

Improving Web Design Methods with Architecture
Modeling 1

Santiago Meliá1, Jaime Gómez1, and Nora Koch2

1Universidad de Alicante, Spain
{santi,jgomez}@dlsi.ua.es

2Ludwig-Maximilians-Universität München

and F.A.S.T GmbH, Germany
kochn@pst.ifi.lmu.es

Abstract. Many approaches have been developed for modeling the functional
aspects of Web applications, but there is a lack of a modeling language for their
architectural concerns. This paper proposes such a modeling language defined as
a UML 2.0 profile, which allows the specification of domain-specific models for
the architectural view of Web applications. The profile is part of the Web
Software Architecture (WebSA) approach, which follows the Model Driven
Architecture (MDA) principles. The modeling elements proposed for each
WebSA model (subsystem, configuration and integration models) are both
represented graphically and formalized by means of the profile and the
metamodel, respectively. In this article we will focus on the Configuration model
and how it is used to model the well-known Petstore example.

1 Introduction

In the Web domain, customers and users impose increasingly complex needs on the
Web software being developed. In order to face such growing demands, during the last
years the Web engineering community has proposed several languages, architectures,
methods and processes for the Web. Among others, several methodologies, such as
OO-H [2], UWE [11], WebML [3], have been proposed for the analysis and design of
Web applications, and have shown their suitability for the specification of the
functional requirements, in particular the navigational requirements posed by Web
information systems. However, the design of architectural aspects of Web applications
are almost always ignored, or postponed until the implementation phase with
disadvantages related to scalability, platform-independence or security. Architecture
models are fundamental in an MDA process, which consists in building and
transforming platform-independent models and platform-specific models of the Web
application. The objective is to generate only in the last steps platform-specific models
and code. Such vision will have enormous consequences for the development and
maintenance of the increasing amount of Web software that is being produced.

In order to overcome this lack of modeling elements for the early design of Web
architectures the WebSA – Web Software Architecture – approach has been defined
[12]. WebSA enriches Web engineering proposals with techniques for the development
of software architectures for the Web and it is based on the Model Driven Architecture

1 This research has been partially sponsored by the Spanish METASING (TIN2004-00779) and

the EC 5th FP AGILE (IST-2001-32747).

mailto:kochn@pst.ifi.lmu.es

(MDA) paradigm [14]. The approach proposes a set of architectural models and a set of
transformations that permit the integration of these architectural models with a pre-
existing functional model, defined by any of the above mentioned methodologies. The
WebSA architecture models, namely the Subsystem Model, the Configuration Model
and the Integration Model, provide a Web architecture perspective that includes the
subsystems, Web components and connectors that make up the Web application.

The focus in this paper is set up on the modeling elements of the WebSA profile
defined for the Configuration Model, which extends one of the new models in the
UML 2.0 [17]: the composite structure. This model allows for a specification of
software architecture following a properly component-based notation. The benefits of
the composite structure are, by means of the Configuration Model, extended to the
Web application domain. In addition, we show how to apply the profile to the
architecture definition of the Petstore [19] Web application.

The rest of the paper is organized as follows: Sect. 2 provides a brief overview of
the WebSA approach. Sect. 3 focuses on the metamodel and profile of the
Configuration Model. Sect. 4 describes how the Configuration Model has been applied
to model the architecture of the Web application Petstore and how this architectural
model fits with traditional navigation models provided by Web design methods. Sect. 5
gives an overview of related work and finally, Sect. 6 outlines some conclusions and
proposes further lines of work.

2 An overview of the WebSA Approach

WebSA is a proposal whose main target is to cover all the phases of the Web
application development focusing on software architecture. It contributes to cover the
gap currently existing between traditional Web design models and the final
implementation. In order to achieve this, it defines a set of architectural models to
specify the architectural viewpoint which complements current Web engineering
methodologies such as [2, 11]. Furthermore, WebSA allows for the integration of the
different viewpoints of a Web application by means of transformations between
models.
The WebSA approach proposes three architectural models:
• Subsystem Model (SM): determines the subsystems that make up our application.

