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Abstract. Building on the theory of modal I/O automata (MIOs) by
Larsen et al. we introduce a new compatibility notion called weak modal
compatibility. As an important property of behavioral interface theories
we prove that weak modal compatibility is preserved under weak modal
re�nement. Furthermore, we organize and compare di�erent notions of
re�nement and compatibility to give an easily-accessible overview. Fi-
nally, we describe the MIO Workbench, an Eclipse-based editor and ver-
i�cation tool for modal I/O automata, which implements various re�ne-
ment, compatibility and composition notions and is able to depict the
results of veri�cation directly on the graphical representation of MIOs �
relations or state pairs in the positive and erroneous paths in the negative
case.

1 Introduction

Interface design has been a long-standing and important issue in the design of
software systems. Various methods of interface speci�cations, both static and
behavioral, have been suggested for software components [3,4]. We believe that
behavioral speci�cations for components are of particular importance, and focus
on such speci�cations in this paper.

Among the most widely accepted methods for specifying behavioral proper-
ties of interfaces are I/O automata [15,16], which have been introduced to specify
the temporal ordering of events involving a component, explicitly taking commu-
nication aspects such as sending or receiving messages into consideration. Many
variations of these automata have been introduced over the years; for example
interface automata [5], timed interface automata [6], or resource automata [2].
At the same time, another aspect of interface behavior has been studied: Modal
automata [13] explicitly address the di�erence between required and optional
actions by using must and may transitions, which allow protocols and imple-
mentations to di�er with regard to non-compulsory actions. Recently, both the
input/output and the may/must aspects of behavioral speci�cations have been
integrated [11], giving rise to modal I/O automata (MIOs).

Building on the basic formalisms for behavioral speci�cations such as MIOs,
we can use notions of interface compatibility and correct interface implementa-
tion (re�nement) to verify component behavior; for a survey on compatibility
notions see [3]. Interface theories [4] are commonly used to precisely de�ne these



requirements. Interface theories are tuples (A,≤,∼,⊗) of a semantic domain A,
a re�nement relation≤⊆ A×A, a (symmetric) compatibility relation∼⊆ A×A,
and a (possibly partial) composition function ⊗ : A×A → A satisfying the fol-
lowing three properties: Let S, T, T ′, T ′′ ∈ A.

(1) Preservation of compatibility: If S ∼ T and T ′ ≤ T then S ∼ T ′.
(2) Compositional re�nement: If T ′ ≤ T then S ⊗ T ′ ≤ S ⊗ T .
(3) Transitivity of re�nement: If T ′′ ≤ T ′ and T ′ ≤ T then T ′′ ≤ T .

These three properties imply independent implementability, which is the basis
for top-down component-based design.

Independent implementability states that in order to re�ne a given composed
interface S ⊗ T towards an implementation, it su�ces to independently re�ne
S and T , say, to S′ and T ′, respectively; then the re�nements S′ and T ′ are
compatible and their composition re�nes the interface S ⊗ T . More formally, let
(A,≤,∼,⊗) be an interface theory. Independent implementability means that if
S ∼ T , S′ ≤ S and T ′ ≤ T hold, both S′ ∼ T ′ and S′ ⊗ T ′ ≤ S ⊗ T follow.

In this paper, we elaborate on the challenges of component behavior speci�-
cation. We introduce new interface theories in the same line as in de Alfaro and
Henzinger [4] for modal I/O automata with appropriate re�nement and com-
patibility notions. We introduce the notion of weak modal compatibility which
allows for loose coupling between interfaces and prove its preservation under
weak modal re�nement.

Another result of this paper is the organization and comparison of di�erent
existing and new notions of re�nement and compatibility. We give an easily-
accessible overview of these notions and their relationships.

Although I/O automata and modal automata have a long history, there is
little tool support. Therefore, another major contribution of this paper is a
veri�cation tool and editor for MIOs � the MIO Workbench � which includes
implementations of various re�nement and compatibility notions, including but
not limited to the ones which are part of our interface theories. We believe that
the ability to automatically verify these properties is useful for both discussing
the theory of MIOs as well as a foundation for practical applications.

This paper is structured as follows. We discuss modal I/O transition systems
in Sect. 2. In Sect. 3, we introduce our notion of weak modal compatibility,
followed by an overview of the di�erent notions of re�nement and compatibility
in Sect. 4. Tool support for MIOs is discussed in Sect. 5. We conclude in Sect. 6.

