
�UCTL� A Temporal Logic for UML

Statecharts�

S� Gnesi�� F� Mazzanti�

Istituto di Scienza e Tecnologie dell�Informazione �A� Faedo�
ISTI� CNR
Pisa� Italy

Abstract� In this paper we present the state�event�based temporal logic
�UCTL that makes possible the description of properties on UML model
evolutions and assertions on explicit local state variables of UML state
machines� This logic allows both to specify the basic properties that a
state should satisfy� and to combine these basic predicates with advanced
logic or temporal operators� Doubly Labelled Transition Systems are the
semantic domain for �UCTL where states are labelled by sets of propo�
sitions that hold in them and transitions by events performed� The logic
we propose here is then applied to verify properties over the dynamic
behaviour of a mobile system modelled as extended UML statecharts�

� Introduction

Most of the speci�cation languages used to describe systems are either state�
based or event�based� In the �rst case systems are characterized by their states
and by the transitions between states� in the latter by the events they perform
moving from one state to another� Indeed both paradigms are important for
the speci�cation of real systems and hence speci�cation languages should cover
both�

The Uni�ed Modelling Language �UML� is a graphical modelling language for
object�oriented software and systems ��	�
��� it has been speci�cally designed
for visualizing� specifying� constructing and documenting several aspects � or
views� of systems� Di
erent diagrams are used for the description of the di
erent
views� In this paper we focus on UML Statechart Diagrams� which are meant
for describing dynamic aspects of system behaviour and cover both di
erent
paradigms of modelling�

The UML semantics �
�� associates to each active object a state machine�
and the possible system behaviours are de�ned by the possible evolutions of a
set of communicating state machines� All the possible system evolutions can be
formally represented as a Doubly Labelled Transition Systems ���� in which the
states represent the various system con�gurations and the edges the possible
evolutions of a system con�guration�

� Work partially founded by IST����	�
���� projectAGILE�

After a system has been modelled it is also useful to provide formal tools
to check the validity of properties over the system under speci�cation� Tem�
poral logics have been widely recognized as a useful formalism to express live�
ness �something good eventually happens� and safety �nothing bad can happen�
properties of complex systems �with and without fairness constraints�� Most of
the commonly used temporal logics deal only with one of the two paradigms
�states�events� hence we often speak about state�based and event �or action��
based logics� In the case of systems described in UML this is no more su�cient�

In this paper we present the state�event�based temporal logic �UCTL that
makes possible the description of properties on UML models� This logic allows
both to specify the basic properties that a state should satisfy� and to combine
these basic predicates with advanced temporal operators dealing with the events
performed� Doubly Labelled Transition Systems are the semantic domain for
�UCTL�

State�event�based logics have been recently described by some authors with
di
erent purposes than our� In ���� a state�event�based logic for Petri Nets has
been introduced� In ���� a modal logic without �xed point operator and in�
terpreted over a modal version of Doubly Labelled Transition Systems� called
Kripke MTS� is de�ned� A state�event extension of a linear time temporal logic
and a model checking framework for it has been presented in ����

The logic we propose here can also be applied to describe properties of mo�
bile systems modelled as extended UML statecharts� This extension has been
proposed in the framework of mobile extensions of UML ���
� adding concepts
to describe mobile computations� Here we consider an extension of core UML
state machines by primitives that designate the location of objects and their
moves within a network �����

The veri�cation of such properties over the model of the system has been done
using the prototypical model checker� UMC� for �UCTL and UML statecharts
�cf� ������

The paper is organized as follows� In Section
 some preliminary de�nitions
are given� The semantics of UML state machines over Doubly Labelled Transition
Systems is presented in Section �� In Section � we present syntax and semantics
of the �UCTL logic� In Section � the use of �UCTL and its model checker
to describe and verify properties on systems modelled as UML statecharts is
shown� In Section � a case study on the application of �UCTL to mobile systems
modelled as extended UML statecharts is reported� Finally� Section � concludes
the paper�

� Preliminaries

Before to present the semantics of UML state machines and to introduce �UCTL�
we give a slightly di
erent de�nition of Labelled Transition Systems �

� and of
Doubly Labelled Transition Systems ����� The latter will be used as semantic
models UML state machines and for �UCTL formulae�

De�nition � �Labelled Transition System� A Labelled Transition System
�LTS in short� is a ��tuple �Q� q�� Act

�� R�� where�

� Q is a set of states�
� q� is the initial state�
� Act is a �nite set of observable events�
e ranges over Act�

� Act� is the set of �nite sequences of observable events� es ranges over Act�

and es can be written as e�� � � � � en�
� Act� is the set of transition labels� � ranges over Act�� � denotes or a se�

quence es of observable events or the empty sequence ��
� R � Q � �Act�� � Q is the transition relation� Whenever �q� �� q�� � R we

will write q
�
�� q��

Note that the main di
erence between this de�nition of LTS and the classical
one lies in the labels of transitions� Here transitions are labeled by sequences of
events �eventually of lenght �� while usually they are labelled by single observable
or unobservable events� Equivalences de�ned on states of LTSs can be extended
to deal with transition realations labeled as sequences of events�

De�nition � �Doubly Labelled Transition System� A Doubly Labelled Tran�
sition System �L�TS in short� is a 	�tuple �Q� q�� Act�� R�L�� where �Q� q�� Act�� R�
is an LTS and L � Q��
AP is a labelling function that associates a set of atomic
propositions AP to each state of the LTS�

Atomic propositions� p � AP will typically have the form of expressions
like V AR � value� L�TS can be projected naturally on both LTSs and Kripke
structures and equivalences de�ned on states of LTSs and Kripke structures can
be lifted over L�TS�

� L�TS semantics for UML State Machines

According to the UML paradigm a dynamic system is constituted by a set of
evolving and communicating objects� Each object has a set of local attributes�
an event pool collecting the set of events which need to be processed� and a set
of active states inside a corresponding statechart diagram� In fact� according to
UML semantics �
�� �UML Superstructure
�� Draft Adopted Speci�cation� Sec�
tion ������
� the behaviour of an object is modelled as a traversal of a graph of
state nodes interconnected by one or more joined transitions that are triggered
by the dispatching of series of events� The concept of state machine is used to
express precisely the behaviour of objects� The so�called run�to�completion step
de�nes the passage between two con�gurations of the state machine� The run�
to�completion assumption states that an event can be taken from the pool and
dispatched only when the processing of the previous event is fully completed�
During a run�to�completion step a sequence of activities can be executed� which
include the change of the value of some local attribute� the sending of a signal

to some object� the activation or deactivation of some node of the statechart�
We refer to �UML ������
� for the precise de�nition of state machines and run�
to�completion steps� Here we only show a possible formalization of a state ma�
chine as a L�TS� in which the states represent the state machine con�gurations�
and the transitions represent the state machine steps� Several approaches have
been proposed in the literature for the de�nition of a formal semantics of UML
Statechart Diagrams� e�g��
���� ��
��
��� all these approach either use Kripke
structures or respectively labelled transition systems as a semantic model for
the description of the dynamic behavior of an UML system� We believe instead�
that doubly labelled transitions system are far more intutive� �exible and ex�
pressive structures for this purpose�

The labelling associated to the L�TS states describes the structural proper�
ties of state machine con�gurations that we are interested to observe� and the
labelling associated to the transitions of the L�TS describes the actions being
performed during a run�to�completion step which we are interested to observe�
In this paper we suppose that the labelling of a state shows the current values
of the object attributes in that state machine con�guration� and the labelling of
a transition shows the sequence of signals generated by the run�to�completion
step� moreover we suppose that event pools support a FIFO policy �this is an
aspect which UML intentionally leaves unspeci�ed��
For example� given the statechart diagram of Fig� �� the L�TS associated to the
corresponding object obj is the one shown in Fig�
�

s1 s3s2
-/step;x:=2

step[x>0]/step;x:=x-1

step[x=0]/out.done

Fig� �� A simple statechart diagram

x=0 x=2 x=1 x=0

obj:obj.step obj:out.doneobj:obj.step

Fig� �� The L�TS associated to the statechart diagram of Fig� 	

Actually� we are interested in modelling a system as a collection of evolv�
ing and communicating objects� UML does not specify the overall behaviour
of a system composed by a set of set communicating state machines evolving
in parallel� in particular UML intentionally does not specify the reliability and
delay of communications between state machines� not the degree of parallelism
with which they evolve� Here we make the assumption that communications
are instantaneous and loss�less� and that a system evolution is constituted by
a single state machine evolution �i�e� state machines are supposed to evolve in
interleaving��

For example� if we consider a system composed by two equals objects� obj�
and obj
� as described by the statechart diagram of Fig� �� the associated L�TS
is shown in Fig� �

obj1.x=0
obj2.x=0

obj1.x=2
obj2.x=0

obj1.x=1
obj2.x=0

obj1.x=0
obj2.x=0

obj1.x=1
obj2.x=2

obj1.x=2
obj2.x=2

obj1.x=0
obj2.x=2

obj1.x=0
obj2.x=1

obj1.x=2
obj2.x=1

obj1.x=1
obj2.x=1

obj1.x=0
obj2.x=2

obj1.x=0
obj2.x=1

obj1.x=0
obj2.x=0

obj1.x=1
obj2.x=0

obj1.x=2
obj2.x=0

obj1.x=0
obj2.x=0

obj1:obj1.step

obj1:out.done

obj1:obj1.step

obj1:obj1.step

obj1:obj1.step

obj2:obj2.step

obj2:obj2.step

obj1:out.done
obj2:obj1.step

obj2:obj2.step

obj1:out.done
obj2:obj1.step

obj1:obj1.stepobj1:obj1.step

obj2:out.done

obj2:out.done

obj1:out.done
obj2:out.doneobj2:obj2.step

obj1:obj1.step

obj2:obj2.step

obj2.:bj2.step
obj1:obj1.step

obj2:out.done

Fig� �� The L�TS associated to the composition of obj	 and obj�

Notice that system events have the form� source � target�signal�args� where
source is the name of the evolving object �sending the signal�� target is the
object which is the destination of the signal� signal the signal name and args its
parameters �if any�� Moreover� since events may be more in general sequences of
events� the transition labels of L�TSs associated to UML statecharts may have
the form� source� � target��signal��args�� source
 � target
�signal
�args�� � � ��

� �UCTL

In this Section we present syntax and semantics of the �UCTL logic� This logic�
action and state based� allows to reason both on states properties and to describe
the behaviour of systems that perform actions during their working time� It in�
cludes both the branching time action�based logic ACTL ���� and the branching
time state�based logic CTL �����

We will then show in the next section that �UCTL is suitable to express
the behavioural properties of systems modelled as mobile UML communicating
state machines�

Before de�ning the syntax of �UCTL we introduce an auxiliary logic of
events�

De�nition � �Event formulae� Given a set of observable events Act� the lan�
guage EF of the event formulae on Act � f�g is de�ned as follows�

� ��� tt j e j � j �� j � � �

De�nition � �Event formulae semantics� The satisfaction relation j� for
event formulae �� j� �� is de�ned as follows�

� � j� tt always
� � j� e i
 � � e�� � � � � en and exists i in f� � � �ng such that ei � e
� � j� � i
 � � �
� � j� �� i
 not � j� �
� � j� � � �� i
 � j� � and � j� ��

As usual�
 abbreviates �tt and � � �� abbreviates ���� ������

�UCTL is a branching time temporal logic of state formulae �denoted in the
following by ���

De�nition � ��UCTL syntax�

� ��� true j �� � �� j �� j p j � � 	 � j �Y���Y � j Y

where Y ranges over a set of variables� state formulae are ranged over by ��
� � 	 is the strong next operator�

�	� �UCTL semantics

The formal semantic of �UCTL is given over Doubly Labelled Transition Sys�
tems� Informally� a formula is true on an L�TS� if the set of transitions of the
L�TS veri�es what the formula states� We hence say that the basic predicate p
is true if and only if it belong to the predicates which are true in the current
state� in a state q if q�V AR� � value� The formula � � 	 � �strong next� holds
if there exists a next state performing an event satisfying � and in which the
formula � holds� �Y���Y � is the minimal �xed point operator�

De�nition
 � �UCTL semantics� The satisfaction relation for �UCTL for�
mulae is de�ned in the following way�

� q j� p if and only if �p� � L�q��
� q j� true holds always�
� q j� �� if and only if not q j� ��
� q j� � � �� if and only if q j� � and q j� ���

� q j�� � 	 � if and only if there exists q� such that q
�
�� q�� q� j� � and

� j� ��

� q j� �Y���Y � if and only if q j�
�

n��

�n�false�� where ���Y � � Y and

�n���Y � � ���n�Y ���

As usual� false abbreviates �true� ���� abbreviates ��������� and �� 	 ��

abbreviates �� � ���
Y���Y � stands for ��Y�����Y ��
 is called the maximal
�xpoint operator� Several useful derived modalities can be de�ned� starting from
the basic ones� In particular ���� for � � � 	 ��� EF� � �Y���� � tt 	 Y �
for any �� the �eventually� temporal operator� It holds if and only if the formula
� holds in at least one con�guration reachable from the current state� Then we
will write AG� for �EF��� the �forall� temporal operator� It holds if and only
if the formula � holds in all the con�gurations reachable from the current state�

Note that �UCTL has the same expressive power of the propositional ��
calculus ���� when an arbitrary nesting of � and
 �xed points are used� The
main di
erence between �UCTL and ��calculus lies in the syntax extension that
allows both state based properties� that is those de�nable in the propositional
��calculus� and action based properties� expressible instead in the Hennesy �
Milner logic plus recursion �
�� to be expressed�

As it is well known� logics such as �UCTL include both linear time �i�e� LTL
����� and branching time logics �i�e� CTL� CTL� ������ ACTL� ACTL� ����� and
it has also been widely discussed in the literature that these logics have di
erent
expressive power in terms of the properties de�nable in them�

We introduce now a subset of �UCTL� UCTL including both ACTL and
CTL operators� that corresponds to the alternation free fragment of �UCTL�
This subset is particularly interesting in veri�cation purposes since for it e�cient
model checking tools exist �cf� ������ The UCTL operators could have been
de�ned as derived operators from the �UCTL ones� However� classical Until
operators are not easily derivable in a state�event based framework ����� hence
we have preferred to directly introduce them to make easier the understanding
of their meaning�

The syntax of UCTL formulae is de�ned by the following grammar�

De�nition � �UCTL syntax�

� ��� true j p j �� � �� j �� jA� jE�

� ��� X�� j � �U � j � �U�� �

state formulae are ranged over by �� path formulae are ranged over by �� E
and A are path quanti�ers� X and U are indexed next and until operators�

In order to present the UCTL semantics� we need to introduce the notion of
paths over L�TS �

De�nition � �paths� Let A � �Q� q�� Act�� R�L�� be a L�TS�

�
 is a path from r� � Q if either
 � r� �the empty path from r�� or
 is a
�possibly in�nite� sequence �r�� ��� r���r�� ��� r�� � � � such that �ri� �i��� ri��� �
R�

� The concatenation of paths is denoted by juxtaposition� The concatenation

�
� is a partial operation� it is de�ned only if
� is �nite and its last state
coincides with the initial state of
�� The concatenation of paths is associative
and has identities� Actually�
��
�
�� � �
�
��
�� and if r� is the �rst state
of
 and rn is its last state� then we have r�
 �
rn �
�

� A path
 is called maximal if either it is in�nite or it is �nite and its last
state has no successor states� The set of the maximal paths from r� will be
denoted by ��r���

� If
 is in�nite� then j
j � ��
If
 � r�� then j
j � ��
If
 � �r�� ��� r���r�� ��� r�� � � � �rn� �n��� rn���� n 	 �� then j
j � n � ��
Moreover� we will denote the ith state in the sequence� i�e� ri� by
�i��

De�nition
 �UCTL semantics� The satisfaction relation for UCTL formu�
lae is de�ned in the following way�

� q j� true holds always�
� q j� p if and only if p � L�q��
� q j� �� if and only if not q j� ��
� q j� � � �� if and only if q j� � and q j� ���
�
 j� Xf�g� i

 � �
���� ���
����
�� and �� j� �� and
��� j� �

�
 j� ��f�gU��� i
 there exists i 	 � such that
�i� j� ��� and for all �

j � i�
 �
��
�j�� �j���
�j � ���
�� implies
�j� j� �� and �j�� � � or
�j�� j� �

�
 j� ��f�gUf��g��� i
 there exists i 	 � such that
 �
��
�i���� �i�
�i��
���
and
�i� j� ��� and
�i � �� j� �� and �i j� ��� and for all � � j � i�

 �
�j�
�j � ��� �j�
�j��
��j implies
�j � �� j� � and �j � � or �j j� �

Also for UCTL a set of derived operators can be derived� in particular�

� EF� stands for E�trueftruegU���
� � � 	 � stands for E�trueffalsegUf�g���
� EFfeg� stands for E�truefegU���

�	� �UCTL Model Checking

We have developed an �on the �y� model checking tool for �UCTL� called UMC�
The basic idea behind UMC is that� given a L�TS state� the validity of a for�
mula on that state can be evaluated analyzing the transitions allowed in that
state� and analyzing the validity of some sub�formula in only some of the next
reachable states� in a recursive way� In this way �depending on the formula� only
a fragment of the overall state space might need to be generated and analysed to
be able to produce the correct result� Model checking procedure like the above
are also called local �	� in contrast with those called global ���� where the whole
state space is explored to check the validity of a formula� The complexity results
of UMC are those expected ��
�� We have linear time complexity for the evalua�
tion of UCTL formulae and exponential worst case time complexity for the full
�UCTL�

� Model checking UML State Machines

UMC can be applied to check the validity of �UCTL�UCTL formulae over a set
of communicating �i�e� exchanging signals� UML State machines� The �on the
�y� approach seems to be particularly promising when applied to UML state
machines �or groups of communicating state machines� because it can easily be
extended also to the case of potentially in�nite state space� as it may happen
for UML state machines �����

Indeed� since a naive ��depth �rst� evaluation algoritm in the case of in�nite
state machines might fail to �nd the correct result� UMC adoptes a ��bounded�
model checking approach ���� i�e� the evaluation is started assuming a certain
value as maximun depth limit of the model generation� In this case if a result of
the evaluation of a formula is found remaining within the requested depth� then
the result holds for the whole system� otherwise the depth limit is increased
and the evaluation restarted� This approach� initially introduced in UMC to
overcome the problem of in�nite state machines� happens to be quite useful also
for another reason� Setting a small initial depth limit� and a small automatic
increment of it at each re�evaluation failure� when we �nally �nd a result we can
have a reasonable �almost minimal� explanation for it� and this could be very
useful also in the case of �nite states machines�

If we consider again the system composed by two equals objects� obj� and
obj
� described in Fig� � we may check on it properties such as�

� EXfobj��obj��stepgtrue
that means� in the initial con�guration obj� can perform an evolution in
which it sends the signal step to itself� This property is checked to be true
on the model of the system described in Fig� ��

� AG��EXfobj��obj��stepgtrue�� 	 �obj��x � ���
meaning that the event fobj� � obj��stepg can be sent� only when the object
attribute has value �� This is false on the system described in Fig� ��

� EF �
Y� � � 	 �Y ��
meaning that there exists an in�nite cyclic empty sequence� This is false on
the system described in Fig� ��

� A case study� Mobile UML State Machines

The �UCTL logic and its model checker can also be applied to verify properties of
mobile systems modelled as extended UML statecharts� This extension has been
proposed in the framework of mobile extensions of UML ���
� adding concepts to
describe mobile computation� Here we consider an extension of core UML state
machines by primitives that designate the location of objects and their moves
within a network �����

In this framework it is possible to describe the dynamic behaviour of systems
where component objects are characterized by a location and that can move from
a place to another� The topology of a system is then modelled by an �atLoc�
attribute� associated to each class� which represents its locality� Mobility is real�
ized by all the operations which update the atLoc attribute of an object� This
simple extension of UML statecharts allows mobile systems to be described quite
naturally� A statechart diagram is de�ned for each class of the model� providing
a complete operational description of the behaviour of all the objects of the class�
The whole system is then represented by a set of class objects�

Example �� Let us consider a topology of interconnected �places�� Each �place�
may have up to four links to other places �these links are named N� S� W� E��
moreover each place has its own unique id� We have also a �traveler�� which has
an �atLoc� attribute representing his current location� and an id� The goal of the
traveler is to move around the topology� searching for a place with a matching
id� The behavior of the �Traveller� class is speci�ed by the statechart diagram
shown in Fig� � and the behavior of the �Place� class is shown in Fig� ��

The topology of the places is shown in Fig� ��
Using a textual notation� the initial system deployment is speci�ed as a

collection of �ve objects�
P� � P lace�N �	 null� S �	 P��W �	 P
� E �	 P
� id �	 ��

P
 � P lace�N �	 null� S �	 P��W �	 P�� E �	 P�� id �	
�
P� � P lace�N �	 P�� S �	 null�W �	 P�� E �	 P�� id �	 ��
P� � P lace�N �	 P
� S �	 null�W �	 P�� E �	 P�� id �	 ��
T � Traveler�myid �	 �� atLoc �	 P��

Starting from this description we may derive the L�TS which represent the
dynamic behaviour of this system� in which now the states describe the state
machine con�gurations also in relation with the �atLoc� attribute�
The initial fragment of the L�TS modelling the system is sketched in Fig� � The
whole L�TS model consists in ��� states and ��� transitions�

On the above systems we may express some properties as the following�

- [id ≠ myid & N ≠ null] / atLoc := N; OUT.south

- [id = myid]

s2

- [id ≠ myid & S ≠ null] / atLoc := S; OUT.south

s1

 - / id := atLoc.getId;
 N := atLoc.getNorth;
 S := atLoc.getSouth;
 E := atLoc.getEast;
 W := atLoc.getWest