It is mainly based on the classical architectural style defined in [1] – the so called
“layers architecture” – where a layer is a subsystem encapsulating a certain level of
abstraction. Furthermore, it makes use of the set of architectural patterns defined in
[18] that determine which is the best layer distribution for our system.

• Configuration Model (CM): defines an architectural style based on a structural
view of the Web application by means of a set of Web components and their
connectors, where each component represents the role or the task performed by one
or more common components identified in the family of Web Applications. This is
explained with more detail in Sect. 3.

• Integration Model (IM): merges the functional and the architectural views into a
common set of concrete components and modules that will make up the Web
application. This model is inferred from the mapping of the components which are
defined in the configuration model, the subsystem model and the models of the
functional view.

The formalization of these models is obtained by means of a MOF-compliant [15]
repository metamodel (part of the OMG proposed standards) that specifies (1) which is
the semantics associated with each model element, (2) which are the valid
configurations and (3) which constraints apply.

Furthermore, WebSA proposes a development process based on the MDA
development process [10], which includes the same phases as the traditional life cycle
(Analysis, Design, and Implementation). However, unlike in the traditional life cycle,
the artifacts that result from each phase in the MDA development process must be a
computable model. These models represent the different abstraction levels in the
system specification and are, namely: (1) Platform Independent Models (PIMs) defined
during the analysis phase and the conceptual design, (2) Platform Specific Models
(PSMs) defined in the low-level design, and (3) code.

In order to meet these requirements, the WebSA development process establishes a
correspondence between the Web-related artifacts and the MDA artifacts. As a main
contribution, WebSA defines a transformation policy driven by the architectural
viewpoint, that is, is an “architectural-centric” process [9] (see Fig. 1).

Fig. 1. The WebSA Development Process

Fig. 1 shows how in the analysis phase the Web application specification is divided
vertically into two viewpoints. The functional-perspective is given by the Web
functional models provided by approaches such as OO-H [2] or UWE [11], while the
Subsystem Model (SM) and the Configuration Model (CM) define the software
architecture of the Web Application. In the analysis phase, the architectural models are
based on two different architectural styles to define the Web application. These models
fix the application architecture orthogonally to its functionality, therefore allowing for
their reuse in different Web applications.

The PIM-to-PIM transformation (T1 in Fig. 1) from analysis models to platform
independent design models provides a set of artifacts in which the conceptual elements
of the analysis phase are mapped to design elements where the information about
functionality and architecture is integrated. The model obtained is called Integration
Model (IM), which merges in a single architectural model the information gathered in
the functional viewpoint (e.g., from Conceptual and Navigational models in OO-H and
Conceptual, Navigational and Process models in UWE) with the information provided
by the Configuration and Subsystem models.

It is important to note that the Integration model, being still platform independent, is
the basis on which several transformations, one for each target platform (see e.g., T2,

T2’ and T2’’ in Fig. 1). The output of these PIM-to-PSM transformations is the
specification of the Web application for a given platform.

In the rest of the article we will focus on the Configuration Model since it represent
the core of the WebSA architectural viewpoint.

3 Configuration Model (CM)

The Configuration model defines an architectural style based on the structural view of
the Web application by means of a set of Web components and their connectors, where
each component represents the role or the task performed by one or more common
components identified in the family of Web applications. In this way, CM uses a
topology of components defined in the Web application domain, and this allows us to
specify the architectural configuration without knowing anything about the problem
domain. At this level, we can define architectural patterns for the Web application as a
reuse mechanism.

A diagram for the Configuration model is built by means of a UML 2.0 Profile of
the new composite structure model, which is well-suited to specify the software
architecture of Web applications. The main modeling elements of the CM are
WebComponent, Web Connector, WebPart and WebPattern.

In order to formalize the Configuration model elements and their relationships, we
define the Configuration metamodel (see Fig. 2).