2 Modal (I/O) Transition Systems

This �rst section is devoted to a short introduction to modal transition systems,
and in particular modal input/output transition systems. A modal transition
system is characterized by the fact that it has two transition relations, indicat-
ing allowed (may) and required (must) behavior. In this paper, we consider an
extended version of the original modal transition systems [13] by including a
signature which distinguishes between internal and external actions.



De�nition 1 (Modal Transition System). A modal transition system (MTS)
S = (statesS , startS , (extS , intS), 99KS ,−→S ) consists of a set of states statesS,
an initial state startS ∈ statesS, disjoint sets extS and intS of external and
internal actions where actS = extS ∪ intS denotes the set of (all) actions, a
may-transition relation 99KS ⊆ statesS × actS × statesS, and a must-transition
relation −→S ⊆ statesS × actS × statesS. The pair (extS , intS) is called the
signature of S.

An MTS S is called syntactically consistent if every required transition is
also allowed, i.e. it holds that −→S ⊆ 99KS . From now on we only consider
syntactically consistent MTSs. Moreover, we call an MTS S an implementation
if the two transition relations coincide, i.e. −→S = 99KS .

Modal I/O transition systems [11] further di�erentiate between two kinds of
external actions, namely input and output actions.

De�nition 2 (Modal I/O Transition System). A modal I/O transition sys-
tem (MIO) S is an MTS with the set of external actions extS partitioned into
two disjoint sets inS, outS of input and output actions, respectively. The triple
(inS , outS , intS) is called the signature of S.

The notions of syntactic consistency and implementation also apply for MIOs.

Example 1. Our running example in this paper is the speci�cation (and imple-
mentation) of a �ight booking service. In Fig. 1, the MIO T0 specifying the
service provider is depicted. For improving readability, output actions are suf-
�xed with an exclamation mark (! ) whereas input actions are su�xed with a
question mark (? ). Internal actions do not have any su�x.

In the initial state (indicated by a �lled circle) the session is initiated by
receiving bookTicket?, followed by the reception of the data of requested tickets
in ticketData?. Then, a service implementation may ask the client for choosing
a seat number (seat! ) which it must be able to receive afterwards (seatNo? ).
The reservation of the tickets may be cancelled by the service provider (fail! ) if
the requested �ight is fully booked, or the request is con�rmed by sending ok!,
which is followed by receiving the account data (accountData? ) of the client. �

ok!accountData?

fail!

seatNo?

seat!

bookTicket? ticketData?

Fig. 1. Speci�cation T0 of a �ight booking service.

In the following, we recall the standard de�nition of re�nement for modal
transition systems, cf. [13]. The notion of re�nement aims at capturing the rela-
tion between an abstract speci�cation of an interface and a more detailed one,



possibly an implementation of that interface. Thus, it allows for a stepwise re-
�nement of an abstract speci�cation towards an implementation.

The basic idea of modal re�nement is that any required (must) transition
in the abstract speci�cation must also occur in the concrete speci�cation. Con-
versely, any allowed (may) transition in the concrete speci�cation must be al-
lowed by the abstract speci�cation. Moreover, in both cases the target states
must conform to each other. Modal re�nement has the following consequences:
A concrete speci�cation may leave out allowed transitions, but is required to
keep all must transitions, and moreover, it is not allowed to perform more tran-
sitions than the abstract speci�cation admits. The following de�nition of modal
re�nement is called strong since every transition that is taken into account must
be simulated �immediately�, i.e. without performing internal actions before.

De�nition 3 (Strong Modal Re�nement [13]). Let S and T be MTSs
(MIOs, resp.) with the same signature. A relation R ⊆ statesS × statesT is
called strong modal re�nement for S and T i� for all (s, t) ∈ R and for all
a ∈ actS it holds that

1. if t
a−→T t

′ then there exists s′ ∈ statesS such that s
a−→S s

′ and (s′, t′) ∈ R,
2. if s

a
99KS s

′ then there exists t′ ∈ statesT such that t
a
99KT t

′ and (s′, t′) ∈ R.

We say that S strongly modally re�nes T , written S ≤m T , i� there exists a
strong modal re�nement for S and T containing (startS , startT ).

