

Modeling Web Business Processes with OO-H
and UWE1

NORA KOCH AND ANDREAS KRAUS
Ludwig-Maximilians-Universität München.

Germany

CRISTINA CACHERO AND SANTIAGO MELIÀ
Universidad de Alicante, Spain

__

Business processes, regarded as heavy-weighted flows of control consisting of activities and transitions, pay an
increasingly important role in Web applications. In order to address these business processes, Web
methodologies are evolving to support its definition and integration with the Web specific aspects of content,
navigation and presentation.
This paper presents the model support provided for this kind of processes by both OO-H and UWE. For this
support both approaches use UML use cases and activity diagrams and provide appropriate modeling extensions.
Additionally, the connection mechanisms between the navigation and the process specific modeling elements
are discussed. As a representative example to illustrate our approach we present the requirements, analysis and
design models for the amazon.com Website with focus on the checkout process. Our approach includes
requirements and analysis models shared by OO-H and UWE and provides the basis on which each method
applies its particular design notation.
Categories and Subject Descriptors: H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – Architecture; Navigation; User Issues; D.2.2 [Software Engineering]: Design Tools
and Techniques – Object-oriented Design Methods; D.2.1 [Software Engineering]: Requirements Specification
– Methodologies; I.6.5 [Computing Methodologies]: Simulation and Modeling – Model Development

General Terms: Design, Experimentation, Human Factors

Additional Key Words and Phrases: Web Engineering, UML, Visual Modeling, Process Modeling, UML
Profile

__

1. INTRODUCTION

Business processes, regarded as heavy-weighted flows of control consisting of activities
and transitions [UML 2003], have always paid an important role in software development
methods, to the point that many process proposals include the definition of an explicit
view (the process view) in order to address their complexity. However, such processes
have been only tangentially tackled in most existing Web Application modeling
approaches [Retschitzegger & Schwinger 2000]. This reality is partly due to the fact that
most of these methods were born with the aim of successfully modeling Information
Systems (IS) [Baresi et al. 2001, Schwabe et al. 2001, Ceri et al. 2002, De Troyer &
Casteleyn 2001, Gomez et al. 2001, Koch & Kraus, 2002], which ‘store, retrieve,

1 This work has been partially supported by the European Union within the IST project AGILE – Architectures
for Mobility (IST-2001-32747), the German BMBF-project GLOWA-Danube, and the Spain Ministry of
Science and Technology, project number TIC2001-3530-C02-02.
Authors' addresses: Nora Koch and Andreas Kraus, Ludwig-Maximilians-Universität München, Germany,
http://www.pst.informatik.uni-muenchen.de, {kochn,krausa}@informatik.uni-muenchen.de. Cristina Cachero
and Santiago Meliá, Universidad de Alicante, España, http://www.ua.es, {ccachero,santi}@dlsi.ua.es.

transform and present information to users. [They] Handle large amounts of data with
complex relationships, which are stored in relational or object databases’ [Korthaus
1998]. Therefore, Web modeling approaches have intensively worked on (1) the
definition of suitable constructs to address the user navigation through the domain
information space and (2) the inclusion of mechanisms to model the change in such
information space through the invocation of synchronous retrieval and update operations.
In contrast, requirements posed on modern Web applications imply to regard them not
only as Information Systems but also as Business Systems, that is, applications centered
on goals, resources, rules and, mainly, the actual work in the business (business
processes). Workflow management systems, which have proven successful for the
definition and control of these processes, fall short however when faced to the problem of
defining rich business-enabled Web interfaces that, aware of the underlying workflow,
support and guide the user through it, preserving at the same time the hypertext
flexibility.

The hypermedia community, conscious of this gap, has been working for some time on
the extension of Web modeling methods (which are specially suited to deal with the
complexity of Web interfaces) with new mechanisms that permit the definition and
integration of lightweight business processes with the rest of the views. This extension
may be done following at least two different approaches: on one hand, traditional content,
navigation and/or presentation models may be enriched to capture this workflow.
Examples in this sense include Araneus2 [Atzeni & Parente 2001], which defines the
mechanisms to allow the grouping of activities into phases, Wisdom [Nunes & Cunha
2000], which proposes a UML extension that includes the use of a set of stereotyped
classes, or WebML [Brambilla et al. 2002] which enriches the data and the hypertext
models to define lightweight web-enabled workflows. On the other hand, additional
models may be defined, and its connection with the pre-existing content, hypertext and/or
presentation views established. This has been the approach jointly followed by UWE and
OO-H, as we will present in this paper.

Our aim in this paper has been therefore to find a common set of modeling concepts that
suffices to define sound, non-trivial business processes and that could be equally useful in
other existing methodologies. In order to define the necessary constructs and modeling
activities, we have decided to adhere to well known object-oriented standards, namely to
the semantics and notation provided by UML. Using UML to model business processes is
not new; authors like [Nunes & Cunha 2000, Markopoulos 2000] have already
acknowledged its feasibility and excellence. From the set of modeling techniques
provided by the UML, the activity diagram is the most suitable mechanism to model the
business workflow, and so has been adopted by both OO-H and UWE to define the
different processes. In this diagram, activity states represent the process steps, and
transitions capture the process flow, including forks and joins to express sets of activities
that can be processed in arbitrary order.

In order to reach our goal, this work is organized as follows: Sections 2 and 3 present the
analysis steps, equal for both methodologies. Section 4 and Section 5 describe the design
steps for OO-H and UWE, respectively. Last, Section 6 outlines conclusions while
Section 7 proposes future lines of research. In order to better illustrate the whole
approach, a simplified view of the well-known Amazon checkout process
(http://www.amazon.com) is going to be employed all along the paper.

2. THE ROLE OF BUSINESS PROCESSES IN REQUIREMENT
ANALYSIS

The inclusion of a business process in any Web modeling approach affects every stage of
development, from requirements analysis to implementation. Regarding requirements
analysis, whose goal is the elicitation, specification and validation of the user and
customer needs, this activity includes the detection of both functional and non-functional
requirements, both of which may get affected by process concerns.

Although there is a lack of a standardized process supporting requirements analysis, best
practices in the development of general software applications provide a set of techniques.
A recent comparative study [Escalona & Koch 2003] about requirements engineering
techniques for the development of Web applications showed that use case modeling is the
most popular technique proposed for the specification of requirements while interviewing
is the most used technique for the capture of those requirements. These results are not
surprising; traditional software development requires interviewing as an intuitive and
widely used procedure to guide a “conversation with a purpose” [Kahn & Cannell 1957],
and use cases are a well known approach for graphical representation and description of
requirements suggested by [Jacobson et al. 1992]. Use case modeling is a powerful
formalism to express functional requirements of business intensive – Web or non-Web –
applications.