Fig. 2. Simplified CM Metamodel

3.1 WebComponent

A WebComponent represents an abstraction of one or more software components with
a shared functionality or role in the context of a Web application. For example, a
ClientPage is a WebComponent that contains presentation data and/or user interaction
code. Note how a Web component does not necessarily map to a single physical page
but reflects a general task that must be performed by the application, such as showing
certain information to the user. The most important properties of a WebComponent are
defined by the classes WebPort, WebInterface and WebPart.

Store
access : String
organization : String
type : String

UserInterface
Component

Server
Component

EntityWeb
isShared : Boolean
isDistributed : Boolean
isManaged : Boolean

ServerPage

Persistence
Component

DatasourceView

WebConnectorEnd
lower : Integer
upper : UnlimittedNat...

WebPort 0..1 0..n0..1 0..n
WebInterface 0..n 0..n0..n 0..n

+provided

0..n 0..n0..n 0..n
+required

WebComponent
name : String

0..n

0..1

+CPorts

0..n

0..1

0..n

1

0..n

1

+CInterfaces

WebPart
Multiplicity : UnlimitedNatural

0..n

0..1

0..n

0..1

+PPorts

0..1

0..n

0..1

0..n

0..n

0..1
+CParts0..n

0..1
1

0..n

1

0..n+type

WebPattern
0..10..n 0..1

+Ocurrence

0..n

0..n

0..1

WebConnector

2

1

2

1

+ConnectEnds

0..n

0..1

0..n

0..1

+PConnector0..n

0..1

The WebComponent is the root class of a type hierarchy that represents the different
roles or tasks that may be performed by the components identified in the family of Web
Applications. For example, the subclass EntityWeb is an object representing a concept
of the application domain (see Fig. 2). In addition to the subtypes of WebComponent,
which are shown in Fig. 2, the Petstore example (Sect. 4) will in addition use the
following subtypes: ProcessComponent, UserAgent, DAC, LegacyView, Controller,
View and EntityData. The complete topology of the WebSA components can be seen
in [13].

3.2 WebPort

WebPort is an interaction point between a WebComponent and its environment. It
decouples the internals of the component from the interaction with other components,
making that component reusable in any environment that conforms to the interaction
constraints imposed by its WebPorts. In this way, a WebComponent can only
communicate with the outside through its WebPorts.

3.3 WebInterface

WebInterface represents the functionality the component to which it is associated
offers to or requires from the rest of the system in order to be able to perform its task.
Each WebInterface is associated with a WebPort specifying the nature of the
interactions that may occur over this WebPort (see Fig. 2). On the one hand, the
required interfaces of a WebPort characterize the requests which may be made from the
WebComponent to its environment. On the other hand, the provided interfaces of a
WebPort characterize requests the environment makes to the WebComponent.

3.4 WebConnector

WebConnector specifies a link that allows the communication in the system between
two or more WebComponents or/and WebParts of the WebComponents (see 3.6). This
communication is established through the WebPorts. However, in the case of a
WebPart this relationship may affect either a WebPort or the whole WebPart. Each
WebConnector has associated two WebConnectorEnds (see Fig. 2).

3.5 WebConnectorEnd

WebConnectorEnd represents an endpoint of the connector that attaches the connector
to a WebPort or a WebPart. The WebConnectorEnd has two properties: (1) lower
which specifies the lower bound of elements which could be connected with the
WebConnectorEnd. (2) upper which specifies the upper bound of elements which
could be connected with the WebConnectorEnd.

3.6 WebPart

WebPart represents a set of instances that are owned by composition belonging to a
WebComponent instance. A WebPart has a property multiplicity, which using the
notation [x{…y}] specifies the initial instance or the amount of instances (x) when the
WebComponent is created, and the maximum amount of instances at any time (y).

3.7 WebPattern

WebPattern represents a Web architectural pattern, which is specified by a composite
element made up of a set of WebConnectors, and WebParts that corresponds to Web
components playing roles to accomplish a specific task or function. WebPattern
instances are elements of reuse in a configuration model. For example, the Petstore
application has two WebPatterns called MVC2 (see Sect. 4.1) and Façade (see Sect.