If both S and T are implementations, i.e. the must-transition relation coincides
with the may-transition relation, then strong modal re�nement coincides with
(strong) bisimulation; if −→T = ∅ then it corresponds to simulation [17].

Example 2. In Fig. 2, a (possible) implementation T1 of the �ight booking service
speci�ed by the MIO T0 in Fig. 1 is shown. In this particular implementation
of the speci�cation T0, the optional output for asking the client for a particular
seat number is never taken. However, all must-transitions of T0 are retained in
the implementation T1, hence we have T1 ≤m T0. �

ok!accountData?

fail!

bookTicket? ticketData?

Fig. 2. Implementation T1 of T0.

Next, we introduce a binary (synchronous) composition operator on MIOs. When
two protocols (implementations), each one describing a particular component,
can communicate by synchronous message passing, we are interested in comput-
ing the resulting protocol (implementation) of the composed system. Although



composition can obviously be de�ned for MTSs, we directly give a de�nition for
MIOs as this is our main interest.

It is convenient to restrict the composition operator to composable MIOs by
requiring that overlapping of actions only happens on complementary types.

De�nition 4 (Composability [11]). Two MIOs S and T are called compos-
able if (inS ∪ intS) ∩ (inT ∪ intT ) = ∅ and (outS ∪ intS) ∩ (outT ∪ intT ) = ∅.

We now de�ne composition of MIOs in a straightforward way by a binary
partial function ⊗ synchronizing on matching (shared) actions.

De�nition 5 (Composition [11]). Two composable MIOs S1 and S2 can be
composed to a MIO S1 ⊗ S2 de�ned by statesS1⊗S2 = statesS1 × statesS2 , the
initial state is given by startS1⊗S2

= (startS1
, startS2

), inS1⊗S2
= (inS1

\outS2
)∪

(inS2
\ outS1

), outS1⊗S2
= (outS1

\ inS2
) ∪ (outS2

\ inS1
), intS1⊗S2

= intS1
∪

intS2 ∪ (inS1 ∩ outS2) ∪ (inS2 ∩ outS1). The transition relations 99KS1⊗S2
and

−→S1⊗S2
are given by, for each  ∈ {99K,−→},

� for all i, j ∈ {1, 2}, i 6= j, for all a ∈ (actS1 ∩actS2), if si
a
 Si

s′i and sj
a
 Sj

s′j

then (s1, s2)
a
 S1⊗S2

(s′1, s
′
2),

� for all a ∈ actS1
, if s1

a
 S1

s′1 and a /∈ actS2
then (s1, s2)

a
 S1⊗S2

(s′1, s2),

� for all a ∈ actS2 , if s2
a
 S2

s′2 and a /∈ actS1 then (s1, s2)
a
 S1⊗S2

(s1, s
′
2).

Composition of MIOs only synchronizes transitions with matching shared ac-
tions and same type of transition, i.e. a must-transition labeled with a shared
action only occurs in the composition if there exist corresponding matching
must-transitions in the original MIOs.

A well-known problem occurs when composing arbitrary MIOs S and T : If
for a reachable state (s, t) in S ⊗ T , S in state s is able to send out a message a
shared with T , and T in state t is not able to receive a then this is considered
as a compatibility problem since S may get stuck in this situation. We want to
rule out this erroneous behavior by requiring that S and T must be compatible.

The following de�nition of strong compatibility is strongly in�uenced by [5]
and [11]. Intuitively, two MIOs S and T are compatible if for every reachable
state in the product S ⊗ T , if S is able to provide an output which is shared
with T , i.e. is in the input alphabet of T , then T must �immediately� be able to
receive this message (and vice versa).

De�nition 6 (Strong Modal Compatibility). Let S and T be composable
MIOs. S and T are called strongly modally compatible, denoted by S ∼sc T , i�
for all reachable states (s, t) in S ⊗ T ,

1. for all a ∈ (outS ∩ inT ), if s
a
99KS s

′ then there exists t′ ∈ statesT such that

t
a−→T t

′,

2. for all a ∈ (outT ∩ inS), if t
a
99KT t

′ then there exists s′ ∈ statesS such that

s
a−→S s

′.



bookTicket! ticketData!

seat?

seatNo!ok?

fail?

accountData!

Fig. 3. Protocol S.

