you see its strengths?

8. Can you suggest related work (esp. for managing tool and method portfolios for the area you
are working in or general approaches to compare with our approach)?

9. General comments or improvements?

Appendix C

Excerpt of the UWE Profile

UWE models and their stereotypes and tags are defined in the UWE profile. This chapter
depicts (excerpts) of diagrams that show the relation of stereotypes, tags and metaclasses in the
UWE profile. The full profile can be downloaded from the UWE website [224], including the
specification of the Presentation model and of the Process model, which are not in the focus of
this thesis.

C.1 Requirements Model

transmissionType : String
isLandmark : Boolean = false
guard : String [0..1]
availability : String

«stereotype»

webUseCase

«stereotype»

browsing
«stereotype»

processing

requirementsModel
«stereotype»

«Metaclass»

Model
«Metaclass»

Package
«Metaclass»

UseCase

Figure C.1: UWE profile: Requirements model

160 C. Excerpt of the UWE Profile

C.2 Content Model

inputValidation : String
injectionPrevention : String
outputSanitization : String
objectRefManager : String
usedInStates : State [*]
scalability : String
domain : String
accessControlEnforcementSystem : String
updatePolicy : String

«stereotype»

component

trustedThirdParty : trustedThirdParty

«stereotype»

non-repudiation

parameterized prepared statements
parameterized stored procedures
escaping user supplied input

«enumeration»

SQLinjectionPrevention

isStream : Boolean
isDownloadable : Boolean
secureTransportOnly : Boolean

«stereotype»

file

confidentiality : Boolean
confidentialityStrategy : String
integrity : Boolean
integrityStrategy : String
availability : String
retention : String
backupStrategy : String

«stereotype»

storage

SynchronizerTokenPattern
CAPTCHA
One-timeToken
Re-Authentication
checkingReferrerHeader
checkingOriginHeader
x-frame-options

«enumeration»

CSRFprevention

input validation libraries
content security policy
x-xss protection header
http-only flag for cookies

«enumeration»

XSSprevention

view
delete
copy
share
print
save
extractContents

«enumeration»

DRM

blacklisting
whitelisting

«enumeration»

InputValidationType

«stereotype»

trustedThirdParty

signature
hash
transportSecurity

«enumeration»

Verification

«Metaclass»

Operation
«Metaclass»

Model

«stereotype»

contentModel

«Metaclass»

Component

«Metaclass»

Comment

Node
«Metaclass»

Class
«Metaclass»

xssPrevention*

downloadVerification
*

csrfPrevention

*

inputValidationType

drm

*

sqlInjPrevention

Figure C.2: UWE profile: Content model

C.3 User Model and Role Model 161

C.3 User Model and Role Model

-verifiedIdentityBy : String
-pseudonymity : Boolean
-enforceAnonymity : String

«stereotype»

webUser
«stereotype»

sessionClass

«Metaclass»

Class

«stereotype»

userModel
«stereotype»

roleModel

«Metaclass»

Model

Figure C.3: UWE profile: User model and Role model

C.4 Basic Rights Model

Connected to classes

Connected to classes

Connected to attributesConnected to methods

accessibleInAppModes : appMode [*]
notAccessibleInAppModes : appMode [*]
logged : Boolean
nonReupdiation : trustedThirdParty

«stereotype»

accessType

selectionRange : Enumeration
defaultSelection : EnumerationLiteral

«stereotype»

userDefined

timeFrame : String
roles : String [*]

«stereotype»

separationOfDuties

«stereotype»

authorizationConstraint

aggregating
analyzing
classifying
summarizing
reporting
validating
sorting

«stereotype»

dataProcessing

except : Operation [*]

«stereotype»

executeAll

except : Property [*]

readAll
«stereotype»

except : Property [*]

updateAll
«stereotype»

«stereotype»

basicRightsModel

«Metaclass»

Model

«Metaclass»

Dependency

«stereotype»

update
«stereotype»

execute

«stereotype»

create

«stereotype»

read

«stereotype»

delete

«Metaclass»

Comment

«comment»

Instances of a "Role" class can be connected to
classes, attributes, methods or other elements from
the content model using dependencies.

Figure C.4: UWE profile: Basic Rights model

162 C. Excerpt of the UWE Profile

C.5 Navigation Model

isHome : Boolean [0..1]
isModal : Boolean
accessibleInAppModes : appMode [*]
notAccessibleInAppModes : appMode [*]
accessPrecondition : String
transmissionType : String
enforceNavigationFlow : Boolean
fixedParam : String

«stereotype»

navigationalNode

goBack : Boolean [0..1]

«stereotype»

target

locationExpression : String [1]
newTab : Boolean

«stereotype»

externalLink

roles : InstanceSpecification [*]
sessionData : sessionClass [*]
reauthIf : String
reauth : Boolean
newSessionID : Boolean

«stereotype»

session
SynchronizerTokenPattern
CAPTCHA
One-timeToken
Re-Authentication
checkingReferrerHeader
checkingOriginHeader
x-frame-options

«enumeration»

CSRFprevention

itemType : Classifier [0..1]

«stereotype»

collection

expression : String [0..1]

search
«stereotype» «stereotype»

integratedMenu

«stereotype»

navigationStatesModel

«stereotype»

unauthorizedAccess

«stereotype»

browserDependent
«stereotype»

navigationMenu

«Metaclass»

State

«stereotype»

allItems

«Metaclass»

Class

«Metaclass»

Transition

«Metaclass»

StateMachine
«Metaclass»

Model

«stereotype»

logicalLink

«Metaclass»

Pseudostate

csrfPrevention

*

goBackDefault
0..1

node
0..1

unauthorizedAccess0..1

navigationMenu *

Figure C.5: UWE profile: Navigation model

C.6 Application States Model

«stereotype»

appMode
«stereotype»

appModeModel

«Metaclass»

Model
«Metaclass»

State

Figure C.6: UWE profile: Application States model

Appendix D

Case Study: Energy Management
System

Exemplarily, one of our case studies that we briefly introduced in section 5.1 – namely the Energy
Management System (EMS) – is presented in this chapter. We first introduce the surrounding
and general requirements, before security-related requirements and design decisions are discussed
together with a selection of UWE models of the EMS web application. This chapter is based on
joint work with Nora Koch, and Santiago Suppan [44]. All diagrams of our EMS case study can
be downloaded from the UWE web site [224].

D.1 Environment and Requirements
This section describes the Energy Management System (EMS) case study and in particular the
web application of the EMS that controls Smart Homes, which are households with interconnected
appliances. We start by introducing Smart Home components, continue by presenting actors and
conclude by explaining concrete functionality, before we go into more security-related details in
the next section.

D.1.1 Components of Smart Homes
Figure D.1 depicts a “Smart Home”. Generally, the EMS is an interface for the SmartGrid
customer that displays consumption data. Concrete instantiations can be realized by an appli-
cation that provides functionality for energy trading or for regulating the current drain. Ideally,
most appliances, as e.g., ovens, dishwashers, washing machines or lamps are so-called Smart
Appliances (SAs), which means they contain a small embedded-system that receives control com-
mands from the EMS and that informs the EMS about the current status. Additionally, SAs can
be controlled by pushing a button or by using an integrated touch screen.

For a household, exactly one EMS and one Smart Meter are installed locally, in a place where
they are protected from physical tampering. The Smart Meter is responsible for monitoring the
amount of energy that is sold or bought. As the EMS is connected to the web, remote access to
its web application allows users to interact with the EMS and to monitor energy consumption
from outside their homes.

164 D. Case Study: Energy Management System

Data

Electricity

SA: solar cell

EMS: Energy

Management

System

SA: TV

SA: vehicle

charging

20°C

SA: thermostat

SA: washer

Smart Meter

Internet

energy supplier

server

SA Smart Appliance

power plant

Figure D.1: Entities in the Smart Home (adapted from [65])

A possibility to control energy consumption more globally is Demand Side Management. It
envisions adapting the consumption level according to messages sent by energy providers. For
example, in situations when lots of energy is needed in an area, the energy provider notifies
all Energy Management Systems. Consequently, the EMS can send command messages to SAs
in order to turn them off. The concrete behavior when receiving a Demand Side Management
message can be controlled by user defined policies in the EMS.

D.1.2 Actors
According to [64], the prosumer (producer / consumer) is the end customer, who is consuming
energy as well as producing energy, e.g., by using photovoltaic or wind energy as decentralized
energy resources. Prosumers are also able to store energy, for instance in the batteries of the
electric vehicle and to resell the energy later to the so-called microgrid1 when the prices are
higher. We also refer to the prosumer simply as “(private) user” or “customer”.

Figure D.2 depicts a UML use case diagram, which gives an overview of the actors in our case
study and the main functionalities of the EMS. On the left, the private user is shown. Users can
create and configure other users, e.g., under-aged family members can be allowed to sign into the
EMS web application and to see their energy consumption, but they should not be able to trigger
electricity vending or purchasing functions. On the right, the Meter Point Operator (MPO) is

1The term microgrid [96] refers to areas where small communities trade local energy, in addition to the
energy supply provided by professional energy suppliers.

D.1 Environment and Requirements 165

CustomerWebInterfaceOfEMS

Trading

BuyEnergy

SellEnergy

UserManagement

Plug-inManagement

LocalEnergyControl

MPOinterfaceToEMS

ConfigureAllowed
LoginRegions

UpdateEMS

SetUpEMS

ReplaceEMS

ConfiguredMember

PrivateUser MPO

out of scope

PrivateUser
can create,
update and
delete other

users

Figure D.2: EMS: Requirements overview

depicted, who is responsible for installing, maintaining or replacing the EMS as well as the Smart
Meter. The tasks of the MPO are not considered in our case study.

D.1.3 Functionality
The main functionalities of the EMS are depicted in figure D.2: a user can buy or sell energy,
control local energy consumption by configuring SAs, install plugins to automate tasks or manage
other users. These use cases are described in more detail in the following.

Local Energy Control

As more and more Smart Appliances will be added to the home network, their heterogeneous
functionality has to be made available to the customer. The EMS web application can present, in
a uniform way, a coherent view to the user in the form of a portal, presenting information that the
EMS has collected from diverse sources (appliances or external servers). SAs, even new ones that
were non-existent when the web application was programmed and deployed, offer their services
through a standard interface to the EMS (cf. lower half of figure D.3, use case InteractWithSA,
depicted in bold font because it might be used relatively often). Hereby, auto-configuration (in
the sense of plug-and-play support) is important, as many customers may not become acquainted
with the full potential of the EMS. This case applies particularly to senior citizens.

Easy access to real-time information supports the users, e.g., to pay attention to their energy
consumption, as depicted at the top of figure D.3. Additionally, automatic peak load management
provides smart planning for reducing energy consumption. This Smart Planning feature (cf.
Configure Smart Planning Policy) can be enriched by plugins, which have to be installed
separately. Plugins might also be allowed to access the local usage history from SAs. This way
they can base their plan on previous user’s behavior. For example, hydronic heating might be
reduced automatically at times where usually no great quantity of hot water is needed.

166 D. Case Study: Energy Management System

LocalEnergyControl

ShowEnergyConsumptionProfileFromSmartMeter

UseSASpecificFunctionality, ...

InteractWithSA

OrderReplacement
ForBrokenSA

ChangeDefaultConfig
ForNewSAs

ListSmartAppliances

ShowDetailedHistory

Un/LoadBatteries

ConfigureSmart
PlanningPolicy

UsePlugin

PrivateUser

«extend»

«extend»

«include»

«extend»

«extend»

«extend»

«extend»«extend»

Figure D.3: EMS: Requirements of local energy control

Energy Trading

Selling and buying energy is a critical task, if the user wants the system to perform a trade
automatically. Consequently, policies have to ensure that the system acts in the interest of the
prosumer. As depicted in figure D.4, the recommendation / trade system can also be enriched by
plugins, offering so-called value added services. A value added service, such as a price comparing
third party service (e.g., when and who is offering the best conditions for green energy?) works
as follows: The third party provides a plugin that obtains current market prices from the third
party’s server. The plugin compares prices and consumption data locally. The result of the
comparison can either be a visual notification in the EMS or a process is started to renegotiate
Energy Supplier contracts, in case the prosumer has allowed automatic negotiation. In the latter
case, a notification is sent to the user after the (un-)successful provider change.

Plugin Management

As mentioned before, a key functionality is the interplay of the EMS and value added services.
Third parties can offer plugins that can be deployed into the EMS to provide further functionality
(cf. figure D.5). Plugins are limited, sandboxed algorithms that can enhance the EMS at two
predefined interfaces: the interface for smart planning (see local energy control) and/or the
interface for energy trading.

The customer accesses the EMS as a central administration point. No process should demand
direct interaction between the customer and an external third party service. Users can only search
for plugins, (un)install or update them (if not done automatically) or access a privacy dashboard
for plugins. The dashboard allows the user to restrict personal information a plugin can access
and functions it can execute.