4.2) which contain some possible configuration of elements that represent the patterns
Model-View-Controller [1] and Façade [6].

In order to represent the architectural style defined by the Configuration Model, the
CM Profile has been defined as an extension of the UML Composite Structure model
including Web components and properties of the Web application domain.

In this way, the CM profile has incorporated all the classes of its metamodel as
stereotypes, extending the UML metaclasses. The CM stereotyped classes will add the
domain specific semantic defined in the Configuration metamodel to the semantic that
they inherit from the UML metaclasses.

For the visual representation of the CM profile elements we stick to the notation of
the corresponding UML metaclass elements. These modeling elements are described in
Table 3.

«WebComponent»
A

WebPort
Provided WebInterface

Required WebInterface

«WebComponent»
A

WebPort
Provided WebInterface

Required WebInterface

«WebComponent»
A

WebPort
Provided WebInterface

Required WebInterface

WebComponent keeps the notation of
UML structure class. It has incorporated the
WebPort, by means of a small square on the
boundary. WebPorts are associated to
required or provided WebInterfaces with
the lollipop notation.
All subtypes of WebComponent, such as
ClientPage, ServerPage and EntityWeb
(Fig. 4) are represented using this notation.

«WebComponent»
A

«WebComponent»
B

1 0..1

«WebComponent»
A

«WebComponent»
B

1 0..1

WebConnector establishes the
communication directly between the
WebPorts of WebComponents or/and
WebParts. This connector is represented
with the notation of a UML association.

«WebComponent»
A

«WebComponent»
B

1 1..*

«WebComponent»
A

«WebComponent»
B

1 1..*

WebConnector is attached to two
WebPorts which has required attached by
two compatible WebInterfaces – one
required interface and one provided
interface – that are compatible. This
connector is called assembly.

«WebComponent »
A

«WebComponent »

B [1{4}]

«WebComponent »
A

«WebComponent »
:B [4]

«WebComponent »
A

«WebComponent »

B [1{4}]

«WebComponent »
A

«WebComponent »
:B [4]

«WebComponent »
A

«WebComponent »

B [1{4}]

«WebComponent »
A

«WebComponent »
:B [4]

WebPart is shown as a box inside a
WebComponent or a WebPattern. As stated
in Sect. 3.6, a multiplicity for a WebPart
can be specified within the container
WebComponent.

«WebPattern»
Pattern1

1 1..*
«WebComponent»

:B [0..1]

«WebComponent»

:A [1]

«WebPattern»
Pattern1

1 1..*
«WebComponent»

:B [0..1]

«WebComponent»

:A [1]

WebPattern is represented as a UML
collaboration with a dashed ellipse icon
containing the name of a WebPattern. The
internal structure of a WebPattern
comprises WebParts and WebConnectors. It
is shown in the compartment within the
dashed ellipse icon.

«WebComponent»
A

«WebPattern»
Pattern1

«represents»

«WebComponent»
A

«WebPattern»
Pattern1

«represents»

«WebComponent»
A

«WebPattern»
Pattern1

«represents»

A dashed arrow with a stick arrowhead and
labelled with the keyword «represents»
means that a WebPattern is used in a
WebComponent.
Table 3. Notation used in a Configuration Model

4 A Case Study: Petstore

For the proof-of-concept of the CM profile, we have chosen the J2EE Petstore example
[19]. This application constitutes a blueprint that uses best practices and design
guidelines for a distributed component Web application.

As stated above, the CM represents an architectural style and it is made up of a set
of Web components and their connectors. This model is independent of the application
functionality and the development platform. Therefore in this article we will only focus
on its architectural aspects. We first give an overview of the Petstore configuration
model and then dive into two applied patterns MVC2 and Façade.