In this sense, OO-H and UWE are object-oriented approaches (partially and completely
based on UML, respectively) and both of them include the use case modeling technique
to gather the requirements of Web applications. To define a use case model the first step
is to identify actors and the corresponding use cases of the application. Such a use case
model usually includes a use case diagram which is usually enough to describe the
functionality of simple systems, such as of Web information systems. On the other hand,
Web applications including business processes require a more detailed description of
these – more complex – sequences of actions. In order to address this additional
complexity as it is shown in the next section, both approaches propose the use of UML
activity diagrams.

In our running example we have identified two actors that play a relevant role in the
checkout process: the NonRegisteredUser and the Customer. The non-registered user can
– among other activities – search and select products, add products to the shopping cart
and login into the Amazon Web application. The Customer inherits from the
NonRegisteredUser and is allowed among other things (after logged-in) to start the
checkout process.

Fig. 1 presents a partial view of the use case diagram corresponding to the Amazon Web
application. For the sake of simplicity, in this diagram we have centered on the use cases
that are directly related to the selection of items and the checkout process, therefore
ignoring others such as, just to name a few, AddToWishList, CheckOrder or ReturnItems,
which are however also relevant tasks from the user point of view.

In this diagram we can observe how a NonRegisteredUser may select product items. Such
selection may be performed using a system search capability, which is modeled by means
of an inheritance relationship between the use cases SelectProductItems and
SearchProductItems. Also, this user may decide to add any selected product to his

shopping cart. This fact is modeled by means of an «extend» dependency between the use
case AddToShoppingCart and the SelectProductItems use case.

AddToShoppingCart

Checkout SendInvoice
<<include>>

Customer

SelectProductItems
<<navigation>>

<<extend>>

SearchProductItems
<<navigation>>

SignIn

<<extend>>

ViewCart
<<navigation>>NonRegisteredUser

Fig. 1. Use Case Diagram of the Checkout Process in www.amazon.com

At any time, the user may decide to ViewCart, in order to check the items included so far
in his shopping basket. Also, he could decide to personalize her view, for what he would
have to SignIn. Furthermore, only a signed-in user may proceed to checkout. This
situation is again modeled by means of an «extend» dependency between the use cases
SigIn and Checkout. The completion of the checkout process implies the sending of a
notification with the invoice associated with the purchase. We have modeled this action
as a use case that is related («include» dependency) to the Checkout use case. The
Customer may also wish to be sent an additional invoice at any time after the purchase; in
Fig. 1 this fact is captured by means of an association between the actor Customer and
the SendInvoice use case.

If we now analyze the inner flow of control of each defined use case in the context of the
Amazon Web application, we may note how some flows are trivial from the business
point of view, as they only express navigation activities. For this kind of use cases, we
propose the use of a «navigation» stereotype, as defined in [Baresi et al. 2001]. Others,
on the contrary, imply a complex flow of control, and require further refinements, as we
will show next.

3. ANALYSIS PHASE IN PROCESS-AWARE WEB APPLICA-
TIONS

Once the requirements have been clearly stated, both in OO-H and UWE the next step
consists on the analysis of the problem domain. This analysis phase has traditionally
involved in both methods the definition of a conceptual model reflecting the domain
structure of the problem. This model however does not provide the mechanisms to
specify process concerns. That is the reason why we have included a new model, the

process model that enriches this analysis phase. Next we will show how these models can
be applied to our running example.

3.1. CONCEPTUAL MODEL

The definition of a conceptual model by means of a UML class diagram is a common
feature in most Web modeling approaches, including UWE and OO-H. Back to our
example, we have defined a common conceptual model, materialized in a UML class
diagram that is depicted in Fig. 2.

UserModelConceptualModel

DVD

Book

CD

OrderItem

quantity

Customer
name
creditCard

ShoppingCart

add()
checkout()

0..11..*

Address
street
zip-code
country1

+deliveryAddress

0..1

**

ShoppingCart
Item

quantity

1

*

Order

orderID
invoiceNumber

sendInvoice()

1

1

+invoiceAddress

1

Product
name
price *1

*

*

*

Fig. 2. Conceptual Model of the Checkout Process in www.amazon.com

This class diagram is made up of two packages: the User Model and the Conceptual
Model. The first one includes the structures directly related to the individual user, such as
the ShoppingCart or the different Addresses provided by each Customer. The Conceptual
Model on the other hand maintains information related to domain objects such as
Products and Orders. Note how this diagram is a simplification of the actual Amazon
domain model, and reflects only a possible subset of constructs that are needed to support
the checkout process. In this diagram we can observe how a customer (which may be
anonymous before logging-in in the system) has a ShoppingCart, which is made-up of
ShoppingCartItems (each one associated with a Product, which may be a Book, a DVD or
a CD, just to name a few). On the other hand each customer has a set of predefined
Addresses that, once the order has been created, are used both to send the different items
and to set the invoice address. When the customer decides to checkout, the system creates
a new Order and converts the ShoppingCartItems into OrderItems. When the order is
finally placed, an invoiceNumber is associated to the order.

The conceptual model is not well suited to provide information on the underlying
business processes that drive the user actions through the application. For this reason,
OO-H and UWE have included a process model that is outlined in the next two sections.

3.2. PROCESS MODEL
Process modeling (also called task modeling) stems from the Human Computer
Interaction (HCI) field. Different UML notations have already been proposed for process
modeling. Wisdom [Nunes & Cunha 2000] is a UML extension that proposes the use of a
set of stereotyped classes that make the notation not very intuitive. Markopoulus
[Markopoulos 2000] instead makes two different proposals: an UML extension of use
cases and another one based on statecharts and activity diagrams. Following this last
trend, we have opted to use activity diagrams, due to their frequency of use and their
flexibility to model flows.

An activity diagram is a special case of a state diagram in which all (or at least most) of
the states are actions or subactivity states and in which all (or at least most) of the
transitions are triggered by completion of the actions or completion of the subactivities in
the source states. The entire activity diagram is attached (through the model) to a UML
classifier, such as a use case, or to a package, or to the implementation of an operation
[UML 2003]. The UML modeling elements for a process model are activities, transitions
and branches. Activities represent atomic actions of the process and they are connected
with each other by transitions (represented by solid arrows) and branches (represented by
diamond icons). The branch conditions govern the flow of control and in the analysis
process model they can be expressed in natural language.