D.1 Environment and Requirements 167

Trading

SellEnergy

ChangePolicyForSellingViaMicrogrid

ChangeWaysOfPayment

SellEnergy

BuyEnergy

PrivacyDashboardFor
EnergyConsumption

ChangePolicyToBuyEnergy

DownloadBillFromProvider

ShowContractInformation

ChangeCreditCardData

RegisterComplaint

BuyEnergy

UseRecommendation/TradeSystem

StartAutomaticNegotiation

ShowTurnover

UsePlugin

LocalEnergyControl

Un/LoadBatteries

PrivateUser

Energy is sold to
microgrid

E.g. Demand Side
Management
Plug-in. Energy
Provider sends
message if energy
is needed.

«extend»«extend»

«extend»«extend»

«extend»«extend»

«extend»

Figure D.4: EMS: Requirements of the energy trading system

PluginManagement

PrivacyDashboardForPlugins

InstallPlugin

UninstallPlugin

SearchForUpdates UpdatePlugin

PrivateUser

«extend»

Figure D.5: EMS: Requirements of the plugin management

168 D. Case Study: Energy Management System

UserManagement

OtherUsers

ConfigureRolesOfUser

ListUsers

CreateUser
DeleteUser

OwnUser

ContactMPOforLostAuth

Configure2-factorAuth

CreatePanicMode
Password

ChangePassword

PrivateUser

«extend»

«extend»

«include»

Figure D.6: EMS: Requirements of the user management

User Management

Prosumers can allow other persons to log into the web application by creating an account for
them, as depicted in figure D.6. However, not all users have to have the same rights. More details
about access control and other security features are given in the next section. Additionally, more
comprehensive descriptions of general smart grid functional requirements can be found in [62, 90].

D.2 Securing the EMS Web Application
This section introduces security features of the EMS, i.e., authentication, panic mode, reauthenti-
cation, secure connections, authorization, user zone concept, cross-site-request-forgery prevention,
under attack mode and SQL-injection prevention (cf. our SecWAO ontology in chapter 4).

Implementing coherent authentication is a challenge, as users must be able to log-in to their
EMS internally, from their home, and externally, using a mobile device, or a public terminal. A
two-factor authentication should be employed to access sensitive information of the EMS. Two-
factor authentication requires a knowledge factor (“something only the user knows”) and either
a possession factor (“something only the user has”) or an inherence factor (“something only the
user is”) from the user for the authentication to succeed. For example, a password has to be
entered together with a code that the user’s smart phone generates.

A feature rarely implemented in current web applications, is the panic mode. When the panic
mode is activated, the user interface will be displayed with reasonable information generated by

D.2 Securing the EMS Web Application 169

the EMS that does not reflect the user’s real information. This is especially needed for coercion
situations, where criminals might physically force users to reveal information of themselves or
to conclude long-term contracts with certain parties. The panic mode also protects threatened
users by pretending to malfunction or to execute functions successfully without any real impact.
Therefore, users have to authenticate themselves with predefined credentials which differ from
the usual ones: using the same username in combination with a panic mode password loads the
alternative user interface.

Besides the first authentication, prosumers can be forced to reauthenticate themselves. This is
often the case after a certain time of inactivity (often referred to as “automatic logout” in online
banking applications), but it is also common for critical areas. For example, web shops often allow
to store cookies to keep the user authenticated while browsing their offers. However, if the last
authentication is older than a certain amount of time, the users have to reauthenticate themselves
before being able to make a purchase. Regarding the EMS plugin installation functions, the last
authentication of a prosumer should not be older than 10 minutes, a typical time threshold also
used in online banking. The timeout avoids a takeover of a session by another person who has
access to the prosumers browser.

All kinds of authentication are useless, if the login process can be eavesdropped. Secure
connections, as e.g., TLS connections can be used to ensure the confidentiality, integrity and
freshness of all user’s request as well as of all response of the EMS. As encrypting a connection is
a time consuming task, it is an important design decision which parts of an application should be
secured. In the case of Energy Management, security weights more than speed, even if Demand
Side Management and energy trading are very time demanding [17]. Compromises in speed can
have impact on economic aspects, but compromises in security could mean a total blackout of
the power supply, producing high economic damages.

Apart from secure session management after authentication, a well implemented authoriza-
tion (access control) concept is needed to satisfy customer needs. There are several roles to be
considered, as family members might be involved in the customization of the Smart Home.

Many web applications require a user zone concept. If users are accessing the EMS from the
home area, they are permitted to access all prosumer managing functions (depending on their
roles). But if they are requesting access externally, stricter policies have to be enforced, depending
on the requester’s location, i.e. the IP address of the requester’s device. To configure this policy,
users inform their MPO that they are on holiday and that a certain location is the source of
legitimate requests.

A telling example is an attack from a foreign country. An attacker that is mimicking a
user will, by policy enforcement, be denied to alter the Smart Appliances’ behavior, if he is
accessing the EMS remotely from a very far place. This feature will not hold up against versatile
attackers, as several proxies or even computers that have been compromised by an attacker,
could be available in the desired geo-location. Still, this mechanism represents a filter against
unambitious attackers. There are several other mature attacks on web based technologies that
also could have an impact on the EMS, mostly related to so-called “common web application
vulnerabilities” [161]. As the EMS is remotely accessible by means of a web client, there is room
for session riding attacks. Depending on the user’s browsing application, cross-site-request-forgery
(abbreviated “CSRF”) might be used by a malicious attacker to trigger actions without the user’s
consent. For example, an attacker could trick users into interacting with the web server of a Smart
Appliance by letting them call an address like:

170 D. Case Study: Energy Management System

http://EMSremoteIP.com/SmartApplianceName/SmartApplianceFunction
This request cannot be called by an unauthorized person due to the policy enforcement inside
the EMS, but it can be triggered by means of CSRF.

The under attack mode is a dynamic protection against attempts of compromising the EMS
functionality, as the EMS reacts accordingly and reduces the attackers possibilities. An example
is the reduced functionality when under denial of service attack. The EMS will try to reduce
the number of allowed connections and/or deny any connection from IPs that have exceeded a
certain number of requests in a certain time frame. Additionally, CAPTCHA-challenges could be
displayed to verify that the requester is a person and not merely a program.

Another feature is the protection of the EMS database. The EMS database should only accept
statements that have been generated by the EMS itself. In order to avoid SQL-injection attacks
within generated statements, parameterized queries should be used.

Finally, secure downloads are needed for firmware updates from the MPO and for downloading
bills from an Energy Supplier. The document representing the bill should be available in the
trading system and prosumers should be able to download the bill so that its integrity is preserved.
Naturally, confidentiality and integrity are required for the bill’s storage.

D.3 Modeling the EMS with UWE
This section shows how to model security features of the EMS with UWE model elements. It is
structured according to the UWE model types, i.e., the views on the web application.

D.3.1 Content View
When modeling larger systems, such as the EMS web application, it is useful to divide the sys-
tem into manageably small components. The main characteristic of components is encapsulation,
which means that components can only share information using predefined interfaces. Encap-
sulation is advantageous, because each component can be implemented and tested individually.
Regarding modeling, components contribute to a clear structure, as the division of tasks within an
application becomes apparent. Consequently, it is easy to define appropriate security properties
for each part of a web application.

In the case of our EMS, a component EMScore is created, which contains components that are
built into the EMS system by default, as depicted in the class diagram shown in figure D.7. Smart
Appliances (SAs) can communicate with the EMS using the SA interface, shown on the lower
left. According to the description in the previous section, plugins are also external components
that can enhance the smart planning or the trader / recommender. Some plugins might provide
both functionalities (as e.g., PluginA does).

The EMScore contains four internal components that correspond to the main areas we iden-
tified in the requirements phase (cf. figure D.2): local energy control, user management, energy
trade system and plugin management. As can be seen in figure D.7, the user manager is used
by all components, because the system does not allow access without having granted permission
first. The interface PluginList publishes the list of installed plugins within the system so that
the user can advise the internal components to exchange the planning or trading plugin.

As far as security is concerned, the UWE profile redefines the UML stereotype ≪compo-
nent≫ with the following tags that have already been defined in section 5.3:

D.3 Modeling the EMS with UWE 171

«component»
EMScore

{csrfPrevention = SynchronizerTokenPattern,
inputValidation = "Whitelisting user input chars (shared library)",
sqlInjPrevention = parameterized prepared statements}

«component»
LocalEnergyControl

{usedInStates = LocalEnergyControl}

showHistory()
interactWithSA()
autoRegister()

SmartAppliance

SmartMeter PCTV

«component»
PluginStore

{usedInStates = PluginManagement}

update()
search(s)

ListOfAvailablePlugins

install(p)
uninstall(p)
update(p)

PluginManager

«component»
EnergyTrade

System
{usedInStates = TradeSystem}

buy()
sell()
startAutoMode()
listRecommendations()
getBill(timeFrame)

TradeSystem

Contract

«component»
UserManager

{usedInStates = UserManagement}

IndividualPolicy

«webUser»
User

Role

UserManagement

EnergyControlEnergyTrade

Plugin
List

«component»
SmartAppliance

SA1

Trader/
Recommender

«component»
PluginB

«component»
PluginA

Smart
Planner

PluginSA

*

1

*

**

Figure D.7: EMS: Content model

172 D. Case Study: Energy Management System

«file»
Bill

{isDownloadable,
secureTransportOnly}

buy()
sell()
startAutoMode()
listRecommendations()
getBill(timeFrame)

TradeSystem

«storage»
{backupStrategy = "duplicate data storage and daily incremental backup",
confidentiality,
integrity}

*

Figure D.8: EMS: Content model – bills

{csrfPrevention} models how Cross-Site-Request-Forgery (CSRF) should be repelled. The
modeler can choose from the options presented at the OWASP CSRF Cheat Sheet [164].
For the EMS example the most common “Synchronizer Token Pattern” is used, which
includes a randomly generated challenge token to all server requests in a web page. An
attacker cannot hope to guess a valid token when sending the user a prepared URL.

{sqlInjPrevention} documents how SQL injection attacks are prevented. In most program-
ming languages, SQL prepared statements shield from SQL injection, but other solutions,
as e.g., server-sided stored procedures could also be used.

{inputValidation} explains how the component is shielded from unvalidated input. The most
secure way is to whitelist characters and not to accept anything else. In a later phase of
development, it could be useful to use this tag for documenting the concrete technique
which is used, e.g., a software library.

The tag {usedInStates} is used to denote in which state of the application a certain component
is used. Note that it is the modelers’ decision which of the features offered by the UWE profile
they like to use in a diagram. In some scenarios, the modelers may decide to connect the UWE
Navigation model with the Content model using {usedInStates}, in others not.

Figure D.8 exemplarily depicts the storage and the download of a bill, using UWE’s ≪stor-
age≫ tag on a UML comment and the ≪file≫ stereotype to specify that a bill can be downloaded,
but only over a secure connection that preserves integrity, as e.g., TLS.

D.3.2 Role and Access Control View
Figure D.9 depicts the role model of the EMS. The stereotype ≪webUser≫ defines the class that
represents a user. It can later be referred to as caller when defining access control. Per default,
the DefaultUser plays all roles.

For our EMS application, figure D.10 shows an excerpt of the static Basic Rights model2.
For example, someone with the role UserManager is allowed to ≪delete≫ users, as long as the
2In contrast, figure 5.4 in section 5.2 depicted a dynamic view, i.e., individual access control specified by
the users themselves.

D.3 Modeling the EMS with UWE 173

AllSAsConfigurator SA1configurator ...PluginManagerSmartPlanner

«webUser»
User

defaultChild
: User

defaultUser :
User

TraderUserManager

Role

includes installation / deinstallation and
manual update of plug-ins

SA1 stands for
name of SA

includes use of
plug-ins

roles

*

Figure D.9: EMS: Role model

buy()
sell()
startAutoMode()
listRecommendations()
getBill(timeFrame)

TradeSystem

AllSAsConfiguratorshowHistory()
interactWithSA()
autoRegister()

SmartAppliance

PluginManagerinstall(p)
uninstall(p)
update(p)

PluginManager

UserManager
roles [*]
policies [*]

«webUser»
User

Trader

«authorizationConstraint»
pre: self <> caller

Application modes

«updateAll»
«delete»

«create»

«executeAll»

«executeAll»

{accessibleInAppModes = Default}

«executeAll»

«appMode»
UnderAttack

«appMode»
Default

Figure D.10: EMS: Basic Rights model excerpt and Application States model

174 D. Case Study: Energy Management System

«session»
: PluginManagement

{accessPrecondition = "caller.roles.includes(PluginManager)"}

«session»
: TradeSystem

{accessPrecondition = "caller.roles.includes(TradeSystemUser)"}

«session»
: UserManagement

{accessPrecondition = "caller.roles.includes(UserManager)"}

«session»
: LocalEnergyControl

{accessPrecondition = "caller.roles.includes(SmartPlanner)"}

InternalArea«navigationalNode»
Login : 2-stepAuth

{isHome} success

see process "AfterLogin"

«session»
WebApplicationOnEMS

{transmissionType = "HSTS"}

«integratedMenu»

«integratedMenu»

«integratedMenu»

«integratedMenu»

Figure D.11: EMS: Navigation model overview

≪authorizationConstraint≫, which has to be specified in OCL [151], is fulfilled. The constraint
defines that the user instance (referred to as self) is not equal to the caller (referring to the
≪webUser≫ who executes this deletion). If the constraint would not be given, users might delete
their own accounts accidentally.