1

ClientHandler

ScreenData

«WebPattern»
:Model View
Controller 2

«ClientPage»
Client Page1

ClientRequest

«UserAgent»
UA1

«WebComponent»
Facade

1..*

TransQueries

NonTransQueries

EntityExtAccess

«WebPattern»
:Facade

«DAC»
DAC1

«Store»
DB

- access = R/W
- data = Conceptual
- Organization = Relational

«DataSource»
DS1

- isRemote = true
- isTransactional = true

1..*

ViewData

Model

Process
Component

1..*

1

1

1..*
1

1

«ServerPage»
TemplatePage

«ServerPage»
:TopIndex [1]

«ServerPage»
:Banner [1]

«ServerPage»

:Body [1..*]
«ServerPage»

:Foot [1]

1..*

«LegacyView»
LW1

- isSynchronous = false

LegacyServicesRequired

ExtServicesSupplied

1..* 1..*

«represents»

«represents»

1..* 1..*

builds

1

1

«WebComponent»
MVC2

1

1

1..*

1

ClientHandler

ScreenData

«WebPattern»
:Model View
Controller 2

«ClientPage»
Client Page1

ClientRequest

«UserAgent»
UA1

«WebComponent»
Facade

1..*

TransQueries

NonTransQueries

EntityExtAccess

«WebPattern»
:Facade

«DAC»
DAC1

«Store»
DB

- access = R/W
- data = Conceptual
- Organization = Relational

«DataSource»
DS1

- isRemote = true
- isTransactional = true

1..*

ViewData

Model

Process
Component

1..*

1

1

1..*
1

1

«ServerPage»
TemplatePage

«ServerPage»
:TopIndex [1]

«ServerPage»
:Banner [1]

«ServerPage»

:Body [1..*]
«ServerPage»

:Foot [1]

1..*

«LegacyView»
LW1

- isSynchronous = false

LegacyServicesRequired

ExtServicesSupplied

1..* 1..*

«represents»

«represents»

1..* 1..*

builds

1

1

«WebComponent»
MVC2

1

1

1..*

Fig. 4 shows a general
made up of a set of com

In the front-end par
receives the user’s req
the interface and funct
the MVC2 WebPatter
receives the requests th
reaction through the
components.

The ServerPages of
defined by Conallen
TemplatePage that bui
Banner, Foot and Bod
access the required dat
of the MVC2 Web Pa
component needs infor
which is obtained thro

Fig. 4. Configuration Model of Petstore
 view of the CM representing the Petstore architecture, which is
ponents and connectors that are described next.

t of the model we find the UserAgent (e.g., a browser) which
uests and renders the ClientPage set. Each ClientPage contains
ionality information and is responsible for sending messages to
n (described in detail in Sect. 4.1). The MVC2 WebPattern
rough the WebPort ClientHandler and establishes the interface
WebPort ScreenData, which is defined by the ServerPage

 Petstore are specified following the pattern Master Template
[4]. Following this pattern, in Fig. 4 we have defined a

lds the client pages by instantiation of the WebParts TopIndex,
y. Each instance of a Body ServerPage needs an interface to
a objects. Such interface is provided by the WebPort ViewData
ttern. Looking at the MVC2, we can observe that the MVC2
mation from the components that implement the business logic,
ugh the BLogic interface offered by the Façade WebPattern

(described in detail in Sect. 4.2). The Façade invokes the DAC (Data Access
Component, based on the Data Access Object pattern [6]), which contains the data
access methods and decouples the business logic from the data. In our example DAC
offers two interfaces, one for the non transactional queries, i.e. the data retrieval
queries which are accessed through the WebPort process component of Façade, and
one for the transactional queries (insert, update and delete) which are accessed through
the Entity port of Façade. The WebComponent Façade is in turn related to the
component LegacyView, which offers a series of services coming from the
EntityExtAccess port to other applications and converts the received asynchronous calls
into requests to the business logic. Finally, the specified remote and transactional data
sources allow for the connection to Store that contains the information modelled in the
conceptual model of the functional view of the Web application Petstore, and specifies
a read/write access, as well as a relational organization.