As stated before, both OO-H and UWE use activity diagrams to complement the domain
model and define the inner flow of control of non trivial use cases. In Fig. 3 an activity
diagram representing the simplified flow of control of the Amazon Checkout process
(depicted as a non-navigational use case in Fig. 1) is presented.

[error]
AddNewCustomer

SignIn[error]

[newCustomer]

SetOptions

[returningCustomer]

PlaceOrder

exit/ delete Items of ShoppingCart

SendInvoice

newCustomer :
Customer

newOrder : Order

SetPassword

[newCustomer]

[returningCustomer]

[change]

Fig. 3. Process Model of the Checkout Process in www.amazon.com

In this diagram we can observe how a SignIn subactivity starts the process. Next,
depending on whether the user is new in the system or not, he can be added to the system
or directly driven to the SetOptions subactivity state that permits the user to establish
every purchase option (see). Once this activities has been completed, the user may set his
password (only if he is a new customer), place the order and be sent an invoice with the
purchase details.

Subactivity states, as shown in the diagram of Fig. 3, express the hierarchical
decomposition of a process. A subactivity state invokes another activity diagram. When a
subactivity state is entered, the nested activity graph is executed. A single activity graph
may be invoked by many subactivity states meaning that activity diagrams can be (re-
)used within the context of different processes and sub processes (i.e. subactivities). In
our example, Fig. 4 shows the flow of control of the SetOptions subactivity state
represented by a UML activity diagram. This diagram includes activities for the user to
enter shipping and payment options, wrapping options and confirm the cart items before
placing the order. In the checkout process only options not already set before e.g. in
previous checkouts or those that the user explicitly wants to change are triggered in the
process context.

ConfirmItems SetWrapOptions

[not set or change][not set or change]

SetShippingOptions

[not set or change]

SetPaymentOptions

[not set or change]

Fig. 4. Activity Diagram of the SetOptions Process in www.amazon.com

In Fig. 3 we can also observe how the use and extend dependencies defined in the use
case diagram of Fig. 1 influence the flow of control of the process, and are materialized
in the inclusion of complementary activities (see e.g. SendInvoice) and subactivity states
(e.g. SignIn) that, as suggested by such dependencies, play a role in the definition of the
checkout process.

Finally, the activity diagram associated with a given Web-aware business process can
also be enriched with object flows indicating objects that are relevant at analysis level as
input and output to crucial activities. In the example a new Customer is created as result
of the AddNewCustomer activity and a new Order object is created as result of the
PlaceOrder activity.

Once this analysis model has been defined, at least two approaches can be followed:

• The definition of a navigation model that is driven by a (refined) process flow
model. This tight integration between process and navigation expresses the

interplay between the user interface design and the steps inferred from the
process definition.

• The definition of a navigation model that is enriched to reflect a set of
integration points, that is, points in which the user may leave the navigation
view to enter a process design view.

Next, we will show how OO-H and UWE, each implements one of these approaches, and
how in spite of this fact, analysis models are still fully reusable and a common ground for
discussion.

4. DESIGN OF WEB BUSINESS PROCESS WITH OO-H

OO-H [Cachero 2003; Gomez et al. 2001] is a generic approach, partially based on the
Object Oriented paradigm, that provides the designer with the semantics and notation
necessary for the development of personalized Web-based interfaces. Like many other
approaches, the OO-H modeling process is driven by the set of identified user
requirements, and explicitly supports the definition of different user interfaces depending
on the actor that is accessing the application. The whole method is supported by the Case
tool VisualWADE, a modeling environment that includes a set of model compilers to
provide automatic code generation capabilities.

From the six complementary views included in OO-H (requirement, conceptual, process,
navigation, presentation and architectural), in this article we will center on the process
view. This process view is based, as stated above, on a set of activity diagrams that
supplement the information contained in the domain model. In order to make this
connection between both models explicit, both class and activity diagrams are refined
during the design phase, and the correspondence between the process constructs and the
domain constructs is set. On this refined process view, a set of mapping rules can be
applied in order to get a default navigation view and assure the traceability between both
models, as will be explained in section 4.2.

4.1. PROCESS MODEL REFINEMENT
OO-H bases the process refinement on the concept of service, regarded as an interface
whose purpose is collect a set of operations that constitute a coherent service offered by
classifiers, and so provide a way to partition and characterize groups of operations
[UML 2003].

Services in OO-H can be classified according to several orthogonal characteristics,
among which we outstand (1) synchronicity, (2) activating agent, (3) granularity (number
of operations supporting the service) and (4) transactionality [Cachero 2003]. OO-H
centers on synchronous, user-activated services. Inside this group, OO-H is well suited to
provide an arbitrary complex interface to single (either transactional or not) services,
where by single we mean services supported by exactly one underlying class operation.
That is the case of Create, Delete and Update operations, which are at the core of typical
single, transactional (ACID) services.

On the other hand, the definition of an interface for a compound service, which involves
more than one domain operation, presents special challenges from the user interface

modeling point of view. In this kind of services, the user interface is responsible for
guiding the user through the different domain operations following a predefined flow of
control, which may involve both activity and information dependencies. A checkout
service such as the one included in Amazon is, from the OO-H point of view, a
compound, non-transactional service. For this service, a possible activity diagram
representing the system flow of control has been already presented in Fig. 3.

In order to further refine the analysis process view, we must take into account detailed
class properties. A new class diagram with a more exhaustive list of attributes and
methods is shown in Fig. 5. Note how this diagram can be regarded as a possible
evolution of the one presented in Fig. 2.

Book CD DVD

Product ShoppingCartItem

Order

orderID

new()

ShoppingCart

ID

Customer

Address

1..1 *

1..1

1..1

*

1..1

*

pName
price

quantity

cName

street
zip-code
country

invoiceNumber

addItem()
checkout() login()

emailAddress
passwd

setShippingAddress()
setBillingAddress()
setPaymentOptions()

shippingSpeed

placeOrder()

OrderItem

quantity
* 1..1

new()
setPasswd()

confirmItem()

setWrappingOptions()

+

+

1..* 0..1

sendInvoice()

deleteItems()

Fig. 5. OO-H Refined Class Diagram of the Checkout Process in www.amazon.com

Taking into account the underlying operations, it is possible to construct a more detailed
activity diagram, such as the one presented in Fig. 6. In this figure we observe several
examples of refinements allowed in OO-H at this level of abstraction:

• Some subactivity states may be redefined as call states, implying that a single
operation (at most) gives them support. That is the case of the SignIn subactivity
state (see Fig. 3) that has been now redefined as a call state.