Example 3. In Fig. 3, a speci�cation S of a client of the �ight booking service is
shown. It is easily provable that indeed S and T0 and also S and T1 are strongly
modally compatible, i.e. S ∼sc T0 and S ∼sc T1. �

For MIOs equipped with ∼sc and ≤m, we obtain a valid interface theory.

Theorem 1. Let S, T , T ′, T ′′ be MIOs, and let S and T be composable.

1. (Preservation) If S ∼sc T and T ′ ≤m T then S ∼sc T
′.

2. (Compositionality) If T ′ ≤m T then S ⊗ T ′ ≤m S ⊗ T .
3. (Transitivity) If T ′′ ≤m T ′ and T ′ ≤m T then T ′′ ≤m T .

The proof of statement 1 is given in [1]; statement 2 is a consequence of a result
in [13] (where it has been proved that every static construct � for which ⊗ is
a special case � is compositional for ≤m) and statement 3 follows directly from
the de�nition of ≤m.

Remark 1. The compatibility notions used in this paper follow a pessimistic
approach: two MIOs S and T are only compatible if no communication error
between S and T can occur in any environment of S ⊗ T . A di�erent approach
to compatibility is the optimistic one, cf. [11,5]: two MIOs S and T are compat-
ible if they are compatible for any �helpful� environment in the sense that the
environment never provides outputs that would cause the product S ⊗ T to run
in a state (s, t) with incompatible states s and t.

3 Weak Modal Compatibility

The re�nement presented in the last section is strong in the sense that every
must-transition in the protocol must be immediately simulated in the imple-
mentation and conversely, every may-transition in the implementation must be
immediately simulated in the protocol. This de�nition can be weakened by in-
cluding the notion of weak transitions.

For denoting weak transitions, given a MIO S and an action a ∈ extS , we
write s

a−→∗S s
′ i� there exist states s1, s2 ∈ statesS such that

s(
τ−→S )

∗s1
a−→S s2(

τ−→S )
∗s′

where t(
τ−→T )

∗t′ stands for �nitely many transitions with internal actions lead-
ing from t to t′; including no transition and in this case t = t′. The label τ always
denotes an arbitrary internal action. Moreover, we write

s
â−→∗S s

′ i� either s
a−→∗S s

′ and a ∈ extS , or s(
τ−→S )

∗s′ and a /∈ extS .



Both notations are analogously used for may-transitions.
Similar to the generalization of bisimulation to weak bisimulation [17], one

can introduce a notion of modal re�nement in a weak form: Every (non-weak)
must-transition in the protocol must be simulated in the implementation by a
weak must-transition, and conversely, every (non-weak) may-transition in the
implementation must be simulated by a weak may-transition in the protocol.
This form of weak modal re�nement was originally introduced in [10].

De�nition 7 (Weak Modal Re�nement [10]). Let S and T be MTSs (MIOs,
resp.) with the same signature.1 A relation R ⊆ statesS×statesT is called a weak
modal re�nement for S and T i� for all (s, t) ∈ R, for all a ∈ actS it holds that

1. if t
a−→T t

′ then there exists s′ ∈ statesS such that s
â−→∗S s

′ and (s′, t′) ∈ R,
2. if s

a
99KS s

′ then there exists t′ ∈ statesT such that t
â
99K∗T t

′ and (s′, t′) ∈ R.

We say that S weakly modally re�nes T , denoted by S ≤∗m T , i� there exists a
weak modal re�nement for S and T containing (startS , startT ).

Example 4. In Fig. 4, another implementation T2 of T0 is presented which, af-
ter receiving bookTicket?, performs an internal action log with the meaning of
executing an internal logging operation. T0 does not specify any internal ac-
tions, so we have T2 6≤m T0, but weak modal re�nement allows to postpone the
further execution of ticketData? (according to protocol T0) until some internal
(must)-transitions are passed through. It follows that T2 ≤∗m T0. �

log
bookTicket?

fail!

ticketData?

ok!accountData?

Fig. 4. Implementation T2 of T0.

Let us recall our goal. We want to �nd appropriate notions of re�nement and
compatibility for component behavior speci�cations. In order to obtain a valid
interface theory involving weak modal re�nement we have to make sure that,
given a suitable compatibility notion, compatibility is preserved under re�ne-
ment. The following example shows that strong compatibility is not preserved
by weak modal re�nement.

