
UWE4JSF: A Model-Driven Generation
Approach for Web Applications

Christian Kroiss1, Nora Koch1,2, and Alexander Knapp1

1 Ludwig-Maximilians-Universität München, Germany
2 Cirquent GmbH, Germany

{kroiss,kochn,knapp}@pst.ifi.lmu.de

Abstract. Model-driven engineering is a promising approach, but there
are still many hurdles to overcome. The tool UWE4JSF solves the hur-
dles for the model-driven development of web applications designed with
UWE. It builds upon a set of models and domain specific annotations –
in particular an abstract and a concrete presentation model. It is com-
pletely integrated in Eclipse, implemented as a set of plugins supporting
model transformations and fully automatic code generation.

1 Introduction

The aim of model-driven development (MDD) is to raise the level of abstraction
at which software is developed in order to save time and to reduce the amount
of redundant programming work. MDD approaches are based on models that
become first-class citizens in the development process, and on metamodels and
model transformations requiring appropriate tool support. UWE4JSF [2] is such
a CASE tool that was developed for the generation of web applications within
the scope of the UML-based Web Engineering approach (UWE)1.

UWE4JSF focuses on the automated generation of web applications, similarly
to UWEATL [1] – first MDD approach for UWE – but differs in several concep-
tual and implementation aspects. In particular, (1) UWE4JSF is integrated in
the Eclipse IDE using Eclipse-based transformation technologies. (2) It automat-
ically generates web applications for the JSF2 platform, a component-based tech-
nology which provides a flexible and powerful mechanism for the implementation
of user interfaces (UI) of arbitrary complexity by means of component libraries.
(3) UWE4JSF makes use of OGNL3 that is an open-source expression language
for Java. (4) The generation of the UI is based on a revisited version of the UWE
presentation metamodel and an additional concrete presentation model.

To summarize UWE4JSF provides a human-readable, debuggable and high-
performance approach that supports fully automated generation of web
applications.
1 UWE — http://www.pst.ifi.lmu.de/projekte/uwe
2 Java Server Faces — http://java.sun.com/javaee/javaserverfaces/
3 Object-Graph Navigation Language — http://www.opensymphony.com/ognl/

M. Gaedke, M. Grossniklaus, and O. Díaz (Eds.): ICWE 2009, LNCS 5648, pp. 493–496, 2009.
© Springer-Verlag Berlin Heidelberg 2009

494 C. Kroiss, N. Koch, and A. Knapp

2 Extending UWE for Model Driven Development

UWE follows the principle of “separation of concerns” by modeling the content,
the navigation structure, the business processes, and the presentation of a web
application separately as shown in Fig. 1. UWE is mainly based on standards, like
UML and MDA4. The models are built using the UWE profile, which is a UML
extension defined using the extension mechanisms provided by UML. For exam-
ple, classes with a stereotype «navigationClass» represent navigable nodes for
information retrieval; associations stereotyped with «navigationLink» model
direct links. For more details the reader is referred to [2].

«elemConfig»

Presentation

Navigation Structure

Process

«user action»

Content

*

*

 {isHome}

 ?

Fig. 1. UWE model types: overview

To use an UWE model for automatic transformation and code generation, it
has to be augmented with explicit information that is not necessary if the model
is only used for communication or documentation purposes. For example, the
input data for navigation nodes has to be specified, together with the selection
rules that are executed when links are followed. Information like this is specified
by means of OGNL, combined with some UWE-specific functions. OGNL is
also used in the activities of the process model to specify guard expressions
and data handling actions. Unlike many other approaches, UWE also provides
a UML extension for the explicit modeling of the user interface. First of all, the
(abstract) presentation model is represented in UML using composite structure
diagrams containing stereotyped classes and properties as representations for UI
elements like text input fields or buttons. The resulting diagrams are very well
suited to illustrate the basic layout and functional structure of the UI.

The elements of the presentation model must be mapped to UI components
of the target platform. Many MDD approaches like WebML/Webratio5 use
template-based mechanisms for this purpose. However, in modern web applica-
tions, the selection of concrete UI components often strongly affects the usability,
e.g. a date could be entered in a text field or with a dynamic calendar component.
4 OMG — MDA Guide, http://www.omg.org/docs/omg/03-06-01.pdf
5 http://www.webml.com

UWE4JSF: A Model-Driven Generation Approach for Web Applications 495

Therefore, in UWE this mapping is regarded as an important part of the applica-
tion’s design and recorded in a dedicated UML-based model, called the concrete
presentation model. The basic idea is that platform specific UI components are
modeled as stereotyped UML classes and corresponding instance specifications
represent concrete component configurations. An example for a component that
requires configuration like this might be a rich table whose column headers can
be clicked to switch between different sorting criteria – the latter would be de-
fined using attributes of the component configuration. It is also possible to build
composite tree structures of component configurations, which might be used, for
example, to add labels or headers to input or output elements. The mapping
of abstract presentation model elements to element configurations can be estab-
lished in two ways: (1) by associating mapping rules to meta-classes in default
element configurations or (2) by linking individual elements of the abstract pre-
sentation model to element configurations with UML dependencies. In the sense
of the MDA, these individual mappings could be seen as markings that guide
the transformation process.