• Some call states may be merged under a common subactivity state. This feature is
specially useful when a transaction is detected which involves several call states. In
our example, we have considered that PlaceOrder and SendInvoice are related
activities (in the checkout process the invoice is automatically sent after the order
has been placed), and that an error while sending the invoice implies that the order
cannot be placed, because the user would lack the necessary notification. Therefore
we have defined a transactional subactivity state that includes both call states (see
Fig. 6).

• Call states may be complemented (if necessary) with information regarding the
domain operation that gives them support in a do section. For example, the
transactional activity SetPasswd() states in the refined activity diagram that this
activity is supported by the operation setPasswd(in passwd:String), which belongs
to the Customer class. Note how this fact could also have been modelled by means
of swimlanes added to the diagram.

• A new «transactional» stereotype must be applied to the different activities. This
stereotype reflects the transactional character of both call states and subactivity
states. A transactional activity/subactivity state presents the classical ACID
properties. Furthermore, transactional subactivity states imply that every underlying
activity or subactivity state belongs to the same transaction. On the contrary, a non-
transactional subactivity state does not pose any requirement over the elements
included. Back to our example, the SignIn activity has been defined as non-
transactional. In our approach this fact implies that the activity does not need logic
support, as it might be modelled with the aid of filters and navigation constructs, as
we will show in section 4.2

SignIn
<<nonTransactional>>

do/ Customer.login()

AddNewCustomer
<<transactional>>

do/ Customer.new(eMail)

SetOptions
<<nonTransactional>>

entry/ Order.new()

PlaceOrder
<<transactional>>

exit/ ShoppingCart.deleteItems()

SetPasswd
<<transactional>>

do/ Customer.setPasswd(passwd)

[newCustomer]

[newCustomer]

[Error]

[returningCustomer]

[Error]

[returningCustomer]

Fig. 6. OO-H Refined Activity Diagram of the Checkout Process in
www.amazon.com

For the sake of simplicity, in Fig. 6 we have hidden other possible refinements, such as
for example the set of OCL guard conditions that may be associated with the transitions,
the OCL formulae that may be associated to non-transactional activities or the detailed
flow of objects among activities and/or subactivity states, which would also be relevant at
this stage of the model and from which it would be possible to infer certain parameter
dependencies during the invocation of the underlying methods if necessary.

4.2. DEFAULT NAVIGATION MODEL
As we have stated before, OO-H redefines call states so that they can be mapped to
underlying domain constructs. In order to support this mapping, the UML metamodel
must be conservatively extended to capture this connection between OO-H activities (a
specialization of the UML activity construct) and conceptual operations and/or classes.
The reason for this connection is that, as we will see next, in this way it is possible to
automatically generate a default navigation view that not only speeds up the development
cycle but also assures the interface guidance and support to this process.

The navigation model in OO-H is defined by means of a Navigation Access Diagram
(NAD). This diagram is made up of collections (depicted as an inverted triangle and
which capture in OO-H the menu concept), navigation targets (navigation subsystems
depicted with a package symbol), navigation classes (views on conceptual classes,
depicted with the class symbol) and navigation links (which describe the paths the user
may follow through the system and that are depicted with the arrow symbol).
Navigational links, being a central construct in OO-H and the core of the navigation
view, have several relevant characteristics associated:

• Type. It can be set to (1) requirement link, which determines the beginning of the
user navigation through the diagram, (2) traversal link, which defines navigation
paths between information structures or (3) service link, which provides an
arbitrarily complex user interface to assign values to the underlying in operation
parameters and/or define the visualization of the operation results (out parameters).

• Activating Agent: can be set to user (depicted as a solid arrow) or system (depicted
as a dotted arrow)

• Navigation effect: can be set to origin (depicted as a hollow arrow end) or
destination (filled arrow end).

Filters, defined as expressions loosely based on OCL and which are associated to links. In
these expressions, a question mark (?) symbol represents user input.

All these symbols can be observed in Fig. 7. This figure depicts a possible OO-H
navigation model corresponding to our checkout running example. Fig. 7 also illustrates
how the process view provides the necessary information to generate a default navigation
view, enabling in this way the automatic generation of a navigation model out of a
process model. In order to get this navigation model, we have applied a predefined set of
mapping rules, which can be summarized as follows:

In Table 1 we observe how non-transactional activities are transformed into navigational
links, which will need to be further refined with a navigation filter that completes the
activity specification. Transactional activities and/or transactional subactivity states on
the contrary require the support of an underlying domain operation that hides and
preserves such transactional character. Operations are accessed at NAD level by means of
service links. On the other hand, non-transactional subactivity states can be regarded as
navigational subsystems, and therefore materialized in a OO-H Navigation target
associated with each of the defined subsystems. Transitions trivially map to traversal
links, which are by default activated by the user and cause a change of user view.

Table 1. Mapping Rules between Process View and Navigation View in OO-H

Branches can be regarded as menus where only one option is available at a time. This fact
is modeled in OO-H by means of a collection construct and a set of traversal links, each
one with an exclusive filter associated. Merge constructs, on the other hand, cause the
generation of a collection that is the target for a set of automatic traversal links.

Last, the synchronization bars (split-join constructs) cause the generation of a default
path that traverses the concurrent activities in arbitrary order (namely from top to bottom
and from left to right).

CustomerView: Customer

COL1

AddNewCustomer[precond: context.emailAddress=?]

DN3SetOptions

DN6PlaceOrder

COL3

CustomerView2: Customer

setPasswd()

[precond: Context.passwd->isEmpty()]

new()

Precond:Context.password->notEmpty()]

SignIn[precond:Context.emailAdress=? and Context.password = ?

Fig. 7. NAD Diagram for Customer Identification in the Checkout Process

As an illustrating example, and looking back at the activity diagram of Fig. 6, we observe
that the first constructor that appears is the SignIn non-transactional call state. This
activity is materialized in Fig. 7 in a navigational link with an associate filter (OCL

Activity Diagram Element NAD diagram element

Non-Transactional Activity Navigational link refined with precondition filter

Transactional Activity Service link associated with a Navigational class

Transition Navigation target

Subactivity Service link associated with a Navigational class

Branch Traversal link

Merge Collection from which a set of Traversal links with
exclusive filters departs.