Regarding our security requirements, the UWE Basic Rights model has to be extended to
enable the specification of different modes. Therefore, the tags {accessibleInAppModes} and
{notAccessibleInAppModes} are added. They allow to choose from a set of states in which a
functionality should (not) be available. Please note that these states do not refer to navigational
states, but general states of an application. When modeling with a CASE tool as MagicDraw [147],
the UWE profile with its typed tags makes sure that the value for the tag can only be chosen
from all available states that are stereotyped by ≪appMode≫. As depicted at the bottom of
figure D.10, the EMS only allows the installation of plugins when it is not under attack.

D.3.3 Navigation and Process View
User navigation is one of the most distinguished web features. UML state charts are used in UWE
to express the navigation possibilities a user has within a certain state of the web application [39].
By default, all states in the UWE navigation model are thought to be stereotyped ≪navigation-
alNode≫. The {isHome} tag refers to the entry point of a web application (cf. figure D.11).

The stereotype ≪integratedMenu≫ is defined to be a shortcut for showing menu items for
all menus of Submachine States, in case the user is allowed to access them [37]. Submachine

D.3 Modeling the EMS with UWE 175

loginSuccess

loadNormal
OperationPolicy

loadRestricted
OperationPolicy

load
NormalAccount

load
FalseAccount

allowedRegions.includes(request.region)

Allowed regions can only be
defined by the MPO. The default
is set to an area of approx.
1000km around the home.

Prosumers can set a panic
password in their account
preferences.

[false]
[true]

[pwd.type=PANIC][pwd.type=NORMAL]

Figure D.12: EMS: Process after successful login

states contain a state machine by themselves, so that more details can be shown in another
diagram. Note that transitions that start at the border of a state, leave the state and enter
again when triggered. Navigational access control can be specified using a rolesExpression
as “caller.roles.includes(PluginManager)”.

As shown on the left in figure D.11, a UWE pattern is used for the specification of 2-step
authentication. The UWE profile includes such kind of patterns to reduce the amount of modeling
effort. In case a pattern should be adapted, it can easily be copied from the profile to the model.

Additionally, we decided to include more implementation-specific details in the navigation
model, which are relevant in the late design phase. Thus, HTTP Strict Transport Security (HSTS)
is specified as web security policy mechanism to ensure secure https connections for the whole
web application, indicated by the ≪session≫-related tag {transmissionType=HSTS}.

If needed, activity diagrams can be added to detail the process that is executed behind the
scenes. For example, figure D.12 depicts what happens internally after the login was completed
successfully. For our EMS, this gives a hint to implement the panic mode as well as the restricted
access, when accessing the EMS from a distant region.

Exemplarily, the submachine state diagram of the plugin management is shown in figure D.13.
The stereotype ≪search≫ denotes that a search is done when using the searchPlugins tran-
sition, as searching is a typical process in applications. The stereotype ≪collection≫ refers to
a list of elements with the given {itemType} tag from the Content model. For transitions, an
underscore can be used to denote an element of this type. In our example, the underscore is an
abbreviation for p:Plugin.

The UWE profile provides a new tag called {reauth} for the stereotype ≪session≫ to specify
critical areas. In those areas, as e.g., for plugin management, users have to reauthenticate them-
selves, except when the previous login is not older than the given amount of time. In addition,
the tag {notAccessibleInAppModes} is specified for the stereotype ≪navigationalNode≫. In our
example, this prevents navigating to the interface for (un)installing or updating plugins in the
UnderAttack mode.

176 D. Case Study: Energy Management System

UninstallPlugin

InstallPlugin

UpdatePlugin

«navigationalNode»
ChangePlugins

{notAccessibleInAppModes = UnderAttack}

«collection»
ShowInstalledPlugins

{itemType = Plugin}

«collection»
SearchForPlugins
{itemType = Plugin}

: PrivacyDashboard

Overview

«navigationalNode»
PluginManagement

install(_)

uninstall(_)

update(_)

overview

privacyDashboard

«search»
searchPlugins

installedPlugins

Figure D.13: EMS: Navigation model for plugin management

Publications of Marianne Busch

This chapter enumerates the author’s publications. For each joint publication, the author’s
contribution is described. For publications quoted in this thesis, a reference to the bibliography
is provided. In case a chapter is based on a publication, a link to the chapter is added.
This thesis can be downloaded from http://www.pst.ifi.lmu.de/∼busch/thesisMarianneBusch.pdf

2015

M. Busch and M. Wirsing: An Ontology for Secure Web Applications. In Ruqian Lu, editor,
International Journal of Software and Informatics, volume 9 of International Journal of
Software and Informatics, pages 233–258. Institute of Software, Chinese Academy of Sci-
ences, 2015. (peer reviewed, 26 pages. Cited as [48] in chapter 4. M. Busch’s contribution:
ABox SecWAO and further development of SecEval’s Security Context model to serve as
a TBox for this ontology.)

2014

M. Busch, N. Koch, and S. Suppan: Modeling Security Features of Web Applications. In
M. Heisel, W. Joosen, J. Lopez and F. Martinelli (eds.) Engineering Secure Future In-
ternet Services. LNCS, vol. 8431, ISBN:978-3-319-07451-1. Springer, pp. 119–139, doi:
10.1007/978-3-319-07452-8_5. (21 pages. Cited as [44] in appendix D. M. Busch’s
contribution: UWE extension for security, e.g., regarding SQL-injection prevention, cross-
site-request-forgery prevention, authentication, reauthentication, secure connections, under
attack mode, authorization, user zone concept, panic mode. UWE diagrams and descrip-
tions of the presented case study.)

M. Busch, N. Koch, and M. Wirsing: Evaluation of Engineering Approaches in the Secure
Software Development Life Cycle. In M. Heisel, W. Joosen, J. Lopez and F. Martinelli
(eds.) Engineering Secure Future Internet Services. LNCS, vol. 8431, ISBN:978-3-319-
07451-1. Springer, pp. 234–265, doi:10.1007/978-3-319- 07452-8 10. (32 pages.
Cited as [45] in chapter 3. M. Busch’s contribution: Extended version of our work presented
in “Modellierung 2014”. SecEval in greater detail, including two extensions and full case
study.)

A. Bertolino, M. Busch, S. Daoudagh, F. Lonetti, and E. Marchetti: A Toolchain for Designing
and Testing Access Control Policies. In M. Heisel, W. Joosen, J. Lopez and F. Martinelli
(eds.) Engineering Secure Future Internet Services. LNCS, vol. 8431, ISBN:978-3-319-
07451-1. Springer, pp. 266–286, doi:10.1007/978-3-319-07452-8_11. (21 pages.

http://www.pst.ifi.lmu.de/~busch/thesisMarianneBusch.pdf
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i216&flag=1
http://dx.doi.org/10.1007/978-3-319-07452-8_5
http://dx.doi.org/10.1007/978-3-319-07452-8_5
http://dx.doi.org/10.1007/978-3-319-07452-8_5
http://dx.doi.org/10.1007/978-3-319-07452-8_10
http://dx.doi.org/10.1007/978-3-319-07452-8_10
http://dx.doi.org/10.1007/978-3-319-07452-8_10
http://dx.doi.org/10.1007/978-3-319-07452-8_11
http://dx.doi.org/10.1007/978-3-319-07452-8_11
http://dx.doi.org/10.1007/978-3-319-07452-8_11

178 D. Publications of Marianne Busch

Cited as [20] in section 6.3. M. Busch’s contribution: Toolchain orchestration in the Service
Development Environment (SDE). All UWE-related tools of the toolchain, i.e., “editPro-
jectWithMagicUWE”, “transformUWE2xacml”, “checkConsistency”, which are three out
of six tools in the toolchain.)

M. Busch and N. Koch et al. Deliverable for EU-Project NESSoS: D2.5 – Third Release of
the Method and Tool Evaluation. (88 pages. M. Busch’s contribution: Motivating tool
owners/users to adding their tools to the SDE and to describe their experience with the
integrated tools. Tool integrations are often joint work. Overview of contributions for
the NESSoS project in work package 2, i.e., overview of SecEval and the SDE with set of
25 integrated tools and two toolchains.)

M. Busch, N. Koch, and M. Wirsing. SecEval: An Evaluation Framework for Engineering
Secure Systems. In H. Fill, D. Karagiannis, and U. Reimer, editors, Modellierung 2014.
Gesellschaft für Informatik e. V. (GI), pp. 337–352. (peer reviewed, 16 pages. Cited as
[46] in chapter 3. M. Busch’s contribution: SecEval. Diagrams and descriptions of the
presented case study.)

M. Busch. Secure Web Engineering supported by an Evaluation Framework. In Doctoral Con-
sortium, Modelsward Conference 2014, Scitepress. Best PhD Student award. (peer
reviewed, 8 pages, 2 columns)

2013

A. Bertolino, M. Busch, S. Daoudagh, N. Koch, F. Lonetti, and E. Marchetti. A Toolchain for
Designing and Testing XACML Policies. In Proceedings of ICST 2013. IEEE, pp. 495–496,
doi:10.1109/ICST.2013.70. (peer reviewed, 2 pages, 2 columns & poster. M. Busch’s
contribution: Parts regarding modeling access control and model transformation in jointly
envisioned toolchain.)

M. Busch, M. Ochoa, and R. Schwienbacher. Modeling, Enforcing and Testing Secure Naviga-
tion Paths for Web Applications. Technical Report 1301, Ludwig-Maximilians-Universität
München. (17 pages. Cited as [47] in section 6.5. M. Busch’s contribution: Initial idea
of navigation paths in discussion with Mart́ın Ochoa, further elaboration in the context of
the supervision of R. Schwienbacher’s bachelor’s thesis.)

M. Busch and N. Koch et al. Deliverable for EU-Project NESSoS: D2.4 – Second Release of
the Method and Tool Evaluation. (76 pages. Cited as [42]. M. Busch’s contribution:
Background description, SecEval and case study represented as SecEval models.)

2012

M. Busch and M. Garćıa de Dios. ActionUWE: Transformation of UWE to ActionGUI Models.
Technical Report 1203, Ludwig-Maximilians-Universität München. (30 pages. Cited as
[38] in section 6.4. M. Busch’s contribution: Adaptation of UWE so that it can express,
e.g., necessary links between models – the transformation itself is joint work.)

http://cs.emis.de/LNI/Proceedings/Proceedings225/337.pdf
http://cs.emis.de/LNI/Proceedings/Proceedings225/337.pdf
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=wQIu7/7GGV8=&t=1
dx.doi.org/10.1109/ICST.2013.70
dx.doi.org/10.1109/ICST.2013.70
dx.doi.org/10.1109/ICST.2013.70
http://uwe.pst.ifi.lmu.de/publications/TechReport1301.pdf
http://uwe.pst.ifi.lmu.de/publications/TechReport1301.pdf
http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D2.4.pdf
http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D2.4.pdf
http://uwe.pst.ifi.lmu.de/publications/ActionUWE.pdf

179

M. Busch, N. Koch, M. Masi, R. Pugliese, and F. Tiezzi. Towards model-driven development
of access control policies for web applications. In 1st Workshop on Model-Driven Security
(MDsec 2012) on MoDELS 2012, LNCS. ACMDL, pp. 41–46, doi:10.1145/2422498.
2422502. (peer reviewed, 6 pages, 2 columns. Cited as [43] in section 6.2. M. Busch’s
contribution: Transformation from UWE’s Basic Rights model to XACML and the updated
HospInf case study.)

M. Busch and N. Koch et al. Deliverable for EU-Project NESSoS: D2.3 – Second release of the
SDE for Security-Related Tools. (65 pages. M. Busch’s contribution: Extending the SDE.
Integrating, e.g., UWE2XACML. Usage example for the integrated use of MagicUWE in
the SDE. Motivating tool owners/users to adding their tools and usage examples to the
SDE and overseeing the integration of 13 tools in total.)

2011
M. Busch, A. Knapp, and N. Koch. Modeling Secure Navigation in Web Information Systems. In

J. Grabis and M. Kirikova, editors, 10th Int. Conf. on Business Perspectives in Informat-
ics Research, LNBIP. Springer, pp. 239–253, doi:10.1007/978-3-642-24511-4_19.
(peer reviewed, 15 pages. Cited as [39]. M. Busch’s contribution: Abridging and revising,
as this paper publishes content of the author’s Diplomarbeit.)