3 Tool Chain for Automatic Generation

The concepts described above were realized in the transformation and code gen-
eration tool UWE4JSF6. Its applicability has been demonstrated with several
example applications, e.g. a simplified MP3 web store. UWE4JSF is implemented
as a set of Eclipse plugins and supports automatic generation of JSF-based web
applications from UWE models as well as model validation using constraints
specified in the Object Constraint Language (OCL). UWE4JSF uses EMF7

for the storage of (meta-)models and for the exchange with third party UML
CASE tools, using a widely supported data format called EMF-UML. The model
transformations were realized using ATL8 for model-to-model (M2M) and JET9

for model-to-text (M2T) transformations. Both Eclipse-based technologies were
combined in a transformation chain that is illustrated in Fig. 2.

The process starts with a UML source model (with applied UWE profile) that
contains both the platform-independent model (PIM) and individual element
mappings of the concrete presentation model. A first model-to-model transfor-
mation converts it to an instance of the UWE metamodel which is then validated
using a set of OCL constraints. If the validation succeeds, a next transformation
generates a platform-specific model (PSM) by processing the UWE source model
together with an additional input model containing the default UI element con-
figurations of the concrete presentation model. This PSM is finally used as input
for a model-to-text transformation that generates the application’s source code
which consists of Java classes, page specifications and configuration files. These
generated artefacts build upon an intermediate platform, called the UWE4JSF
6 http://www.pst.ifi.lmu.de/projekte/uwe/uwe4jsf
7 Eclipse Modeling Framework — http://www.eclipse.org/modeling/emf
8 Atlas Transformation Language — http://www.eclipse.org/m2m/atl/
9 http://www.eclipse.org/modeling/m2t

496 C. Kroiss, N. Koch, and A. Knapp

UWE Metamodel

UML to UWE
(ATL)

UML Metamodel UWE Profile

UML Source Model

UWE to JSF
(ATL)

Default Presentation
Configuration

JSF-PSMPSM to Code
(JET)

JSF Metamodel

UWE4JSF Framework
non-generated
artefacts

generated
artefacts

transformationJSF

PIM Presentation Element
Mappings

*.java, *.jsp,
*.xml

Web Application

non-generated Java classes,
libraries, stylesheets, etc.

ERROR

UWE Source
Model

Validation

Fig. 2. UWE4JSF Generation Process

framework, that resides on top of JSF and is designed to reduce the complexity
of the generated code and the transformation rules. Finally, the application can
be augmented with non-generated Java classes to implement complex process
actions or persistence layer operations.

4 Conclusions and Future Work

We presented the MDD tool UWE4JSF that allows fully automatic generation
of JSF-based web applications from UWE models. The chosen platform provides
high extensibility and UWE’s concrete presentation model can be used to ex-
ploit the vast amount of available JSF component libraries that provide means
to create rich user interfaces. JSF also offers a flexible architecture for supporting
simultaneously multiple platforms like browsers technologies and mobile devices.
Future work includes efforts to incorporate mechanisms like pattern substitution
and to extending the validation engine. Last but not least, the MagicUWE10

project aims to create an elaborate integration of UWE/UWE4JSF into a pro-
fessional UML CASE tool.

References

1. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in
UWE. In: MDWE2007 - 3rd International Workshop on Model-Driven Web Engi-
neering, July 2007. CEUR-WS, vol. 261, pp. 23–38 (2007)

2. Kroiss, C.: Model-based Generation of Web Applications with UWE (in German).
Diploma Thesis. Ludwig-Maximilians-Universität München, Germany (June 2008),
http://www.pst.ifi.lmu.de/projekte/uwe/publications/CKroissDA08.pdf

10 http://www.pst.ifi.lmu.de/projekte/uwe/toolMagicUWE.html

http://www.pst.ifi.lmu.de/projekte/uwe/publications/CKroissDA08.pdf

	UWE4JSF: A Model-Driven Generation Approach for Web Applications
	Introduction
	Extending UWE for Model Driven Development
	Tool Chain for Automatic Generation
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