<<WebPattern>>
MVC 2

«View»
:View [1..*]

1

«Controller»
:Controller [1]

1

clientHandler screenDefinition

«EntityData»

:Model [1..*]
11..*

«Store»
:NavigationalLinks

[1]
- data: = Navigational
- organization: = Flat
- access: = Read

BLogic

viewdata

1 1

<<WebPattern>>
MVC 2

«View»
:View [1..*]

1

«Controller»
:Controller [1]

1

clientHandler screenDefinition

«EntityData»

:Model [1..*]
11..*

«Store»
:NavigationalLinks

[1]
- data: = Navigational
- organization: = Flat
- access: = Read

BLogic

viewdata

1 1

4.1 Model View Cont

Fig. 5 depicts the compo
This pattern is made up o
receiving the requests f
connected to a Store co
pages. The fact that links
from presentation. Also
component EntityData,
conceptual model and the

4.2 Façade Pattern

The Façade WebPattern
(e.g., a Session Statele
WebInterface from the M
createEntity and invokeE

This pattern requires
interface. Also, it has a se
domain in the business lo
they can be shared by mu
an EJB Entity). Each En
 Fig. 5. Model-View-Controller 2 Pattern
roller 2 Pattern

nents of the MVC2 WebPattern, a variant of the classic MVC.
f a controller component that has two Web Interfaces, one for
rom the client page and one for building the pages. It is
mponent which contains information about the links among
 are contained in a Store supports the separation of navigation
, the controller needs the information contained in the
which contains both data coming from the classes of the
 connectivity through the BLogic WebInterface.

(see Fig. 6) includes a set of stateless ProcessComponents
ss EJB), which receives the requests through the BLogic

VC2, and resends them to the Entity through the interfaces
ntity.
an interface to DAC through the nonTransactionalQueries
t of EntityWeb components that represent the elements of the
gic. These have the tagged value isShare=true indicating that
ltiple transactions and users (e.g., it could be implemented by
tityWeb contains an EntityData representing the state of the

domain elements, as defined in the ObjectValue pattern [6]. Note how this entity
provides the ExtEntityServices interface for the View Legacy and sends the requests to
the data layer through the TransactionalQueries WebInterface.

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

«WebPattern»
Facade

«ProcessComponent»
FacadeComponent

- hasState: = false

createEntity

invokeServices
«EntityWeb»
EntityComp

- isShared: = true

homeInterface

remoteInterface

«EntityData»

Entity [1..*]

nonTransQueries ExtEntityServices

TransactionalQueries
LogicServices

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

«WebPattern»
Facade

«ProcessComponent»
FacadeComponent

- hasState: = false

createEntity

invokeServices
«EntityWeb»
EntityComp

- isShared: = true

homeInterface

remoteInterface

«EntityData»

Entity [1..*]

nonTransQueries ExtEntityServices

TransactionalQueries
LogicServices

5 Related Work

The modern Web architecture
interaction latency reduction, se
For instance, approaches suc
architectural style, to represen
connector interface of resources
both as a model for design guida
protocols. WebSA is based on s
process development for the pro

Hassan and Holt [7] present
Web applications. The approach
the source code and binaries of
produce useful architecture dia
follows the opposite process tha
implementation. However, this
realize this reverse engineering

Conallen’s work is another w
the design of Web application
(WAE) for UML, which genera
approach, WebSA represents th
levels of abstraction, and this a
the productivity on the developm

In the Web Engineering co
developed which tackle the We
product line architecture in J
different families of application
J2EE platforms. Another appro
WebML is a modeling languag
its own notation and proposes a

Fig. 6. Façade Pattern
emphasizes scalability, independent deployment, and
curity enforcement, and legacy systems encapsulation.
h as Representational State Transfer (REST) [5]
t Web architectures, with focus upon the generic
 and representations. However, REST has only served
nce, and as test for architectural extensions to the Web

ome concepts of the REST architecture style to define a
duction of Web applications.
 an approach aimed at recovering the architecture of
 uses a set of specialized parsers/extractors that analyze
 Web applications. They describe the schemas used to
grams from highly detailed facts. Conversely, WebSA
t goes from the representation of the architecture to the
approach does not describe the transformation rules to
process.

ell-known approach on extending UML [4] to model
s. Conallen presents the Web Application Extension
tes de skeleton code for a Web application. Unlike this
e software architecture of Web applications at different
llows for a better scalability and reusability improving
ent of Web applications.
mmunity moreover different approaches have been

b software architecture. OOHDM-Java2 [8] proposes a
2EE for simplifying the systematic construction of
s. However, this complex architecture is only useful for
ach is proposed by WebRatio – the WebML tool [3].
e based on the entity relationship of data that provides
static architecture based on the J2EE struts framework.