M. Busch and N. Koch et al. Deliverable for EU-Project NESSoS: D2.1 – First Release of
Method and Tool Evaluation (46 pages. Cited as [41]. M. Busch’s contribution: Evaluation
of three methods, three notations, and three tools, according to the first version of CBK’s
metamodel. The metamodel and its relations is joint work with the University of Duisburg-
Essen. Overview of Knowledge Objects in the NESSoS project in relation to the SDLC.)

M. Busch and N. Koch et al. Deliverable for EU-Project NESSoS: D2.2 – First Release of the
SDE for Security-Related Tools. (45 pages. M. Busch’s contribution: Integrating, e.g.,
MagicDraw into the SDE. Updating and adapting SDE’s usage tutorial. Motivating tool
owners/users to adding their tools and usage examples to the SDE and overseeing the
integration of 8 tools.)

M. Busch. Integration of Security Aspects in Web Engineering. Diplomarbeit (Master’s Thesis),
Ludwig-Maximilians-Universität München. (145 pages. Cited as [37].)

2009
M. Busch and N. Koch. MagicUWE – A CASE Tool Plugin for Modeling Web Applications. In

M. Gaedke, M. Grossniklaus, and O. Dı́az, editors, Proc. 9th Int. Conf. Web Engineering
(ICWE’09), LNCS 5648. Springer, pp. 505–508, doi:10.1007/978-3-642-02818-2_
49. (peer reviewed, 4 pages + poster. Cited as [40]. M. Busch’s contribution: Refactoring
a prototype of a MagicDraw plugin and implementing new features for modeling UWE with
our MagicUWE plugin.)

M. Busch and N. Koch. Rich Internet Applications. State-of-the-Art. Technical Report 0902,
Ludwig-Maximilians-Universität München. (18 pages. M. Busch’s contribution: Investi-
gating current definitions of Rich Internet Applications (RIAs) and web frameworks that
support RIAs.)

dx.doi.org/10.1145/2422498.2422502
dx.doi.org/10.1145/2422498.2422502
dx.doi.org/10.1145/2422498.2422502
dx.doi.org/10.1145/2422498.2422502
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D2.3.pdf
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D2.3.pdf
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D2.1.pdf
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D2.1.pdf
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D2.2.pdf
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D2.2.pdf
http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf
http://uwe.pst.ifi.lmu.de/publications/maewa_rias_report.pdf

Bibliography

[1] A. Barth. HTTP State Management Mechanism. Version 1.2. Specification, Internet Engi-
neering Task Force (IETF), 2011. https://tools.ietf.org/html/rfc6797.

[2] Acunetix. Web application vulnerability report 2015. Technical report, Acunetix Ltd.,
2015. https://www.acunetix.com/acunetix-web-application-vulnerability-report-2015/.

[3] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards a formal foundation
of web security. In Computer Security Foundations Symposium (CSF), 2010 23rd IEEE,
pages 290–304. IEEE, 2010.

[4] M. Alalfi, J. Cordy, and T. Dean. Recovering role-based access control security models
from dynamic web applications. In M. Brambilla, T. Tokuda, and R. Tolksdorf, editors,
Web Engineering, volume 7387 of LNCS, pages 121–136. Springer, 2012. doi:10.1007/
978-3-642-31753-8_9.

[5] ANSI/HL7. Hl7 Version 3 Standard: Security and privacy ontology, release 1. Technical
report, Health Level Seven International, 2014. http://www.hl7.org/implement/standards/
product brief.cfm?product id=348.

[6] G. Aragón, M.-J. Escalona, M. Lang, and J. R. Hilera. An analysis of model-driven web
engineering methodologies. International Journal of Innovative Computing, Information
and Control, 9(1):413–436, 2012. http://www.ijicic.org/ijicic-11-11012.pdf.

[7] ASCENS Project. Autonomic Service Component Ensembles, 2012. http://www.ascens-ist.
eu/.

[8] R. Auger. Insufficient Process Validation, WASC Threat Classification, 2009. http://
projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation.

[9] D. Basin, M. Clavel, M. Egea, M. de Dios, and C. Dania. A model-driven methodology
for developing secure data-management applications. Software Engineering, IEEE Trans-
actions on, 40(4):324–337, 2014. doi:10.1109/TSE.2013.2297116.

[10] D. Basin, M. Clavel, J. Doser, and M. Egea. A metamodel-based approach for analyz-
ing security-design models. In G. Engels, B. Opdyke, D. Schmidt, and F. Weil, editors,
Model Driven Engineering Languages and Systems, volume 4735 of LNCS, pages 420–435.
Springer, 2007. doi:10.1007/978-3-540-75209-7_29.

https://tools.ietf.org/html/rfc6797
https://www.acunetix.com/acunetix-web-application-vulnerability-report-2015/
http://dx.doi.org/10.1007/978-3-642-31753-8_9
http://dx.doi.org/10.1007/978-3-642-31753-8_9
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=348
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=348
http://www.ijicic.org/ijicic-11-11012.pdf
http://www.ascens-ist.eu/
http://www.ascens-ist.eu/
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://dx.doi.org/10.1109/TSE.2013.2297116
http://dx.doi.org/10.1007/978-3-540-75209-7_29

182 BIBLIOGRAPHY

[11] D. Basin, M. Clavel, and M. Egea. Automatic Generation of Smart, Security-Aware GUI
Models. In Engineering Secure Software and Systems, volume 5965 of LNCS, pages 201–217.
Springer, 2010.

[12] D. Basin, M. Clavel, M. Egea, M. A. G. de Dios, C. Dania, G. Ortiz, and J. Val-
dazo. Model-Driven Development of Security-Aware GUIs for Data-Centric Applica-
tions. In A. Aldini and R. Gorrieri, editors, Foundations of Security Analysis and De-
sign VI - FOSAD Tutorial Lectures, volume 6858 of LNCS, pages 101–124. Springer, 2011.
doi:10.1007/978-3-642-23082-0_4.

[13] D. Basin, P. Schaller, and M. Schläpfer. Applied Information Security: A Hands-on Ap-
proach. Springer, 2011. doi:10.1007/978-3-642-24474-2.

[14] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley
Professional, 3 edition, 2012.

[15] K. Beckers, S. Eicker, M. Heisel, and W. Schwittek. NESSoS Deliverable D5.2 – Iden-
tification of Research Gaps in the Common Body of Knowledge, 2012. http://www.
nessos-project.eu/media/deliverables/y2/NESSoS-D5.2.pdf.

[16] S. Beji and N. El Kadhi. Security ontology proposal for mobile applications. In Mobile Data
Management: Systems, Services and Middleware, 2009. MDM ’09. Tenth International
Conference on, pages 580–587, 2009. doi:10.1109/MDM.2009.100.

[17] C. Bennett and S. Wicker. Decreased time delay and security enhancement recommenda-
tions for AMi smart meter networks. In Innovative Smart Grid Technologies (ISGT), pages
1–6, 2010. doi:10.1109/ISGT.2010.5434780.

[18] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti. The X-CREATE framework:
a comparison of XACML policy testing strategies. In Proceedings of 8th International
Conference on Web Information Systems and Technologies (WEBIST), pages 18–21, 2012.

[19] A. Bertolino, F. Lonetti, and E. Marchetti. Systematic XACML Request Generation for
Testing Purposes. In Proc. of the 36th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pages 3–11, 2010.

[20] A. Bertolino, M. Busch, S. Daoudagh, F. Lonetti, and E. Marchetti. A Toolchain for
Designing and Testing Access Control Policies. In Heisel et al. [100], pages 266–286. doi:
10.1007/978-3-319-07452-8.

[21] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti. Automatic XACML Requests
Generation for Policy Testing. In Proceedings of IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST), pages 842–849, 2012.

[22] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, and L. Schilders. Automated testing
of extensible access control markup language-based access control systems. IET Software,
7(4):203–212, 2013.

[23] A. Bia las. Semiformal Approach to the IT Security Development. International
Conference on Dependability of Computer Systems, 0:3–10, 2007. doi:10.1109/
DEPCOS-RELCOMEX.2007.43.

http://dx.doi.org/10.1007/978-3-642-23082-0_4
http://dx.doi.org/10.1007/978-3-642-24474-2
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D5.2.pdf
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D5.2.pdf
http://dx.doi.org/10.1109/MDM.2009.100
http://dx.doi.org/10.1109/ISGT.2010.5434780
http://dx.doi.org/10.1007/978-3-319-07452-8
http://dx.doi.org/10.1007/978-3-319-07452-8
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2007.43
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2007.43

BIBLIOGRAPHY 183

[24] A. Bia las. Ontology based model of the common criteria evaluation evidences. Theoretical
and Applied Informatics, 25, 2013.

[25] M. Bishop. Computer Security: Art and Science. Addison-Wesley Professional, 1st edition,
2002.

[26] C. Blanco, J. Lasheras, E. Fernández-Medina, R. Valencia-Garćıa, and A. Toval. Basis
for an integrated security ontology according to a systematic review of existing proposals.
Computer Standards & Interfaces, 33(4):372–388, 2011. http://www.sciencedirect.com/
science/article/pii/S0920548911000043, doi:10.1016/j.csi.2010.12.002.

[27] B. Boehm and V. R. Basili. Software defect reduction top 10 list. Computer, 34(1):135–137,
2001. doi:10.1109/2.962984.

[28] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on computational
diffie-hellman. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key
Cryptography - PKC 2006, volume 3958 of LNCS, pages 229–240. Springer, 2006. doi:
10.1007/11745853_15.

[29] P. Bourque, R. E. Fairley, et al. Guide to the Software Engineering Body of Knowledge
(SWEBOK): Version 3.0. IEEE Computer Society Press, 2014. http://www.swebok.org/.

[30] M. Brambilla and P. Fraternali. Large-scale Model-Driven Engineering of web user inter-
action: The WebML and WebRatio experience. Science of Computer Programming, 2013.
doi:10.1016/j.scico.2013.03.010.

[31] B. Braun, P. Gemein, H. P. Reiser, and J. Posegga. Control-flow integrity in web applica-
tions. In ESSoS, pages 1–16, 2013.

[32] R. Breu. Ten principles for living models-a manifesto of change-driven software engineer-
ing. In Complex, Intelligent and Software Intensive Systems (CISIS), 2010 International
Conference on, pages 1–8. IEEE, 2010.

[33] R. Breu, G. Popp, and M. Alam. Model based development of access policies. International
Journal on Software Tools for Technology Transfer, 9(5-6):457–470, 2007. doi:10.1007/
s10009-007-0045-y.

[34] J. Bryans. Reasoning about XACML Policies using CSP. In SWS, pages 28–35. ACM,
2005.

[35] J. Bryans and J. S. Fitzgerald. Formal Engineering of XACML Access Control Policies in
VDM++. In ICFEM, volume 4789 of LNCS, pages 37–56. Springer, 2007.

[36] M. Buchler, J. Oudinet, and A. Pretschner. SPaCiTE – Web Application Testing Engine.
Software Testing, Verification, and Validation, 2008 International Conference on, 0:858–
859, 2012. doi:10.1109/ICST.2012.187.

[37] M. Busch. Integration of Security Aspects in Web Engineering. Master’s thesis, Ludwig-
Maximilians-Universität München, 2011. http://uwe.pst.ifi.lmu.de/publications/BuschDA.
pdf.

http://www.sciencedirect.com/science/article/pii/S0920548911000043
http://www.sciencedirect.com/science/article/pii/S0920548911000043
http://dx.doi.org/10.1016/j.csi.2010.12.002
http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1007/11745853_15
http://dx.doi.org/10.1007/11745853_15
http://www.swebok.org/
http://dx.doi.org/10.1016/j.scico.2013.03.010
http://dx.doi.org/10.1007/s10009-007-0045-y
http://dx.doi.org/10.1007/s10009-007-0045-y
http://dx.doi.org/10.1109/ICST.2012.187
http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf
http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf

184 BIBLIOGRAPHY

[38] M. Busch and M. A. Garćıa de Dı́os. ActionUWE: Transformation of UWE to ActionGUI
Models. Technical Report 1203, Ludwig-Maximilians-Universität München, 2012.

[39] M. Busch, A. Knapp, and N. Koch. Modeling Secure Navigation in Web Information
Systems. In J. Grabis and M. Kirikova, editors, 10th International Conference on Business
Perspectives in Informatics Research, volume 90 of LNBIP, pages 239–253. Springer, 2011.
doi:ACASEToolPluginforModelingWebApplications.

[40] M. Busch and N. Koch. MagicUWE — A CASE Tool Plugin for Modeling Web Applications.
In Proc. 9th Int. Conf. Web Engineering (ICWE’09), volume 5648 of LNCS, pages 505–508.
Springer, 2009. doi:10.1007/978-3-642-02818-2_49.

[41] M. Busch, N. Koch, et al. NESSoS Deliverable D2.1 – First release of Method and Tool Eval-
uation, 2011. http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D2.1.pdf.