Split-Join Collection at which a set of Traversal links with no
filters arrives.

formula) that implements a query over the underlying information repository. After this
query has been performed, and depending on whether the user is new or a returning
customer, a collection construct (col1, see Fig. 7) drives us either to a new() method or to
a SetOptions navigation target respectively. Assuming that the user states he is new, he
will follow the AddNewCustomer link, which first of all will demand the user to enter an
emailAddress that is gathered in an OO-H predefined context object. While the customer
navigational class and the associated service link have been generated automatically, the
filter is a refinement added by the designer on the default model to correctly capture the
Amazon interface.

This email value will be then used to provide a value to one of the parameters defined for
the new() service that can be accessed through the CustomerView. When the underlying
operation returns the control, and assuming that everything is OK, a system automatic
traversal link (dotted arrow) drives the user to the SetOptions Navigation Target.

This diagram also shows the association between activities and classes and/or domain
operations. As an example, the association of the AddNewCustomer activity of Fig. 6
with the new() operation in the Customer class has caused the inclusion of a
CustomerView and a service link associated (see Fig. 7).

If we now enter the SetOptions navigation target, generated after the homonim
subactivity state, we may observe how all options may be performed in parallel.
Navigationally speaking, and in order to assure that the completion of all the parallel
activities is possible, OO-H infers a navigation path that sequentially traverses the
constructs associated with each one of these activities (see Fig. 8).

OrderItem: OrderItem

confirmItem()

Order3: Order

setPaymentOptions()

Order1: Order

setWrappingOptions()

Order2: Order

setShippingAddress()

COL3
LR9

COL4 COL5 COL6

PlaceOrder:: Order

Fig. 8. NAD Diagram Corresponding to the SetOptions Subactivity State

Once the whole navigation model has been refined, a default presentation model can be
automatically generated in the OO-H development environment. In order to complete the
application specification, OO-H provides a presentation model that is partly-based on the
design models presented so far and that falls out of the scope of this paper.

5. DESIGN OF WEB BUSINESS PROCESS WITH UWE

The UWE methodology [Koch & Kraus 2002] is an object-oriented and iterative
approach based on the standard UML. The main focus of UWE is the systematic design
followed by a semi-automatic generation of Web applications. To support the systematic
design the CASE-tool ArgoUWE (an extension of ArgoUML2) is currently being
implemented. The semi-automatic generation of Web applications is supported by the
UWEXML – a model-driven Code Generator for deployment to an XML publishing
framework. Both are part of the OpenUWE development environment. The common
language for data interchange within this architecture is defined by the UWE metamodel
defined as a conservative extension of the UML metamodel and therefore a MOF (Meta
Objects Facility) compatible metamodel [Koch & Kraus 2003].

The UWE metamodel elements are also the basis for the UWE notation which is defined
as a “lightweight” UML profile, i.e. a UML extension based on the extension
mechanisms defined by UML. The UWE profile includes a set of Web specific modeling
elements for navigation, presentation, process and personalization. In this section we will
focus on the notation used by UWE for business processes and the development steps to
build such category of applications.

The UWE design approach for Web business process, in the same way as OO-H does, is
based on the models built during the analysis phase, i.e. the conceptual model and the
process model, both presented in Section 4. It uses standards not only to build the
analysis models, but UWE also sticks to the UML in this design phase. In this phase
UWE selects the appropriate diagram types and proposes to enrich the UWE Profile with
a couple of modeling elements, improving in this way the expressiveness of the UML
constructs for the Web domain. In the treatment of business processes UWE differs from
OO-H by not mapping the process model to the navigation model but additionally
introducing specific process classes that are part of a separate process model with a clear
interface to the navigation model.

Design of Web business applications following the UWE methodology requires the
following activities: First, the refinement of the conceptual model adding attributes and
methods to the already identified classes. We will neither detail this refinement process
nor depict the resulting diagram in this work, as these are well known activities done in
object-oriented development. Second, the integration of the processes in the navigation
model to indicate browsing possibilities. Third, the refinement of the process model
building a process structure and a process flow view. Last but not least, the presentation
model is built based on the navigation and process models showing how the navigation
paradigm and the business processes are combined.

5.1. INTEGRATION OF PROCESSES IN THE NAVIGATION
MODEL
Navigation modeling activities in UWE comprise the construction of the navigation
model in two steps. First, the objective is to specify which objects can be visited by
navigation through the application. Incorporating to this diagram additional constructs it

2 www.tigris.org

is shown how the user can reach the navigation elements. The navigation model is
represented by a stereotyped class diagram. It includes the classes of those objects which
can be visited by navigation through the Web application, such as classes Product,
ShoppingCart, Order, Customer, Book, etc. UWE provides a set of guidelines and semi-
automatic mechanisms for modeling the navigation of an application, which are detailed
in previous works [Koch and Kraus 2002]. This automation as well as model checking is
supported by the CASE tool ArgoUWE [Zhang 2002].

UWE defines a set of modeling elements used in the construction of the navigation
model. For the first step the «navigation class» and the «navigation link» have been used
until now to model nodes and links. For modeling process-aware Web applications we
introduce two additional stereotypes «process class» and «process link», which are
defined with the following semantic:

• process class models a class whose instances are used by the user during execution
of a process. It is possible to define a mapping function between «process class»
classes and use cases (those use cases not stereotyped as «navigation») in a similar
way to the mapping function defined between navigation classes and conceptual
classes.

• process link models the association between a «navigation class» and a «process
class». This process link needs to have associated information about the process
state, i.e. they may be constraint by an OCL expression over the process state. This
allows resuming activities within the process under certain conditions.

+recommendedBooks

Book
<<navigation class>>

SignIn
<<process class>>

Customer
<<navigation class>>

<<process link>>

ShoppingCartItem
<<navigation class>>

AddToCart
<<process class>>

OrderItem

<<navigation class>>

Homepage
<<navigation class>>

1..*1..*

<<process link>>

1
+customer

1

ShoppingCart
<<navigation class>>

0..*
+shoppingCartItems

0..*

0..1+shoppingCart 0..1

Order

<<navigation class>>

1..*+orderItems 1..*

0..*

+orders

0..*

Checkout
<<process class>> <<process link>>

Product
<<navigation class>>

+product <<process link>>

1..*+products 1..*
<<process link>>

Fig. 9. UWE Navigation Model (First Step) of the Checkout Process in
www.amazon.com

Process links in the navigation model indicate starting points of process within the
navigation structure (see Fig. 9) . This process link can be bi-directional, such the case of

the process links related to AddToCart and SignIn or the model should include another
«process link» that establishing where the navigation will continue after the process ends,
such as by the CheckoutProcess. The process itself is defined in a separate model (see
next section).