6 Conclusions and Further Work

WebSA is an approach that complements the currently existing methodologies for the
design of Web applications with techniques for the development of Web architectures.
WebSA comprises a set of models and transformations, a modeling language and a
development process. The development process also includes the description of the
integration of these architectural models with the functional models of the different
Web design approaches setting the base for an MDA

In this paper we have presented a UML 2.0 Profile for WebSA. We want to stress
the importance of the UML compliance of this modeling language, which allows the
use of any UML 2.0 CASE tool. Furthermore, it is the basis for the specification of the
transformations that rely on the QVT standard.

Currently, we are working on the set of QVT [16] transformation models to support
the WebSA refinement process. This work will formalize the transformations while
guaranteeing the traceability between those models and the final implementation.

References

1. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented Software
Architecture – A System of Patterns, John Wiley & Sons Ltd. Chichester, England, 1996

2. C. Cachero. OO-H. Una extensión de los métodos OO para el modelado y generación
automática de interfaces hipermediales http://www.dlsi.ua.es/ ~ccachero/pTesis.htm, 2003

3. S. Ceri, P. Fraternali, M. Matera. Conceptual Modeling of Data-Intensive Web
Applications, IEEE Internet Computing 6, No. 4, July/August 2002, 20–30

4. J. Conallen. Building Web Applications with UML, 2nd Edition, Addison-Wesley
Longman, September 2002

5. R. Fielding, R. Taylor. Principled Design of the Modern Web Architecture, ACM
Transactions on Internet Technology 2(2), May 2002, 115-150

6. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995

7. A. Hassan, R. Holt. Architecture Recovery of Web Applications, International Conference
on Software Engineering (ICSE’02), Orlando, Florida, May 2002

8. M. D. Jacyntho, D. Schwabe, G. Rossi. A Software Architecture for Structuring Complex
Web Applications, Journal of Web Engineering, 1(1),37-60, 2002

9. I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development Process, Addison-
Wesley, 1999

10. A. Kleppe, J. Warmer, W. Bast. MDA Explained. The Model Driven Architecture, Practice
and Promise, Addison-Wesley, 2003

11. N. Koch, A. Kraus. The Expressive Power of UML-based Web Engineering, In Proc. of the
2nd. IWWOST, CYTED, Málaga, Spain, June 2002, 105-119

12. S. Meliá, C. Cachero. An MDA Approach for the Development of Web Applications, In
Proc. of 4th ICWE, LNCS 3140, July 2004, 300-305

13. S. Meliá. The WebSA Configuration Model Profile. Technical Report TR-WebSA2,
http://www.dlsi.ua.es/~santi/pPublicaciones.htm, November 2004

14. OMG. Model Driven Architecture, OMG doc. ormsc/2001-07-01
15. OMG. Meta Object Facility (MOF) v1.4, OMG doc. formal/02-04-03
16. OMG. RFP: MOF 2.0 Query / Views /Transformations, OMG doc. ad/2002-04-10
17. OMG. UML 2.0, Final Adopted Specification, OMG doc. ptc/2003-08-02
18. Klaus Renzel, Wolfgang Keller. Client/Server Architectures for Business Information

Systems: A Pattern Language, PLoP Conference, 1997
19. TM J2EE Blueprint. Java Petstore 1.1.2, http://developer.java.sun.com/developer/releases/

petstore/petstore1_1_2.html, November 2004

http://www.dlsi.ua.es/ ~ccachero/pTesis.htm
http://www.dlsi.ua.es/~santi/pPublicaciones.htm