[42] M. Busch, N. Koch, et al. NESSoS Deliverable D2.4 – Second Release of the Method and
Tool Evaluation, 2013. http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D2.
4.pdf.

[43] M. Busch, N. Koch, M. Masi, R. Pugliese, and F. Tiezzi. Towards model-driven develop-
ment of access control policies for web applications. In Proceedings of the Workshop on
Model-Driven Security, MDsec ’12, pages 41–46. ACM, 2012. doi:10.1145/2422498.
2422502.

[44] M. Busch, N. Koch, and S. Suppan. Modeling Security Features of Web Applications. In
Heisel et al. [100], pages 119–139. doi:10.1007/978-3-319-07452-8.

[45] M. Busch, N. Koch, and M. Wirsing. Evaluation of Engineering Approaches for Se-
cure Software and Systems. In Heisel et al. [100], pages 234–265. doi:10.1007/
978-3-319-07452-8.

[46] M. Busch, N. Koch, and M. Wirsing. SecEval: An Evaluation Framework for Engineering
Secure Systems. In Proceedings of Modellierung, volume P-225 of LNI, pages 337–352, 2014.
http://cs.emis.de/LNI/Proceedings/Proceedings225/337.pdf.

[47] M. Busch, M. Ochoa, and R. Schwienbacher. Modeling, Enforcing and Testing Secure
Navigation Paths for Web Applications. Technical Report 1301, Ludwig-Maximilians-
Universität München, 2013. http://uwe.pst.ifi.lmu.de/publications/TechReport1301.pdf.

[48] M. Busch and M. Wirsing. An Ontology for Secure Web Applications. In R. Lu, edi-
tor, International Journal of Software and Informatics, volume 9 of International Journal
of Software and Informatics, pages 233–258. Institute of Software, Chinese Academy of
Sciences, 2015.

[49] CBK. Common Body of Knowledge, 2015. http://nessos-project.eu/cbk.

[50] Center for Strategic and International Studies. Net losses: Estimating the global cost
of cybercrime. economic impact of cybercrime ii. Technical report, Intel Security, 2014.
http://www.mcafee.com/mx/resources/reports/rp-economic-impact-cybercrime2.pdf.

http://dx.doi.org/A CASE Tool Plugin for Modeling Web Applications
http://dx.doi.org/10.1007/978-3-642-02818-2_49
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D2.1.pdf
http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D2.4.pdf
http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D2.4.pdf
http://dx.doi.org/10.1145/2422498.2422502
http://dx.doi.org/10.1145/2422498.2422502
http://dx.doi.org/10.1007/978-3-319-07452-8
http://dx.doi.org/10.1007/978-3-319-07452-8
http://dx.doi.org/10.1007/978-3-319-07452-8
http://cs.emis.de/LNI/Proceedings/Proceedings225/337.pdf
http://uwe.pst.ifi.lmu.de/publications/TechReport1301.pdf
http://nessos-project.eu/cbk
http://www.mcafee.com/mx/resources/reports/rp-economic-impact-cybercrime2.pdf

BIBLIOGRAPHY 185

[51] Cenzic. Application vulnerability trends report. Technical report, Cen-
zic, 2014. https://www.trustwave.com/Resources/Library/Documents/
Cenzic-Application-Vulnerability-Trends-2014/.

[52] Chandra, Pravir et al. Software assurance maturity model (samm) v. 1.0. http://www.
opensamm.org/downloads/SAMM-1.0.pdf.

[53] M. R. Chaudron, W. Heijstek, and A. Nugroho. How effective is UML modeling? Software
& Systems Modeling, 11(4):571–580, 2012. doi:10.1007/s10270-012-0278-4.

[54] Y. Cherdantseva and J. Hilton. A reference model of information assurance & security.
In Eighth International Conference on Availability, Reliability and Security (ARES), pages
546–555. IEEE, 2013.

[55] S. Chong, K. Vikram, and A. C. Myers. SIF: enforcing confidentiality and integrity in
web applications. In SS’07: Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, pages 1–16. USENIX Association, 2007. http://www.cs.cornell.edu/
jif/sif/.

[56] S. A. Chun et al. iSecure Lab, 2014. http://cis.csi.cuny.edu/∼project/iSecure/.

[57] CLUSIF Web application security working group. Web application security –
managing web application security risks. Technical report, Club de la Sécurité
de l’Information Français (CLUSIF), 2010. https://www.clusif.asso.fr/fr/production/
ouvrages/pdf/CLUSIF-2010-Web-application-security.pdf.

[58] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: An
approach to testing based on combinatiorial design. IEEE Trans. on Soft. Eng., 23(7):437–
444, 1997.

[59] Common Criteria. Cc v3.1. release 4, 2012. https://www.commoncriteriaportal.org/cc/.

[60] Common Weakness Enumeration. CWE-840: Bussiness Logic Errors, 2015. http://cwe.
mitre.org/data/definitions/840.html.

[61] J. Conallen. Building Web applications with UML. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[62] J. Cubo, J. Cuellar, S. Fries, J. A. Mart́ın, F. Moyano, G. Fernández, M. C. F. Gago,
A. Pasic, R. Román, R. T. Dieguez, and I. Vinagre. NESSoS Deliverable D11.2 –
Selection and Documentation of the Two Major ApplicationCase Studies, 2011. http:
//www.nessos-project.eu/media/deliverables/y1/NESSoS-D11.2.pdf.

[63] J. Cuellar et al. NESSoS Deliverable D11.3 – Initial version of two case studies, evaluating
methodologies, 2012. http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D11.
3.pdf.

[64] J. Cuellar et al. NESSoS Deliverable D11.4 – Pilot applications, evaluating NESSoS solu-
tions, 2014.

https://www.trustwave.com/Resources/Library/Documents/Cenzic-Application-Vulnerability-Trends-2014/
https://www.trustwave.com/Resources/Library/Documents/Cenzic-Application-Vulnerability-Trends-2014/
http://www.opensamm.org/downloads/SAMM-1.0.pdf
http://www.opensamm.org/downloads/SAMM-1.0.pdf
http://dx.doi.org/10.1007/s10270-012-0278-4
http://www.cs.cornell.edu/jif/sif/
http://www.cs.cornell.edu/jif/sif/
http://cis.csi.cuny.edu/~project/iSecure/
https://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-2010-Web-application-security.pdf
https://www.clusif.asso.fr/fr/production/ouvrages/pdf/CLUSIF-2010-Web-application-security.pdf
https://www.commoncriteriaportal.org/cc/
http://cwe.mitre.org/data/definitions/840.html
http://cwe.mitre.org/data/definitions/840.html
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D11.2.pdf
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D11.2.pdf
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D11.3.pdf
http://www.nessos-project.eu/media/deliverables/y2/NESSoS-D11.3.pdf

186 BIBLIOGRAPHY

[65] J. Cuellar and S. Suppan. A smart metering scenario, 2013. https:
//securitylab.disi.unitn.it/lib/exe/fetch.php?media=research activities:erise:erise 2013:
erise2013-smartmeteering-description.pdf.

[66] CWE. Common weakness enumeration, 2015. http://cwe.mitre.org/.

[67] J. Dehlinger and N. Subramanian. Architecting secure software systems using an aspect-
oriented approach: A survey of current research. Technical report, Iowa State University,
2006.

[68] G. Denker, L. Kagal, and T. Finin. Security in the semantic web using {OWL}. Information
Security, 10(1):51–58, 2005. doi:10.1016/j.istr.2004.11.002.

[69] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for daml web services:
Annotation and matchmaking. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, The
Semantic Web - ISWC 2003, volume 2870 of LNCS, pages 335–350. Springer, 2003. doi:
10.1007/978-3-540-39718-2_22.

[70] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated key
exchanges. Designs, codes and cryptography, 2(2):107–125, 1992.

[71] D. Distante, P. Pedone, G. Rossi, and G. Canfora. Model-driven development of web
applications with uwa, MVC and javaserver faces. In L. Baresi, P. Fraternali, and G.-J.
Houben, editors, Web Engineering, volume 4607 of Lecture Notes in Computer Science,
pages 457–472. Springer, 2007. doi:10.1007/978-3-540-73597-7_38.

[72] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Review, 45(4):727–
784, 2003. doi:10.1137/S0036144503429856.

[73] Eclipse Foundation. XPand, 2013. http://wiki.eclipse.org/Xpand.

[74] Eclipse Foundation. Eclipse - An Open Development Platform, 2015. http://www.eclipse.
org/.

[75] Eclipse Foundation. Eclipse Modeling Project, 2015. http://eclipse.org/modeling/.

[76] S. Eicker, M. Heisel, H. Schmidt, and W. Schwittek. NESSoS Deliverable D5.1 – Com-
mon Body of Knowledge, 2011. http://www.nessos-project.eu/media/deliverables/y1/
NESSoS-D5.1.pdf.

[77] M. El-Attar. From misuse cases to mal-activity diagrams: bridging the gap between func-
tional security analysis and design. Software & Systems Modeling, 13(1):173–190, 2014.
doi:10.1007/s10270-012-0240-5.

[78] G. Elahi, E. Yu, and N. Zannone. A vulnerability-centric requirements engineer-
ing framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requirements Engineering, 15(1):41–62, 2010. doi:10.1007/
s00766-009-0090-z.

[79] A. Elçi. Keynote talk, sin’14: Standard ontology of security of information and networks?,
2014. http://www.sinconf.org/sin2014/images/SIN14 KeynoteTalk-AElci.pdf.

https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
http://cwe.mitre.org/
http://dx.doi.org/10.1016/j.istr.2004.11.002
http://dx.doi.org/10.1007/978-3-540-39718-2_22
http://dx.doi.org/10.1007/978-3-540-39718-2_22
http://dx.doi.org/10.1007/978-3-540-73597-7_38
http://dx.doi.org/10.1137/S0036144503429856
http://wiki.eclipse.org/Xpand
http://www.eclipse.org/
http://www.eclipse.org/
http://eclipse.org/modeling/
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D5.1.pdf
http://www.nessos-project.eu/media/deliverables/y1/NESSoS-D5.1.pdf
http://dx.doi.org/10.1007/s10270-012-0240-5
http://dx.doi.org/10.1007/s00766-009-0090-z
http://dx.doi.org/10.1007/s00766-009-0090-z
http://www.sinconf.org/sin2014/images/SIN14_KeynoteTalk-AElci.pdf

BIBLIOGRAPHY 187

[80] D. Feledi, S. Fenz, and L. Lechner. Toward web-based information security knowledge
sharing. Information Security Technical Report, 17(4):199–209, 2013. Special Issue: ARES
2012 7th International Conference on Availability, Reliability and Security. doi:10.1016/
j.istr.2013.03.004.

[81] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward automated detection of
logic vulnerabilities in web applications. In Proceedings of the 19th USENIX conference on
Security, USENIX Security’10, page 10. USENIX Association, 2010. http://dl.acm.org/
citation.cfm?id=1929820.1929834.

[82] D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-
merce. Springer, 2nd ed. 2004 edition, 2003.

[83] S. Fenz and A. Ekelhart. Formalizing information security knowledge. In Proceedings of the
4th International Symposium on Information, Computer, and Communications Security,
ASIACCS ’09, pages 183–194. ACM, 2009. http://securityontology.securityresearch.at/,
doi:10.1145/1533057.1533084.

[84] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and
change-impact analysis of access-control policies. In ICSE, pages 196–205. ACM, 2005.

[85] M. Fowler. Domain-Specific Languages. Addison-Wesley Professional, 1 edition, 2010.
http://martinfowler.com/books/dsl.html.

[86] R. France, B. Rumpe, and M. Schindler. Why it is so hard to use models in software
development: observations. Software & Systems Modeling, 12(4):665–668, 2013. doi:
10.1007/s10270-013-0383-z.

[87] D. Fritsch. Modeling web security requirements in practice. Master’s thesis, Ludwig-
Maximilians-Universität München, 2015. Supervised by M. Busch.

[88] S. Gilmore, L. Gönczy, N. Koch, P. Mayer, M. Tribastone, and D. Varró. Non-functional
Properties in the Model-Driven Development of Service-Oriented Systems. J. Softw. Syst.
Model., 10(3):287–311, 2011. doi:10.1007/s10270-010-0155-y.

[89] W. B. Glisson. The Web Engineering Security (WES) methodology. PhD thesis, University
of Glasgow, 2008. http://theses.gla.ac.uk/186/.

[90] A. Gómez, M. Tellechea, and C. Rodŕıguez. D1.1 Requirements of AMI. Technical re-
port, OPEN meter project, 2009. http://www.openmeter.com/files/deliverables/Open%
20Meter AMENDMENT%20to%20D11.pdf.

[91] GoPivotal Inc. Spring Security, 2013. http://static.springsource.org/.

[92] W. Gragido, D. Molina, J. Pirc, and N. Selby. Blackhatonomics: An Inside Look at the
Economics of Cybercrime. Syngress, 2012.