Fig. 9 shows the navigation model after its first construction step. Note that associations
which are not explicitly stereotyped are stereotyped associations of type «navigation
link» (we omit them to avoid overloading). As example of a Amazon product line we
only show the «navigation class» Book to keep the diagram simple as no modeling
differences would be shown by including other product lines, such as classes DVD or
CD. Although the notation for a bidirectional link with a line without arrows is not
intuitive, we prefer to stick to the UML notation.

The second step in the construction of the navigation model consists of the enhancement
of the model by a set of access structures needed for the navigation. In a first step, this
enhancement is partially automated, it consist in introducing indexes, guided-tours and
queries. For each of these constructs UWE defines a stereotyped class «index», «query»
and «guided tour». In Fig. 10 we use icons for indexes (e.g. OrderList) and queries (e.g.
SearchProduct), which are defined by UWE within the UML extension mechanisms
[Koch & Kraus 2001].

<<process link>>

Book
<<navigation class>>

Customer

<<navigation class>>

Homepage
<<navigation class>>

Book
Recommendation

1..*1..*

AccountInfo

+PersonalInfo

SignIn
<<process class>>

<<process link>>

OrderList

+OrderView

CustomerOrders

Order
<<navigation class>>

0..*0..*

0..*0..*

MainMenu+Recommendations +YourAccount

SignIn

<<process link>>
?

SearchProducts

+Search

ShoppingCartItems
OrdeItems

SelectedResults

ShoppingCartItem
<<navigation class>>

0..*0..*

OrderItem
<<navigation class>>

0..*0..*

AddToCart
<<process class>>

ShoppingCart
<<navigation class>>

0..1

+ViewCart

Checkout
<<process class>>

Product
<<navigation class>>

1..*1..*

<<process link>>

<<process link>>

Fig. 10. UWE Navigation Model (with Access Elements) of the Checkout Process

Further the model is enriched automatically with menus, for which construct UWE
includes a stereotyped class «menu». For all these constructs UWE defines the semantic
based on the extension of the UML metamodel with UWE specific modeling elements
and using the Object Constraint Language (OCL) to define invariants on these constructs.
Fig. 10 shows the result of the complete navigation modeling process. In this second step
as we use already defined UWE modeling elements, there is no need to improve this
model to model Web business processes beyond the «process class» and «process link»
defined above.

5.2. REFINEMENT OF THE PROCESS MODEL
At design level UWE proposes to build a process model which has a structural view and
a behavioral view, also called the process flow model. Another view is the integration
view with the navigation model – already presented in the previous section – which is
depicted in the navigation model defining process entry and exit points between process
execution and navigation. These concepts are similar to the “start activity” and “end
activity” concepts of Brambilla et al. [2002]. Unlike them, however, we model the
process itself independently from the navigation, emphasizing in this way the separation
of aspects in the design of Web applications.

In Fig. 11 the structural process model for the Checkout process of the Amazon example
is depicted. The structural process model is – like the navigation model – derived from
the conceptual model. The difference to the navigation model is that the objective of this
model is to capture the process related information comprising structure and behavior. As
it is shown in Fig. 11 part of the process state is implicit by the cardinality 0..1 to other
process classes meaning that at runtime these links exist or do not exist.

PaymentOptions
<<process class>>

- creditCardNumber
- creditCardExpire
- creditCardOwner
- creditCardType
- payment = PaymentType

+ checkCreditCard() : Boolean

Order
<<process class>>

+ sendInvoice()

Checkout
<<process class>>

- state : CheckoutActivity

+ changeState()
0..10..1

0..1

Customer
<<process class>>

+ setPaymentOptions()

0..1

ShoppingCart
<<process class>>

+ placeOrder() : Order

0..1

1 1

CheckoutActivity
<<enumeration>>

-welcome
-items
-shipping
....

PaymentType
<<enumeration>>

-moneyOrder
-creditCard

0..1

Fig. 11. Process Structural View of the Checkout Process in www.amazon.com

Conversely, we allow new modeling elements in the process model which are not derived
from any conceptual model element. The notation of this model is a class diagram using
the stereotype «process class». A special process class that is not derived from the
conceptual model is PaymentOptions containing information about the payment options.
The attributes of these classes express data needed by the process including user input,
such as the attributes of the process class PaymentOptions, and process state information,
such as the attribute state of the class Checkout.

Every process is assigned to exactly one process class and for all these process classes a
process flow model, i.e. a UML activity diagram, is defined. The process state can be
made explicit by introducing state attributes in the process class as shown in Fig. 11 or it
is derived from process classes in the transitive closure concerning associations of the
particular process class. Such a state allows for a re-initiation of the process after an
interruption without going through all the steps the user has gone the first time.
Operations are used to validate data and to change the system state in synchronization
with the conceptual model. Data validation queries can be specified by OCL post
conditions and are thus automatically transformable to code. For example, for the class
PaymentOptions validation operations (checkCreditCard) are defined for the validation
of the entered data and for the validation of the credit card information.

AddNewCustomer

SetOptions

setPaymentOptions
(Customer)

placeOrder
(ShoppingCart)

[customer->notEmpty()] [customer->isEmpty()]

: Customer

<<process class>>

new : Customer

<<process class>>

: PaymentOptions

<<process class>>

: Order
<<process class>>

sendInvoice
(Order)

: ShoppingCart

<<process class>>

SignIn

<<transactional>>

<<transactional>>

<<transactional>>

SetPassword

[newCustomer]

[returningCustomer]

<<transactional>>

Fig. 12. UWE Process Flow Model of the Checkout Process in www.amazon.com

The process flow model depicted in Fig. 12 is a refinement of the process model at
analysis level (see Fig. 3) consisting of UML activity diagrams. Every activity is either a
UML subactivity state or a UML call state. UML defines a subactivity state as the
representation of the execution of a non-atomic sequence of steps that has some duration
(set of actions and possibly waiting for events). A UML call state is an action state
(atomic action) that calls a single operation. Note that we strictly follow the notation and
semantic that the UML defines for modeling elements used in activity diagrams, e.g.

subactivity state icon. The process flow for a subactivity state is captured in another
process flow model, i.e. activity diagram. Call states can only be specified for operations;
we define them for operations of process classes in the structural process model. Our
example includes the call states setPaymentOptions, placeOrder and sendInvoice. This
includes the validation of process data and the call of operations that change the process
model as well as the underlying conceptual model. By supplying guard expressions on
branches following such a call state we can model the process flow depending on the
result of operations of the process information model. To note is that call state names are
the name of the operations and are not written beginning with a capital letter.