Example 5. S and T0 are strongly compatible and T2 ≤∗m T0. But S and T2 are
not strongly compatible, since S is able to send out the message ticketData to
T2, but T2, being in the state before performing log, is not able to receive the
message immediately. �

1 More generally, in the weak case, one could also allow that S and T have arbitrary
(non related) internal actions.



Obviously, internal actions are not adequately considered in the de�nition
of compatibility. Dealing with this problem requires a new de�nition of com-
patibility, which we call weak modal compatibility. The intuition behind weak
modal compatibility follows from the previous example: If a MIO may send out
a certain message to its partner, we consider this transaction as compatible if
the other MIO must be able to receive it, possibly performing some internal
must steps in between. Note that the must modality is essential here: If internal
may transitions would be allowed then this path could be omitted in further re-
�nements and therefore compatibility of implementations would not be ensured
anymore.

In the following, given a MIO S and an action a ∈ extS , we write s
a−→/
S s
′ i�

there exists a state s′′ ∈ statesS such that

s(
τ−→S )

∗s′′
a−→S s

′.

Moreover, s
â−→/
S s
′ denotes s

a−→/
S s
′ if a ∈ extS , otherwise s(

τ−→S )
∗s′. Both no-

tations are analogously used for may-transitions.

De�nition 8 (Weak Modal Compatibility). Let S and T be composable
MIOs. S and T are called weakly modally compatible, denoted by S ∼wc T , i�
for all reachable states (s, t) in S ⊗ T ,

1. for all a ∈ (outS ∩ inT ), if s
a
99KS s

′ then there exists t′ ∈ statesT such that

t
a−→/
T t
′,

2. for all a ∈ (outT ∩ inS), if t
a
99KT t

′ then there exists s′ ∈ statesS such that

s
a−→/
S s
′.

Obviously, it holds that S ∼sc T implies S ∼wc T .

Example 6. Looking back to our examples, it can be easily veri�ed that S is
weakly modally compatible with both T0 and T2 since the reception of ticketData
in T2 must take place after the internal must transition labeled with log. �

Based on the MIO formalism, weak modal compatibility ∼wc and weak modal
re�nement ≤∗m satisfy the desired properties of an interface theory.

Theorem 2. Let S, T , T ′, T ′′ be MIOs, and let S and T be composable.

1. (Preservation) If S ∼wc T and T ′ ≤∗m T then S ∼wc T
′.

2. (Compositionality) If T ′ ≤∗m T then S ⊗ T ′ ≤∗m S ⊗ T .
3. (Transitivity) If T ′′ ≤∗m T ′ and T ′ ≤∗m T then T ′′ ≤∗m T .

The proof of statement 1 is given in [1]; statement 2 is a consequence of a result
in [10] (where it has been proved that ⊗ is a binary, τ -insensitive operator on
MTSs with input/output labels and therefore ⊗ is compositional for ≤∗m) and
statement 3 follows directly from the de�nition of ≤∗m.



4 Overview of Re�nement and Compatibility Notions

In order to complete the picture of existing notions of modal re�nements for
modal transition systems and their relationships to the notions of compatibility
de�ned here, we also consider may-weak modal re�nement, which has been de-
�ned in [12] (and, under the name of observational modal re�nement, in [11])
to generalize alternating simulation [5]. May-weak modal re�nement keeps the
strong requirement for required (must-)transitions (as in strong modal re�ne-
ment, but restricted to external actions), but has a weak condition for allowed
(may-)transitions: every allowed transition in the more concrete MTS must be
simulated by an allowed transition in the abstract MTS, possibly preceded by
�nitely many internal transitions.

De�nition 9 (May-Weak Modal Re�nement [12]). Let S and T be MTSs
(MIOs, resp.) with the same signature. A relation R ⊆ statesS×statesT is called
may-weak modal re�nement for S and T i� for all (s, t) ∈ R it holds that

1. for all a ∈ extT , if t
a−→T t

′ then there exists s′ ∈ statesS such that s
a−→S s

′

and (s′, t′) ∈ R,
2. for all a ∈ actS, if s

a
99KS s

′ then there exists t′ ∈ statesT such that t
â
99K/T t

′

and (s′, t′) ∈ R.

We say that S may-weakly modally re�nes T , denoted by S ≤/m T , i� there exists
a may-weak modal re�nement for S and T containing (startS , startT ).

Given MIOs as the underlying formalism, may-weak modal re�nement to-
gether with strong modal compatibility forms a valid interface theory.