[93] D. Groenewegen and E. Visser. Integration of data validation and user interface concerns
in a DSL for web applications. In M. van den Brand, D. Gašević, and J. Gray, editors,
Software Language Engineering, volume 5969 of LNCS, pages 164–173. Springer, 2010.
doi:10.1007/978-3-642-12107-4_13.

http://dx.doi.org/10.1016/j.istr.2013.03.004
http://dx.doi.org/10.1016/j.istr.2013.03.004
http://dl.acm.org/citation.cfm?id=1929820.1929834
http://dl.acm.org/citation.cfm?id=1929820.1929834
http://securityontology.securityresearch.at/
http://dx.doi.org/10.1145/1533057.1533084
http://martinfowler.com/books/dsl.html
http://dx.doi.org/10.1007/s10270-013-0383-z
http://dx.doi.org/10.1007/s10270-013-0383-z
http://dx.doi.org/10.1007/s10270-010-0155-y
http://theses.gla.ac.uk/186/
http://www.openmeter.com/files/deliverables/Open%20Meter_AMENDMENT%20to%20D11.pdf
http://www.openmeter.com/files/deliverables/Open%20Meter_AMENDMENT%20to%20D11.pdf
http://static.springsource.org/
http://dx.doi.org/10.1007/978-3-642-12107-4_13

188 BIBLIOGRAPHY

[94] J. Grossman. Website security statistics report. Technical report, WhiteHat Security, 2013.
https://www.whitehatsec.com/resource/stats.html.

[95] D. T. Group. Security requirement: Web applications. Technical Report 3.06, Deutsche
Telekom AG, 2014. https://www.telekom.com/security.

[96] J. M. Guerrero. Microgrids: Integration of distributed energy resources into the smart-
grid. In IEEE, editor, IEEE International Symposium on Industrial Electronics, pages
4281–4414, 2010.

[97] M. Hafner and R. Breu. Security Engineering for Service-Oriented Architectures. Springer,
2008.

[98] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating navigation errors in web
applications via model checking and runtime enforcement of navigation state machines. In
Proceedings of the IEEE/ACM international conference on Automated software engineering,
ASE ’10, pages 235–244. ACM, 2010. doi:10.1145/1858996.1859044.

[99] R. Hansen. Yahoo SEM Logic Flaw, 2008. http://projects.webappsec.org/w/page/
13246943/Insufficient%20Process%20Validation.

[100] M. Heisel, W. Joosen, J. Lopez, and F. Martinelli, editors. Advances in Engineering Secure
Future Internet Services and Systems. Number 8431 in LNCS State-of-the-Art-Surveys.
Springer, 2014. doi:10.1007/978-3-319-07452-8.

[101] A. Herzog, N. Shahmehri, and C. Duma. An ontology of information security. In
International Journal of Information Security and Privacy, pages 1–23, 2007. https:
//www.ida.liu.se/∼iislab/projects/secont/, doi:jisp.2007100101.

[102] B. Hoisl and S. Sobernig. Integrity and confidentiality annotations for service interfaces in
soaml models. In Availability, Reliability and Security (ARES), 2011 Sixth International
Conference on, pages 673–679, 2011. doi:10.1109/ARES.2011.105.

[103] V. Igure and R. Williams. Taxonomies of attacks and vulnerabilities in computer systems.
Communications Surveys Tutorials, IEEE, 10(1):6–19, 2008. doi:10.1109/COMST.
2008.4483667.

[104] International Electrotechnical Commission (IEC). IEC 62351 Parts 1-8, Information Secu-
rity for Power System Control Operations, 2007. https://www.smartgrid.gov/document/
iec 62351 parts 1 8 information security power system control operations.

[105] ISO/IEC. 27001: Information technology - Security techniques - Information security man-
agement systems - Requirements. Technical report, International Organization for Stan-
dardization (ISO) and International Electrotechnical Commission (IEC), 2013.

[106] J. Hodges and C. Jackson and A. Barth. HTTP Strict Transport Security (HSTS). Specifi-
cation, Internet Engineering Task Force (IETF), 2012. https://tools.ietf.org/html/rfc6797.

[107] M. Jakob. Model-based engineering of web applications : the flashWeb method. PhD thesis,
Universität Stuttgart, 2011. http://elib.uni-stuttgart.de/opus/volltexte/2012/7023.

https://www.whitehatsec.com/resource/stats.html
https://www.telekom.com/security
http://dx.doi.org/10.1145/1858996.1859044
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://projects.webappsec.org/w/page/13246943/Insufficient%20Process%20Validation
http://dx.doi.org/10.1007/978-3-319-07452-8
https://www.ida.liu.se/~iislab/projects/secont/
https://www.ida.liu.se/~iislab/projects/secont/
http://dx.doi.org/jisp.2007100101
http://dx.doi.org/10.1109/ARES.2011.105
http://dx.doi.org/10.1109/COMST.2008.4483667
http://dx.doi.org/10.1109/COMST.2008.4483667
https://www.smartgrid.gov/document/iec_62351_parts_1_8_information_security_power_system_control_operations
https://www.smartgrid.gov/document/iec_62351_parts_1_8_information_security_power_system_control_operations
https://tools.ietf.org/html/rfc6797
http://elib.uni-stuttgart.de/opus/volltexte/2012/7023

BIBLIOGRAPHY 189

[108] JQuery Foundation. Jquery, 2015. https://jquery.com/.

[109] J. Jürjens. Secure Systems Development with UML. Springer, 2004. Tools and further
information: http://www.umlsec.de/.

[110] J. Jürjens et al. Carisma UMLsec tools, 2014. http://carisma.umlsec.de.

[111] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger, editors. Web Engineering: The
Discipline of Systematic Development of Web Applications. Wiley, 1 edition, 2006.

[112] A. Kim, J. Luo, and M. Kang. Security ontology to facilitate web service description and dis-
covery. In S. Spaccapietra, P. Atzeni, F. Fages, M.-S. Hacid, M. Kifer, J. Mylopoulos, B. Per-
nici, P. Shvaiko, J. Trujillo, and I. Zaihrayeu, editors, Journal on Data Semantics IX, volume
4601 of LNCS, pages 167–195. Springer, 2007. doi:10.1007/978-3-540-74987-5_6.

[113] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews
in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham
University, 2007.

[114] M. Koch and F. Parisi-Presicce. UML specification of access control policies and their
formal verification. Software & Systems Modeling, 5(4):429–447, 2006. doi:10.1007/
s10270-006-0030-z.

[115] N. Koch. Software Engineering for Adaptive Hypermedia Systems: Reference Model,
Modeling Techniques and Development Process. PhD thesis, Ludwig-Maximilians-
Universität München, 2000. http://www.pst.informatik.uni-muenchen.de/personen/
kochn/PhDThesisNoraKoch.pdf.

[116] N. Koch, A. Knapp, G. Zhang, and H. Baumeister. UML-Based Web Engineering - An
Approach Based on Standards. In Web Engineering: Modelling and Implementing Web
Applications, Human-Computer Interaction Series, pages 157–191. Springer, 2008.

[117] N. Koch and S. Kozuruba. Requirements models as first class entities in model-driven
web engineering. In M. Grossniklaus and M. Wimmer, editors, Current Trends in Web
Engineering, volume 7703 of Lecture Notes in Computer Science, pages 158–169. Springer,
2012. doi:10.1007/978-3-642-35623-0_16.

[118] V. Kolovski, J. A. Hendler, and B. Parsia. Analyzing Web Access Control Policies. In
WWW, pages 677–686. ACM, 2007.

[119] S. Kozuruba. Modellbasierte Anforderungsanalyse für die Entwicklung von adaptiven RIAs.
Master’s thesis, Ludwig-Maximilians-Universität München, 2010. http://uwe.pst.ifi.lmu.
de/publications/KozurubaDA.pdf.

[120] M. Krötzsch et al. Semantic mediawiki, 2015. https://semantic-mediawiki.org.

[121] M. Krötzsch et al. Semantic web, 2015. http://semanticweb.org.

[122] C. Lacek. In-depth comparison and integration of tools for testing security features of web
applications, 2013. Bachelor thesis at Ludwig-Maximilians-Universität München, super-
vised by M. Busch.

https://jquery.com/
http://www.umlsec.de/
http://carisma.umlsec.de
http://dx.doi.org/10.1007/978-3-540-74987-5_6
http://dx.doi.org/10.1007/s10270-006-0030-z
http://dx.doi.org/10.1007/s10270-006-0030-z
http://www.pst.informatik.uni-muenchen.de/personen/kochn/PhDThesisNoraKoch.pdf
http://www.pst.informatik.uni-muenchen.de/personen/kochn/PhDThesisNoraKoch.pdf
http://dx.doi.org/10.1007/978-3-642-35623-0_16
http://uwe.pst.ifi.lmu.de/publications/KozurubaDA.pdf
http://uwe.pst.ifi.lmu.de/publications/KozurubaDA.pdf
https://semantic-mediawiki.org
http://semanticweb.org

190 BIBLIOGRAPHY

[123] U. Lang et al. Privacyontology, 2015. http://www.privacyontology.org/.

[124] S. Lipner and M. Howard. The Trustworthy Computing Security Development Lifecycle.
Developer Network - Microsoft, 2005. https://www.microsoft.com/en-us/sdl/. https://
msdn.microsoft.com/en-us/library/ms995349.aspx.

[125] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language
for Model-Driven Security. In Proc. 5th Int. Conf. Unified Modeling Language (UML’02),
volume 2460 of LNCS, pages 426–441. Springer, 2002.

[126] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland, and D. Svoboda. The CERT Oracle
Secure Coding Standard for Java (SEI Series in Software Engineering). Addison-Wesley
Professional, 1 edition, 2011.

[127] M. S. Lund, B. Solhaug, and K. Stølen. Model-Driven Risk Analysis – The CORAS Ap-
proach. Springer, 2011.

[128] E. Martin. Automated test generation for access control policies. In Companion to the
21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, pages 752–753. ACM, 2006. doi:10.1145/1176617.
1176708.

[129] E. Martin and T. Xie. Automated Test Generation for Access Control Policies via Change-
Impact Analysis. In Proc. of Third International Workshop on Software Engineering for
Secure Systems (SESS), pages 5–12, 2007.

[130] M. Masi, R. Pugliese, and F. Tiezzi. Formalisation and Implementation of the XACML
Access Control Mechanism. In ESSoS, volume 7159 of LNCS, pages 60–74. Springer, 2012.

[131] F. P. McKenna. It won’t happen to me: Unrealistic optimism or illusion of control? British
Journal of Psychology, 84:39–39, 1993.

[132] S. Meliá, J. Gómez, S. Pérez, and O. Dı́az. A Model-Driven Development for GWT-
Based Rich Internet Applications with OOH4RIA. In Proc. 8th Int. Conf. Web Engineering
(ICWE’08), pages 13–23. IEEE, 2008.

[133] M. Menzel and C. Meinel. A Security Meta-model for Service-Oriented Architectures. In
Proc. 2009 IEEE Int. Conf. Services Computing (SCC’09), pages 251–259. IEEE, 2009.

[134] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle. Black
Hat USA, 2015. http://illmatics.com/Remote%20Car%20Hacking.pdf.

[135] P. Mohagheghi, W. Gilani, A. Stefanescu, M. Fernandez, B. Nordmoen, and M. Fritzsche.
Where does model-driven engineering help? experiences from three industrial cases. Soft-
ware & Systems Modeling, 12(3):619–639, 2013. doi:10.1007/s10270-011-0219-7.

[136] D. L. Moody. The method evaluation model: a theoretical model for validating information
systems design methods. In ECIS, pages 1327–1336, 2003.

http://www.privacyontology.org/
https://www.microsoft.com/en-us/sdl/
https://msdn.microsoft.com/en-us/library/ms995349.aspx
https://msdn.microsoft.com/en-us/library/ms995349.aspx
http://dx.doi.org/10.1145/1176617.1176708
http://dx.doi.org/10.1145/1176617.1176708
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://dx.doi.org/10.1007/s10270-011-0219-7

BIBLIOGRAPHY 191

[137] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon. A Model-Based Framework for Security
Policy Specification, Deployment and Testing. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl,
and M. Völter, editors, Model Driven Engineering Languages and Systems, volume 5301 of
LNCS, pages 537–552. Springer, 2008. doi:10.1007/978-3-540-87875-9_38.

[138] F. Moyano, C. Fernandez-Gago, and J. Lopez. A conceptual framework for trust models. In
S. Fischer-Hübner, S. Katsikas, and G. Quirchmayr, editors, 9th International Conference
on Trust, Privacy & Security in Digital Business (TrustBus 2012), volume 7449 of LNCS,
pages 93–104. Springer, Springer, 2012. doi:10.1007/978-3-642-32287-7.