Process class object flow states are used to express user input and output. In our example
therefore, we model the call state setPaymentOptions explicitly (not as part of the
subactivity state SetOptions). The PaymentOptions object flow state represents input
from the user and the corresponding submit button in the presentation model will trigger
the transition to the setPaymentOptions call state (see Fig. 12). Similarly to OO-H, call
states may be stereotyped as «transactional» to express the transactional character of
those action states.

5.3. SUPPORT OF PROCESSES IN THE PRESENTATION
MODEL

The presentation model of UWE allows for the specification of the logical presentation of
a Web application. Based on this logical model a physical presentation can be built which
contains further refinements of the elements for the physical layout, e.g. font and colors.
This physical representation, which is not within the scope of this work, cannot be
captured by any UML model.

Within the presentation model we distinguish two different views:

• structural view showing the structure of the presentation space,
• user interface (UI) view presenting details about the user interface elements in the

pages.

The goal of the structural view of the presentation is to model how the presentation space
is divided, which presentation elements are displayed in the same space (but not at the
same time) and how presentation elements can be grouped. Fig. 13 shows the
presentation structure view for our example the Checkout process.

The central concept around which the structuring of the presentation space takes place is
the concept of location. Therefore we define in the UWE metamodel an abstract class
with stereotype «location», which is the generalization of stereotyped classes we can
observe at Fig. 13, i.e. «location group», «location alternative» and «presentation class».
The semantic of these stereotyped classes is defined as follows:

• «location group» stereotyped classes are used to model the presentation sub-
structure, e.g. as a set of pages. They aggregate a list of sub-locations.

• «location alternative» stereotyped classes are used to model presentation alternatives
among «location» classes; optionally a default alternative can be specified.

• Stereotype «presentation class» represents logical page fragments and is composed
of the logical user interface elements presented to the user of the application. Every
«presentation class» element is related to exactly one «navigation class» element of

the navigation model or one «process class» element of the process model defining
thereby the presentation for this particular element.

Checkout

<<location group>>

Header

<<location alternative>>

StateImage
<<presentation class>>

ConfirmItems

<<presentation class>>

Welcome

<<presentation class>>

SetAddresses

<<presentation class>>
SetWrapOptions

<<presentation class>>

SetShippingOptions

<<presentation class>>

SetPaymentOptions

<<presentation class>>
PlaceOrder

<<presentation class>>

Activity
<<location alternative>>

{derivedFrom= Checkout.state}

Fig. 13. Presentation Structure View of the Checkout Process

As shown in Fig. 13 the location Checkout is divided in two alternative sub-locations
exactly one Header and one alternative location Activity whereas the activities of the
checkout process are presented for the interaction with the user. The Header includes an
image StateImage which visualizes the current step (activity) of the checkout process.
The dependency to the current activity is modeled by the tagged derivedFrom with value
given by the attribute state of class CheckoutProcess.

Fig. 14 depicts the detailed user interface view of the presentation class for the
PaymentOptions process class. We use an alternative UML notation for the composition
relationship showing the composed user interface (UI) elements within the visual
container of a presentation class. Although this notation is not supported by most of the
UML CASE Tools, we use it in this work as it allows for a more intuitive sketch as the
traditional composition relationship when depicting the user interface view.

The presentation class SetPaymentOptions is presented as part of the location group
Checkout together with the presentation class SetImage that shows in an image the
current state of the checkout process. Every type of user interface element has a
stereotype associated with it, e.g. «text», «image», «radio button», etc. They are
connected to the features (i.e. attributes or operations) of the underlying navigation or
process classes in the case of dynamic user interface element. Additionally, these types of
user interface elements can be used for static user interface elements as in the example
static text (SelectPayment) or static images (CardLogos).

The type of user interface element used to present the corresponding elements of the
underlying models depends from their type and the intended use. An «input» element for
example can be used for displaying information as well as for information input in the
case of attributes of a process class, e.g. the CardNumber element in the example. The

«radio button» element can be used to express the choice between different alternatives,
such as the payment methods in our example. The attached user interface elements reflect
the active UI elements for each case.

SetPaymentOptions
<<presentation class>>

CardLogos

<<image>>
SelectPayment

<<text>>

PaymentMethod

<<radio button>>

CreditCards

<<pulldown menu>>

AmazonCreditAccount

<<button>>

PayByMoneyOrder

<<button>>

CardNummer

<<input>>

ExpirationMonth

<<pulldown menu>>

ExpirationYear

<<pulldown menu>>

GiftCertificate

<<text>>
GiftCertificateCode

<<input>>

Password

<<form>>
Continue

<<button>>

Checkout

<<location group>>

StateImage
<<presentation class>>

CheckoutProcessStateImage

<<image>>

Fig. 14. UI Elements View for the Presentation Class SetPaymentOptions

A special case is the «button» element Continue (see Fig. 14) which triggers the
setPaymentOptions call state in the corresponding process model.

6. CONCLUSIONS

The inclusion of process definition mechanisms in the context of Web methodologies is
not only a must, imposed by enterprise demands, but also convenient from the point of
view of increased support to the application evolution. This evolution support is
necessary due to the frequent appearance of new or changed business requirements. In
this sense, we believe that the greater flexibility that comes with the explicit definition of
such processes will induce a faster implementation of these changes.

Being the notation associated with Web Engineering methods and methodologies so
different from approach to approach, the first temptation is to strive (as we have been
doing up to now) to find individual solutions to this new challenge. This effort, enriching
as it is, suffers from the danger of providing enterprises and researchers with different
vocabularies, constructs and models to refer to eventually very similar concepts (although
usually with different nuances). Such little differences are however enough as to make
very difficult for us to reach general agreements, as different research events had shown
in the past.

That is the main reason why in this article we have tried to work the other way round;
OO-H and UWE are very different proposals. On one hand the OO-H method follows a
bottom-up approach, uses standards only in some phases of the modeling process and
tries to keep the set of diagrams to a minimum in order to ease the work of model
compilers for the automatic generation of Web interfaces.

On the contrary, UWE is exclusively based on standards. It is a top-down approach that
defines their modeling elements based on a metamodel defined in UML and defined as an
extension of the UML metamodel. UWE uses whenever possible the constructs provided
by the UML and in some cases extends the notation to support the Web development
specific characteristics. The extensions are then strictly performed according to the
extension mechanisms provided by the UML. In addition, UWE focus on a systematic
development process, but this subject was not within the scope of this work.