Theorem 3. Let S, T , T ′, T ′′ be MIOs, and let S and T be composable.

1. (Preservation) If S ∼sc T and T ′ ≤/m T then S ∼sc T
′.

2. (Compositionality) If T ′ ≤/m T then S ⊗ T ′ ≤/m S ⊗ T .
3. (Transitivity) If T ′′ ≤/m T ′ and T ′ ≤/m T then T ′′ ≤/m T .

The proof of Thm. 3 is given in [1].
So far, we have considered three modal re�nement notions. Obviously, for

any two modal transition systems (or MIOs) S and T we have

Fact 1. if S ≤m T then S ≤∗m T ;
Fact 2. if S ≤m T then S ≤/m T .

The converses of the above implications do obviously not hold; moreover, it is also
obvious that weak modal re�nement does not imply may-weak modal re�nement.
However, also may-weak modal re�nement does not imply weak modal re�ne-
ment since condition 1 in Def. 9 only considers external actions; for instance, for
T and T ′ in Fig. 5, T ′ ≤/m T but T ′ 6≤∗m T since the internal must transition of
T is not respected by T ′ which would be required for weak modal re�nement.



Table 1. Overview of preservation of compatibility under re�nement.

Strong Compatibility ∼sc Weak Compatibility ∼wc

Strong Re�nement ≤m !(Thm. 1) !(Fact 1 & Thm. 2)

Weak Re�nement ≤∗
m %(Ex. 5) !(Thm. 2)

May-Weak Re�nement ≤/
m !(Thm. 3) %(Ex. 7)

We have shown that all modal re�nements are compositional w.r.t. ⊗, but
they substantially di�er when preservation of strong/weak compatibility is con-
sidered. Table 1 summarizes the relationships between modal re�nement and
compatibility notions; a checkmark indicates that compatibility is preserved un-
der re�nement.

Example 7. Weak compatibility is not preserved under may-weak modal re�ne-
ment, as shown in Fig. 5. �

a!

a! a?τ

S 6∼wc T ′

S ∼wc T

T ′ ≤/m T

Fig. 5. Counterexample.

5 The MIO Workbench

In the previous sections, we have illustrated the sometimes subtle distinctions
between di�erent de�nitions of re�nement and compatibility. During our work,
we have come to appreciate the help of implementations of our formal notions,
which were an un�inching partner in �nding inconsistencies and con�rming coun-
terexamples. To aid ourselves and others, we have implemented a complete set of
veri�cation notions and surrounding functionality for working with modal I/O
automata � the MIO Workbench, an Eclipse-based editor and veri�cation tool
for modal I/O automata, which we present here for the �rst time.

Workbench Features The most direct and intuitive way to work with MIOs
is using a graphical editing facility based on a graph of nodes (states) and edges
(transitions) as well as accompanying labels. The �rst feature provided by the
workbench is thus a

(1) Graphical Editor, allowing to create new or change existing MIOs.



The implementation of the di�erent notions of re�nement and compatibility
are the next features of the MIO Workbench:

(2) Re�nement Veri�cation. These include strong, may-weak, and weak modal
re�nement.

(3) Compatibility Veri�cation. We support the notions of strong (with and with-
out �helpful� environment, cf. [5]), and weak modal compatibility.

Furthermore, it is interesting to see an actual composition of composable MIOs:

(4) Composition Operation on MIOs.

The output of a composition operation is either the composed MIO or a list
of problematic actions which caused the composition to fail.

Considering re�nement and compatibility veri�cation, we can get two very
important, but very di�erent results. First, if re�nement or compatibility is pos-
sible, we get re�nement relation(s) and matching states for compatibility, re-
spectively. However � and this is even more important � if the veri�cation fails,
we get the error states and the error transitions in the two automata, i.e. the
exact position(s) which led to the erroneous outcome.

Visualizing these results in a graphical way is very important. Therefore, the
workbench also includes:

(5) Re�nement relation and state match view. If a re�nement or compatibility
veri�cation was successful, the workbench graphically displays the relation
or the matching states side-by-side between the two input MIOs.

(6) Problem view including error states and unmatched actions. If a re�nement
or compatibility veri�cation was not successful, the workbench graphically
displays, side-by-side, the path which led to an erroneous state, and the
transition possible in one automaton, but not in the other.