[139] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. Cheng, P. Collet, B. Combemale,
R. France, R. Heldal, J. Hill, J. Kienzle, M. Schöttle, F. Steimann, D. Stikkolorum,
and J. Whittle. The relevance of model-driven engineering thirty years from now. In
J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, editors, Model-Driven En-
gineering Languages and Systems, volume 8767 of LNCS, pages 183–200. Springer, 2014.
doi:10.1007/978-3-319-11653-2_12.

[140] F. Nabi. Designing a secure framework method for secure business application logic integrity
in e-commerce systems. I. J. Network Security, 12(1):29–41, 2011.

[141] National Energy Technology Laboratory. A vision for the smart grid. Report, 2009. http:
//www.netl.doe.gov/moderngrid/.

[142] H. Nergaard, N. Ulltveit-Moe, and T. Gjøsæter. A scratch-based graphical policy editor
for xacml. In ICISSP 2015 Proceedings of the 1st International Conference on Information
Systems Security and Privacy ESEO, Angers, Loire Valley, France, pages 182–191, 2015.

[143] NESSoS Project. Network of Excellence on Engineering Secure Future Internet Software
Services and Systems, 2014. http://www.nessos-project.eu/.

[144] F. Neuhaus, A. Vizedom, K. Baclawski, M. Bennett, M. Dean, M. Denny, M. Grüninger,
A. Hashemi, T. Longstreth, L. Obrst, et al. Towards ontology evaluation across the life
cycle. In Applied Ontology, volume 8, pages 179–194. IOS Press, 2013. http://ontolog.cim3.
net/cgi-bin/wiki.pl?OntologySummit2013 Communique, doi:10.3233/AO-130125.

[145] P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon. An extensive systematic review
on model-driven development of secure systems. arXiv preprint arXiv:1505.06557, 2015.
http://arxiv.org/pdf/1505.06557.pdf.

[146] P. H. Nguyen, G. Nain, J. Klein, T. Mouelhi, and Y. Le Traon. Modularity and dynamic
adaptation of flexibly secure systems: Model-driven adaptive delegation in access control
management. In S. Chiba, r. Tanter, E. Bodden, S. Maoz, and J. Kienzle, editors, Transac-
tions on Aspect-Oriented Software Development XI, volume 8400 of LNCS, pages 109–144.
Springer, 2014. doi:10.1007/978-3-642-55099-7_4.

[147] No Magic Inc. Magicdraw, 2015. http://www.magicdraw.com/.

[148] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your
first ontology. Technical Report KSL-01-05, Stanford, 2011. http://www-ksl.stanford.edu/
people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html.

http://dx.doi.org/10.1007/978-3-540-87875-9_38
http://dx.doi.org/10.1007/978-3-642-32287-7
http://dx.doi.org/10.1007/978-3-319-11653-2_12
http://www.netl.doe.gov/moderngrid/
http://www.netl.doe.gov/moderngrid/
http://www.nessos-project.eu/
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique
http://dx.doi.org/10.3233/AO-130125
http://arxiv.org/pdf/1505.06557.pdf
http://dx.doi.org/10.1007/978-3-642-55099-7_4
http://www.magicdraw.com/
http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html

192 BIBLIOGRAPHY

[149] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, 2005. http:
//docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf.

[150] Object Management Group. XMI 2.1. Specification, OMG, 2005. http://www.omg.org/
spec/XMI/.

[151] Object Management Group. Object Constraint Language (OCL) v2.3.1. Specification,
OMG, 2012. http://www.omg.org/spec/OCL/2.3.1/.

[152] Object Management Group. Interaction Flow Modeling Language (IFML), FTF – Beta 2.
Technical report, OMG, 2014. http://www.omg.org/spec/IFML/.

[153] L. Obrst, P. Chase, and R. Markeloff. Developing an ontology of the cyber security domain.
In STIDS, pages 49–56, 2012. http://ceur-ws.org/Vol-966/STIDS2012 T06 ObrstEtAl
CyberOntology.pdf.

[154] M. Ochoa, J. Jürjens, and J. Cuéllar. Non-interference on UML state-charts. In Objects,
Models, Components, Patterns, pages 219–235. Springer, 2012.

[155] M. Odersky et al. Scala, 2015. http://scala-lang.org/.

[156] L. Olsina, F. Papa, and H. Molina. How to measure and evaluate web applications in a
consistent way. In Web Engineering: Modelling and Implementing Web Applications, pages
385–420. Springer, 2008.

[157] Open-Source Community. ownCloud, 2015. https://owncloud.org/.

[158] OpenLiberty. Easy XACML syntax with OpenAzPolicyReader, 2010. http://lists.
openliberty.org/pipermail/openaz/2010-July/000074.html.

[159] Oracle. Java, 2015. http://www.java.com/.

[160] Oracle. MySQL, 2015. http://www.mysql.com/.

[161] OWASP Foundation. OWASP Top 10 – 2013, 2013. http://owasptop10.googlecode.com/
files/OWASPTop10-2013.pdf.

[162] OWASP Foundation. Application Security Verification Standard (ASVS), 2014.
https://www.owasp.org/index.php/Category:OWASP Application Security Verification
Standard Project.

[163] OWASP Foundation. Clickjacking, 2014. https://www.owasp.org/index.php/Clickjacking.

[164] OWASP Foundation. Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet,
2014. https://www.owasp.org/index.php/Cross-Site Request Forgery (CSRF) Prevention
Cheat Sheet.

[165] OWASP Foundation. List of useful HTTP headers, 2014. https://www.owasp.org/index.
php/List of useful HTTP headers.

[166] OWASP Foundation. OWASP Risk Rating Methodology, 2014. https://www.owasp.org/
index.php/OWASP Risk Rating Methodology.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/IFML/
http://ceur-ws.org/Vol-966/STIDS2012_T06_ObrstEtAl_CyberOntology.pdf
http://ceur-ws.org/Vol-966/STIDS2012_T06_ObrstEtAl_CyberOntology.pdf
http://scala-lang.org/
https://owncloud.org/
http://lists.openliberty.org/pipermail/openaz/2010-July/000074.html
http://lists.openliberty.org/pipermail/openaz/2010-July/000074.html
http://www.java.com/
http://www.mysql.com/
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

BIBLIOGRAPHY 193

[167] OWASP Foundation. OWASP Data Validation, 2015. https://www.owasp.org/index.php/
Data Validation.

[168] OWASP Foundation. Session fixation, 2015. https://www.owasp.org/index.php/Session
fixation.

[169] OWASP Foundation. SQL Injection Prevention Cheat Sheet, 2015. https://www.owasp.
org/index.php/SQL Injection Prevention Cheat Sheet.

[170] OWASP Foundation. User Privacy Protection Cheat Sheet, 2015. https://www.owasp.org/
index.php/User Privacy Protection Cheat Sheet.

[171] J. Pauli. The Basics of Web Hacking: Tools and Techniques to Attack the Web. Syngress,
1 edition, 2013.

[172] C. P. Pfleeger and S. L. Pfleeger. Security in Computing, 4th Edition. Prentice Hall, 4th
edition, 2006.

[173] PHP. Scripting Language, 2015. http://www.php.net/.

[174] Privacy Rights Clearinghouse. Chronology of data breaches, 2015. http://www.
privacyrights.org/data-breach.

[175] G. Reggio, E. Astesiano, and C. Choppy. A framework for defining and comparing modelling
methods. In R. De Nicola and R. Hennicker, editors, Software, Services, and Systems,
volume 8950 of Lecture Notes in Computer Science, pages 377–408. Springer, 2015. doi:
10.1007/978-3-319-15545-6_23.

[176] M. Reithmayer. Tool support for a knowledge base for secure software engineering. Master’s
thesis, Ludwig-Maximilians-Universität München, 2014. Supervised by M. Busch.

[177] A. Rodŕıguez, E. Fernández-Medina, and M. Piattini. Towards a UML 2.0 extension
for the modeling of security requirements in business processes. In S. Fischer-Hübner,
S. Furnell, and C. Lambrinoudakis, editors, Trust and Privacy in Digital Business, vol-
ume 4083 of Lecture Notes in Computer Science, pages 51–61. Springer, 2006. doi:
10.1007/11824633_6.

[178] A. Rodŕıguez, E. Fernández-Medina, and M. Piattini. A BPMN extension for the modeling
of security requirements in business processes. IEICE transactions on information and
systems, 90(4):745–752, 2007.

[179] RWTH Aachen University. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML, 2004. http://www.w3.org/Submission/SWRL/.

[180] RWTH Aachen University. i* notation, 2014. http://istar.rwth-aachen.de.

[181] K. Rzehaczek. Transformation of graphical UWE models to a textual DSL, 2013. Bachelor
thesis at Ludwig-Maximilians-Universität München, supervised by M. Busch.

[182] P. Salini and S. Kanmani. Ontology-based representation of reusable security requirements
for developing secure web applications. Int. J. Internet Technol. Secur. Syst., 5(1):63–83,
2013. doi:10.1504/IJITST.2013.058295.

https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/Session_fixation
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
http://www.php.net/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://dx.doi.org/10.1007/978-3-319-15545-6_23
http://dx.doi.org/10.1007/978-3-319-15545-6_23
http://dx.doi.org/10.1007/11824633_6
http://dx.doi.org/10.1007/11824633_6
http://www.w3.org/Submission/SWRL/
http://istar.rwth-aachen.de
http://dx.doi.org/10.1504/IJITST.2013.058295

194 BIBLIOGRAPHY

[183] S. Schefer-Wenzl and M. Strembeck. Modellierungsunterstützung für die rollenbasierte
delegation in prozessgestützten informationssystemen. Wirtschaftsinformatik, 56(4):237–
260, 2014. doi:10.1007/s11576-014-0433-3.

[184] R. Schneiderman. Smart grid represents a potentially huge market for the electronics
industry. IEEE Signal Processing Magazine, 27(5):8–15, 2010.

[185] B. Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999. https://www.schneier.
com/paper-attacktrees-ddj-ft.html.

[186] B. Schneier. Carry On: Sound Advice from Schneier on Security. Wiley, 1 edition, 2013.
https://www.schneier.com/essays/.

[187] T. Schreiber and A. Hoffmann. Sicherheit von webanwendungen maßnahmenkatalog und
best practices. Technical Report 1, Bundesamt für Sicherheit in der Informationstechnik,
2006. https://www.bsi.bund.de/DE/Publikationen/Studien/websec/index htm.html.

[188] S. Schreiner. Comparison of Security-related Tools and Methods for Testing Software, 2013.
Bachelor thesis at Ludwig-Maximilians-Universität München, supervised by M. Busch.

[189] M. Schumacher. 6. toward a security core ontology. In Security Engineering with
Patterns, volume 2754 of LNCS, pages 87–96. Springer, 2003. doi:10.1007/
978-3-540-45180-8_6.

[190] R. Schwienbacher. Extending UWE with secure navigation paths, 2012. Bachelor thesis at
Ludwig-Maximilians-Universität München, supervised by M. Busch.

[191] W. Schwinger, W. Retschitzegger, A. Schauerhuber, G. Kappel, M. Wimmer, B. Pröll,
C. Cachero Castro, S. Casteleyn, O. De Troyer, P. Fraternali, I. Garrigos, F. Garzotto,
A. Ginige, G.-J. Houben, N. Koch, N. Moreno, O. Pastor, P. Paolini, V. Pelechano Ferragud,
G. Rossi, D. Schwabe, M. Tisi, A. Vallecillo, K. van der Sluijs, and G. Zhang. A survey on
web modeling approaches for ubiquitous web applications. International Journal of Web
Information Systems, 4(3):234–305, 2008. doi:10.1108/17440080810901089.

[192] D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of the
11th international conference on World Wide Web, WWW ’02, pages 396–407. ACM, 2002.
doi:10.1145/511446.511498.

[193] SDE. Service Development Environment, 2014. http://sde.pst.ifi.lmu.de/.

[194] Sensoria Project. Software Engineering for Service-Oriented Overlay Computers, 2011.
http://www.sensoria-ist.eu/.

[195] M. Shema. Hacking Web Apps: Detecting and Preventing Web Application Security Prob-
lems. Syngress, 1 edition, 2012.

[196] J. Sherwood, A. Clark, and D. Lynas. Enterprise Security Architecture: A Business-Driven
Approach. CRC Press, 1 edition, 2005.

[197] A. Shostack. Threat Modeling: Designing for Security. Wiley, 1 edition, 2014.

http://dx.doi.org/10.1007/s11576-014-0433-3
https://www.schneier.com/paper-attacktrees-ddj-ft.html
https://www.schneier.com/paper-attacktrees-ddj-ft.html
https://www.schneier.com/essays/
https://www.bsi.bund.de/DE/Publikationen/Studien/websec/index_htm.html
http://dx.doi.org/10.1007/978-3-540-45180-8_6
http://dx.doi.org/10.1007/978-3-540-45180-8_6
http://dx.doi.org/10.1108/17440080810901089
http://dx.doi.org/10.1145/511446.511498
http://sde.pst.ifi.lmu.de/
http://www.sensoria-ist.eu/

BIBLIOGRAPHY 195

[198] G. Sindre and A. Opdahl. Eliciting security requirements with misuse cases. Requirements
Engineering, 10(1):34–44, 2005.