In spite of these differences, it was possible to reach agreements on the main concepts to
be included in both, OO-H and UWE, and to define a common approach for the modeling
activities during the analysis phase of Web business intensive applications. Among these
agreements, it is interesting to note how both approaches opted, unlike previously
existing proposals [Bambrilla et al. 2002] for defining a separate model to address
process concerns. We believe that providing separate models not only eases the
construction and maintenance of such models, but also reflects the fact that the same
process may be the basis on which different interfaces may be defined, all of them giving
support to this process.

Another important contribution of this work is the identification of at least two
possibilities for the treatment of process concerns in the design phase of Web
applications development. On one hand, OO-H has opted for the definition of default
mapping rules that make possible the definition of default navigation maps based on the
defined activity flows. OO-H therefore considers that the purpose of certain navigation
links may be regarded as that of guiding the user through the different process steps. OO-
H comes together with a prototyping environment that is based on its navigation diagram.
Embedding process concerns in this navigation diagram makes trivial the prototyping of
such process in order for the user to validate it. Furthermore, in this way we have kept the
set of design constructs needed to define a Web interface to a minimum.

UWE instead has opted for design flows of control for process modeling in addition to
the navigation model, which is only enriched to reflect a set of integration points, that is,
points in which the user may leave the navigation view to enter a process view. At
presentation level the same set of presentation modeling elements is used to support both,
the navigation and the process. This loose integration supports a clear separation of
concerns and enables reuse of processes, such as customer login and checkout, in
different context or applications. Furthermore, it eases the maintenance and Web
application evolution.

7. FUTURE WORK

We plan to include the extension to our methods OO-H and UWE to support business
process modeling in our CASE tools, VisualWADE and ArgoUWE, respectively.

VisualWADE needs to include support both for UML activity diagrams and for the new
«transactional» stereotype. Also, we are working on the refinement of the mapping
process between activity diagrams and NAD. In this sense, the definition of OCL guard
conditions associated with transitions may provide automatic generation of some of the
filters included at NAD level. Also, detailed object flows complementing the activity
diagram may simplify the definition of the service interfaces affected.

ArgoUWE will be extended to support process modeling as defined in this work. The
new modeling elements have been already included in the UWE Metamodel. The
consistency between the process model and the already existing navigation and
presentation models will be checked on the basis of OCL constraints that improve the
already existing set of about 20 constraints used for the UWE model checking.

REFERENCES

[Atzeni & Parente
2001]

Paolo Atzeni, Alessio Parente (2001). Specification of Web
Applications with ADM-2. 1st International Workshop on
Object Oriented Software Technology. Valencia, Spain.

[Baresi et al. 2001] Luciano Baresi, Franca Garzotto, Paolo Paolini.(2001).
Extending UML for Modeling Web Applications, 34th Hawaii
International Conference on Systems Sciences.

[Brambilla et al. 2002] Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali.
(2002). Specification and Design of Workflow-Driven
Hypertext. Journal of Web Engineering, Vol. 1, No. 1.

[Cachero 2003] Cristina Cachero. (2003). OO-H: Una extensión a los métodos
OO para el modelado y generación automática de interfaces
hipermediales. Available online at
http://www.dlsi.ua.es/~ccachero/pTesis.htm

[Cachero & Gomez
2002]

Cristina Cachero Jaime Gómez. (2002). Advanced Conceptual
Modeling of Web Applications: Embedding Operation
Interfaces in Navigation Design. 21th International Conference
on Conceptual Modeling. El Escorial, Madrid. Nov. 2002.

[Ceri et al. 2002] Stefano Ceri, Piero Fraternali, Mariestella Matera. (2002).
Conceptual Modeling of Data-intensive Web Applications.
IEEE Internet Computing 6 (4): 20-30.

De Troyer & Casteleyn
2001]

Olga de Troyer, Sven Casteleyn. (2001). The Conference
Review System with WSDM. 1st International Workshop on
Object Oriented Software Technology. Valencia, Spain.

[Escalona & Koch
2003]

María José Escalona, Nora Koch (2003), Ingeniería de
Requisitos en Aplicaciones para la Web: Un Estudio
Comparativo, IDEAS’03.

[Gomez et al. 2001] Jaime Gómez, Cristina. Cachero, Oscar Pastor. (2001). On
Conceptual Modeling of Device-Independent Web Applications:
Towards a Web Engineering Approach. IEEE Multimedia 8(2):
20-32. Special Issue on Web Engineering.

[Jacobson et al. 1992] Ivar Jacobson, Magnus Christersen, Patrik Jonsson, Gunner
Overgaars. (1992). Object-oriented Software Engineering: A
Use Case Driven Approach, Addison Wesley.

[Kahn et al. 1957] Robert Kahn, Charles Cannell. (1957). The dynamics of
interviewing; theory, technique, and cases, New York, Wiley.

[Koch & Kraus 2002] Nora Koch , Andreas Kraus. (2003), The expressive power of
UML-based engineering, Proceedings of the IWWOST’02,
CYTED, 105-119.

[Koch & Kraus 2003] Nora Koch, Andreas Kraus (2003), Towards a Common
Metamodel for the Development of Web Applications,
International Conference of Web Engineering, LNCS, Springer
Verlag, to appear.

[Korthaus 1998] Axel Korthaus (1998). Using UML for Business Object Based
Systems Modeling. UML Workshop 1997. Mannheim,
Germany.

[Markopoulos 2000] Panos Markopoulos. (2000). Supporting Interaction Design with
UML, Task Modelling , TUPIS Workshop at the UML'2000.

[Nunes & Cunha 2000] Nuno Nunes, José Cunha. (2000). Towards a UML Profile for
Interaction Design: The Wisdom approach. Proceedings of the
Unified Modeling Language Conference, UML´2000, Evans A.
and Kent S. (Eds.). LNCS 1939, Springer Publishing Company,
100-116.

[Retschitzegger &
Schwinger 2000]

Werner Retschitzegger, Wieland Schwinger. (2000). Towards
Modeling of Data Web Applications - A Requirement’s
Perspective. American Conference on Information Systems
AMCIS 2000, Vol. 1, 149–155.

[Schwabe et al. 2001] Daniel Schwabe, Esmeraldo, L., Gustavo Rossi, Fernando
Lyardet. (2001). Engineering Web Applications for Reuse. IEEE
Multimedia. Special Issue on Web Engineering, 01-03, 20–31.

[UML 2003] UML 1.5 Standard, OMG (2003). www.omg.org

[Zhang 2002] Gefei Zhang (2002). ArgoUWE: a CASE Tool for Web
Applications. www.pst.informatik.uni-
muenchen.de/projekte/argouwe