On the technical side, the MIO Workbench is based on the Eclipse platform.
We use an Eclipse Modeling Framework (EMF)-based metamodel for MIOs,
which enables persistence and simple access to concrete automata. The work-
bench integrates into Eclipse by adding MIO-speci�c �le handling and the new
MIO editor as well as the veri�cation view. The MIO Workbench is extensible
with regard to new notions of re�nement, compatibility, and composition, by
means of standard Eclipse extension points.

User Interface Fig. 6 shows the MIO editor inside the Eclipse workbench. On
the left-hand side, the project explorer shows MIOs stored on the �le system as
.mio �les; on the right-hand side, the editor for one of these MIOs is displayed.
A MIO is displayed in the classical way by using nodes as states and edges as
transitions. Each transition has a type (must or may), which is indicated by a
square or diamond, respectively. Furthermore, each transition also stands for an
internal, input, or output action. An input action is colored green and is su�xed
with a question mark (? ). An output action is colored red and is su�xed with



Fig. 6. MIO Workbench editor.

an exclamation mark (! ). Finally, an internal action is gray and does not have a
su�x. The MIO editor o�ers all the usual operations such as adding new nodes,
moving them around, changing labels, types, and re-layouting.

The veri�cation view of the MIO Workbench is the central access point to
the veri�cation functionality. It features a side-by-side view of two modal I/O
automata, which can then be analyzed for re�nement or compatibility, or com-
posed.

Fig. 7 shows veri�cation of the protocol T0 (left) and implementation T2
(right) from Ex. 4 using weak modal re�nement, such that T2 ≤∗m T0, which is
indicated by the green top and the green arrows between related states.

As said above, the most interesting results are negative cases, i.e. if a re-
�nement does not exist or compatibility does not hold. In this case, the MIO
Workbench displays the possible error paths, each indicating a state pair in
violation and the corresponding erroneous action.

Fig. 8 shows the visualization of Ex. 4 again, but this time using strong modal
re�nement. Thus, we can take the bookTicket? action on both sides, marked in
dark red, arriving at the state pair (1,5). Here, the protocol T0 can take the
ticketData? action, also marked in dark red, which the implementation T2 is
unable to follow. Since it is a must, there is no relation in this case, which is
indicated by the red top and the dark red actions.

The MIO Workbench contains additional helpful features such as automat-
ically laying out MIOs, adjusting an alphabet of a MIO by hiding non-shared
labels for a compatibility or re�nement check, and more.



Fig. 7. MIO Workbench re�nement view.

Fig. 8. MIO Workbench showing re�nement problem.



The Workbench in Context To our knowledge, the MIO Workbench is the
�rst tool for modal I/O automata which includes a full set of re�nement, com-
patibility, and composition notions as well as a (graphical) MIO editor.

Perhaps the closest related tool is MTSA [7], which includes a (text-based)
editor and implementations of re�nement as well as composition of modal au-
tomata. As the MIO Workbench is based on modal input/output automata as
�rst class citizens, it di�ers by including compatibility veri�cation based on I/O
information; furthermore, it includes a graphical editor and a side-by-side graph-
ical result view. There are also tools for I/O automata (i.e. without modality), for
example the command-line based IOA toolset [9] for plain I/O automata or the
Eclipse-based Tempo Toolkit [14] which deals with timed I/O automata; how-
ever, none of those considers both modality and communication aspects available
in MIOs.

6 Conclusion

In this paper, we have presented an overview of modal I/O automata and various
notions of modal re�nement and compatibility. We have motivated the need for
a new compatibility notion called weak modal compatibility, which allows the
passing of internal actions. We have shown this compatibility notion to hold
under weak modal re�nement, and we have given an overview of the relationships
between modal re�nements and compatibility notions introduced in this paper.

On the practical side, we have presented a veri�cation tool and graphical
editor for modal I/O automata called the MIO Workbench, which implements
various re�nement and compatibility notions based on MIOs. We believe that
tool support is of great help for discussing modal I/O automata and may serve
in research, teaching, and as a prototype for industrial applications. The MIO
Workbench can be freely downloaded from www.miowb.net.

As future work, we plan to extend our notions of compatibility to new use
cases identi�ed from practical service speci�cations and from distributed sys-
tems with asynchronous communication. It also looks interesting to investigate
compatibility in the context of a new semantics for MTSs introduced recently in
[8].
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