[199] N. Slimani, H. Khambhammettu, K. Adi, and L. Logrippo. UACML: Unified Access Control
Modeling Language. In NTMS 2011, pages 1–8, 2011.

[200] I. Sommerville. Software Engineering (9th Edition). Pearson, 9 edition, 2010.

[201] A. Souag, C. Salinesi, I. Wattiau, and H. Mouratidis. Using security and domain ontologies
for security requirements analysis. In Computer Software and Applications Conference
Workshops (COMPSACW), 2013 IEEE 37th Annual, pages 101–107, 2013. doi:10.1109/
COMPSACW.2013.124.

[202] A. Souag, C. Salinesi, and I. Comyn-Wattiau. Ontologies for security requirements: A
literature survey and classification. In M. Bajec and J. Eder, editors, Advanced Information
Systems Engineering Workshops, volume 112 of Lecture Notes in Business Information
Processing, pages 61–69. Springer, 2012. doi:10.1007/978-3-642-31069-0_5.

[203] A. Souag, C. Salinesi, R. Mazo, and I. Comyn-Wattiau. A security ontology for secu-
rity requirements elicitation. In Engineering Secure Software and Systems, pages 157–177.
Springer, 2015.

[204] R. A. Spears. Common American Phrases in Everyday Contexts: A Detailed Guide to
Real-Life Conversation and Small Talk. National Textbook Company, 1992.

[205] C. Sprenger et al. NESSoS Deliverable D9.4 – Enhanced Set of Solutions for Security Assur-
ance for Services, 2013. http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D9.
4.pdf.

[206] Stanford Center for Biomedical Informatics Research. Webprotégé, 2015. http://protege.
stanford.edu/products.php#web-protege.

[207] B. Stepien, A. P. Felty, and S. Matwin. A Non-technical User-Oriented Display Notation
for XACML Conditions. In MCETECH, LNBIP 26, pages 53–64. Springer, 2009.

[208] R. Studer and S. Staab, editors. Handbook on ontologies. Springer, 2 edition, 2004.

[209] Sun Microsystems. Sun’s XACML Implementation, 2006. http://sunxacml.sourceforge.
net/.

[210] Symantec. Internet security threat report. Technical report, Symantec, 2015. http://www.
symantec.com/de/de/security response/publications/threatreport.jsp.

[211] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol. Version 1.2.
Specification, Internet Engineering Task Force (IETF), 2008. http://tools.ietf.org/html/
rfc5246.

[212] The MITRE Corporation. Common attack pattern enumeration and classification. mecha-
nisms of attack., 2015. https://capec.mitre.org/data/definitions/1000.html.

http://dx.doi.org/10.1109/COMPSACW.2013.124
http://dx.doi.org/10.1109/COMPSACW.2013.124
http://dx.doi.org/10.1007/978-3-642-31069-0_5
http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D9.4.pdf
http://www.nessos-project.eu/media/deliverables/y3/NESSoS-D9.4.pdf
http://protege.stanford.edu/products.php#web-protege
http://protege.stanford.edu/products.php#web-protege
http://sunxacml.sourceforge.net/
http://sunxacml.sourceforge.net/
http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
https://capec.mitre.org/data/definitions/1000.html

196 BIBLIOGRAPHY

[213] The MITRE Corporation. Common Vulnerabilities and Exposures List (CVE), 2015. https:
//cve.mitre.org.

[214] The MITRE Corporation. Structured threat information expression (stix), 2015. https:
//stix.mitre.org/.

[215] J. Tiago. Angriffsrisiken minimieren mit Security-Headern (German). Heise IX Kompakt
Security, (4/2014):64–53, 2014.

[216] Transaction Processing Performance Council (TPC). TPC-W Benchmark, 2005. http:
//tpc.org/tpcw/.

[217] P. Valderas and V. Pelechano. A survey of requirements specification in model-driven
development of web applications. ACM Trans. Web, 5(2):10:1–10:51, 2011. doi:10.
1145/1961659.1961664.

[218] F. Valverde and O. Pastor. Applying Interaction Patterns: Towards a Model-Driven Ap-
proach for Rich Internet Applications Development. In Proc. 7th Int. Wsh. Web-Oriented
Software Technologies (IWWOST’08), 2008.

[219] A. van den Berghe, R. Scandariato, K. Yskout, and W. Joosen. Design notations for
secure software: a systematic literature review. Software & Systems Modeling, pages 1–
23, 2015. https://people.cs.kuleuven.be/∼alexander.vandenberghe/review/overview.html,
doi:10.1007/s10270-015-0486-9.

[220] H. van Tilborg and S. Jajodia, editors. Encyclopedia of Cryptography and Security. Springer,
2011. doi:10.1007/978-1-4419-5906-5.

[221] W3C Last Call Working Draft. Content Security Policy Level 2, 2014. http://www.w3.
org/TR/CSP2/.

[222] A. Wali, S. A. Chun, and J. Geller. A bootstrapping approach for developing a cyber-
security ontology using textbook index terms. In Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on, pages 569–576, 2013. doi:10.1109/
ARES.2013.75.

[223] J. A. Wang and M. Guo. Security data mining in an ontology for vulnerability management.
In Bioinformatics, Systems Biology and Intelligent Computing, 2009. IJCBS ’09. Interna-
tional Joint Conference on, pages 597–603, 2009. doi:10.1109/IJCBS.2009.13.

[224] Web Engineering Group at LMU. UWE Website, 2015. http://uwe.pst.ifi.lmu.de/.

[225] D. Weinberger. Too big to know: Rethinking knowledge now that the facts aren’t the facts,
experts are everywhere, and the smartest person in the room is the room. Basic Books,
2011.

[226] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song. An empiri-
cal analysis of xss sanitization in web application frameworks. Technical report, Univer-
sity of California at Berkeley, 2011. http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/
EECS-2011-11.pdf.

https://cve.mitre.org
https://cve.mitre.org
https://stix.mitre.org/
https://stix.mitre.org/
http://tpc.org/tpcw/
http://tpc.org/tpcw/
http://dx.doi.org/10.1145/1961659.1961664
http://dx.doi.org/10.1145/1961659.1961664
https://people.cs.kuleuven.be/~alexander.vandenberghe/review/overview.html
http://dx.doi.org/10.1007/s10270-015-0486-9
http://dx.doi.org/10.1007/978-1-4419-5906-5
http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/CSP2/
http://dx.doi.org/10.1109/ARES.2013.75
http://dx.doi.org/10.1109/ARES.2013.75
http://dx.doi.org/10.1109/IJCBS.2009.13
http://uwe.pst.ifi.lmu.de/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-11.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-11.pdf

BIBLIOGRAPHY 197

[227] Wikimedia Foundation et al. Wikidata, 2015. https://www.wikidata.org.

[228] K. Wolf. Sicherheitsbezogene Model-to-Code Transformation für Webanwendungen (Ger-
man). Master’s thesis, Ludwig-Maximilians-Universität München, 2012. Diplomarbeit,
supervised by M. Busch.

[229] E. Z. Yang et al. HTML purifier – standards-compliant HTML filtering, 2015. http:
//htmlpurifier.org/.

[230] G. Zhang, N. Koch, and A. Knapp. Aspect-Oriented Modeling of Access Control in Web
Applications. In 6th Workshop on Aspect Oriented Modeling (AOM), 2005.

All online resources were lastly accessed in January 2016.

https://www.wikidata.org
http://htmlpurifier.org/
http://htmlpurifier.org/

	Abstract
	Contents
	I Introduction and Background
	1 Introduction
	1.1 Motivation
	1.2 Aim
	1.3 Approach
	1.4 Usage Example
	1.5 Outline

	2 Background
	2.1 Secure Development Processes and Standards
	2.2 Ontologies, Knowledge Bases and Evaluation Approaches
	2.2.1 Terms
	2.2.2 Existing Approaches

	2.3 Modeling Web Applications
	2.3.1 Advantages of Graphical Software Modeling
	2.3.2 Approaches that support Security-Related Requirements and Design Decisions

	II Evaluating and Relating Security Concepts
	3 SecEval: A Framework for Evaluating Security Engineering Approaches
	3.1 Evaluation Process
	3.2 Architecture
	3.2.1 Security Context
	Details of Tools and Methods according to the SDLC
	Relations between Methods, Notations and Tools

	3.2.2 Data Collection
	3.2.3 Data Analysis
	3.2.4 Architecture Extensions
	OWASP's Risk Rating Methodology
	Moody's Method Evaluation Approach

	3.3 Guided Interview
	3.4 Case Study: Web Vulnerability Scanning
	3.4.1 Data Collection
	3.4.2 Data Analysis
	3.4.3 Security Context

	3.5 Summary and Related Work

	4 SecWAO: A Secure Web Applications' Ontology
	4.1 Overview of SecWAO by Example
	4.2 Security Properties
	4.3 Methods
	4.3.1 Cryptography
	4.3.2 Data validation
	4.3.3 Authentication
	4.3.4 Session Management
	4.3.5 Authorization
	4.3.6 Logging, Error Handling and System Configuration

	4.4 Vulnerabilities and Threats
	4.5 Implementation of a Knowledge Base
	4.5.1 Requirements
	Viewing Knowledge Objects
	Editing Knowledge Objects
	Importing External Information
	Searching for Information

	4.5.2 Implementation

	4.6 Summary and Related Work

	III Engineering Secure Web Applications
	5 Modeling Secure Web Applications
	5.1 Overview of Case Studies
	5.1.1 SmartGrid
	5.1.2 Patient Monitoring
	5.1.3 Hospital Information System
	5.1.4 OwnCloud

	5.2 UWE Models
	5.2.1 Requirements Model
	5.2.2 Content Model
	5.2.3 User Model, Role Model and Basic Rights Model
	5.2.4 Navigation Model
	5.2.5 Presentation Model
	5.2.6 Application States Model

	5.3 Security Extensions for UWE
	5.3.1 Modeling Required Security Properties
	System Availability and Data Availability
	Control Flow Integrity
	Data Confidentiality and Data Integrity
	Data Authenticity and Data Freshness
	User Identity
	User Privacy: Pseudonymity and Anonymity
	Non-Repudiation
	Data Retention

	5.3.2 Modeling Applied Mechanisms
	Authentication and Session Management
	Authorization
	Data Validation
	Error Handling
	Logging
	System Configuration and Cryptography

	5.3.3 Identifiers in UWE

	5.4 Summary and Related Work

	6 Artifact Generation
	6.1 TextualUWE: A Domain-Specific Language
	6.1.1 Background
	6.1.2 Structure
	6.1.3 Validation
	6.1.4 Transformation from UWE to TextualUWE

	6.2 UWE2FACPL Toolchain: Generating Access Control Policies
	6.2.1 Background
	The XACML Standard
	The FACPL Policy Language

	6.2.2 Policy Transformation
	UWE to XACML
	XACML to FACPL

	6.2.3 Policy Evaluation

	6.3 ACT Toolchain: Testing Access Control Policies
	6.3.1 Background
	6.3.2 The Access Control Testing Toolchain (ACT)
	Model-driven Policy Design
	Test Case Generation and Execution
	Results Analysis and Verdicts Generation
	Toolchain Integration

	6.3.3 Case Study

	6.4 ActionUWE: Transforming UWE to ActionGUI
	6.4.1 Background
	6.4.2 Transformation

	6.5 SNPs: Modeling, Testing and Securing Navigation Flow
	6.5.1 Background
	6.5.2 Modeling Approach
	Basic SNPs
	SNPs with Checked Parameters

	6.5.3 Testing
	6.5.4 Tool Support
	6.5.5 Case Study

	6.6 Summary and Related Work

	IV Conclusion
	7 Summary
	8 Future Work

	V Appendix
	A Attribute Description of SecEval's Security Context Model
	A.1 Methods
	A.2 Tools

	B SecEval Questionnaire
	B.1 Security Engineering Method and Tool Evaluation
	B.2 Questions and Suggestions

	C Excerpt of the UWE Profile
	C.1 Requirements Model
	C.2 Content Model
	C.3 User Model and Role Model
	C.4 Basic Rights Model
	C.5 Navigation Model
	C.6 Application States Model

	D Case Study: Energy Management System
	D.1 Environment and Requirements
	D.1.1 Components of Smart Homes
	D.1.2 Actors
	D.1.3 Functionality
	Local Energy Control
	Energy Trading
	Plugin Management
	User Management

	D.2 Securing the EMS Web Application
	D.3 Modeling the EMS with UWE
	D.3.1 Content View
	D.3.2 Role and Access Control View
	D.3.3 Navigation and Process View

	Publications of Marianne Busch
	Bibliography