- [id ≠ myid & W ≠ null] / atLoc := W; OUT.west

- [id ≠ myid & E ≠ null] / atLoc := E; OUT.east

Fig� �� The traveller statechart

getNorth / return N

s1

getEast / return E
getWest / return W

getSouth / return S

getId / return id

Fig� �� The place statechart

P2
id=2

N

N

N

N

P1
id=1

P4
id=4

P3
id=3

W

SS

SS

E

EE

E

WW

W

alLoc

T

myid=4

Fig� �� The topology of the places

T.atLoc=P1
 . . .

T:P3.getId

P1:T.return(1)

T.atLoc=P1
 . . .

. . .

T.atLoc=P1
 . . .

T:P1.getNorth

T.OUT.south

T.atLoc=P3
 . . .

T.OUT.east

T.atLoc=P2
 . . .

T.OUT.west

T.atLoc=P3
 . . .

T:P3.getIdT:P2.getId

T:P1.getId

.

. . .

Fig� �� The associated L�TS

� There is a system evolution in which the traveler �nally reaches place P��
EF �T�atLoc � P���

� There is a system evolution in which the traveller never reaches place P��
EG�T�atLoc �� P���

� Starting from the initial con�guration� the traveller can perform an in�nite
sequence of moves towards east�

Y� � T � OUT�east 	 �Y ��

� In no way the traveler can perform an in�nite sequence of moves towards
north�
AG��
Y� � T � OUT�north 	 �Y ���

� It is not possible to reach place P� unless we pass from place P
 or P��
�E���T�atLoc � P
� ���T�atLoc � P��trueU �T�atLoc � P���

We may check that all the above properties are true on our system�

� Conclusions

The need to de�ne state�event�based logics relies on the fact that for the ver�
i�cation of concurrent software quite often it is necessary to specify both state
information and the evolution in time by events�actions and hence semantic
models should take both the views in consideration� Doubly Labelled Transi�
tion Systems are one of these semantics models� UML is a graphical modelling
language for object�oriented software and systems may be designed for visual�
izing� specifying� building and documenting several aspects � or views� of them�
The UML semantics �
�� associates to each active object a state machine� and
the possible system behaviours are de�ned by the possible evolutions of these
communicating state machines� All the possible system evolutions can be for�
mally represented as a Doubly Labelled Transition Systems in which the states
represent the various system con�gurations and the edges the possible evolu�
tions of a system con�guration� To express properties on the dynamic behaviour
of systems described as UML statecharts we have de�ned a state�event�based
temporal logic �UCTL� The fact of being able to state structural properties
of system con�gurations �state attributes and predicates� and not just events�
opens the door to the modelling and veri�cation of several structural properties
of parallel systems� like topologic issues� state invariants� and mobility issues� We
have hence shown that this logic can be also employed to deal with an extension
of core UML state machines by primitives that designate the location of objects
and their moves within a network and we have applied to them the �on the �y�
model checker developed for �UCTL�

Acknowledgments We thank Alessandro Fantechi for his suggestions�

References

	� L� Andrade et al�� AGILE
 Software architecture for mobility� Recent Trends in
Algebraic Develeopment Techniques�	�th International Workshop� WADT ����
LNCS ����� Springer� ���
�

�� H� Baumeister� N�Koch� P� Kosiuczenko� P� Stevens� and M� Wirsing� UML for
global computing� In Global Computing� Programming Environments� Languages�
Security� and Analysis of Systems� LNCS ����� Springer�Verlag� ���
�

� M� von der Beeck� Formalization of UML�Statecharts� UML ���	 Confrence� LNCS
�	��� Springer�Verlag� pp� ������	� ���	�

�� M� von der Beeck� A structured operational semantics for UML�statecharts� Soft�
ware and Systems Modeling� Vol� �� No� � Springer�Verlag� pp� 	
��	�	� �����

�� Ben�Ari� M�� Pnueli� A�� Manna� Z� �	��
�� The Temporal Logic of Branching
Time� Acta Informatica �	� pp� ��� � ����

�� A� Biere� A� Cimatti� E� M� Clarke� and Y� Zhu� Symbolic Model Checking without
BDDs� TACAS���� LNCS 	���� Springer�Verlag 	����

�� S� Chaki� E� Clarke� J� Ouaknine� N� Sharygina� and N� Sinha� State�event�based
software model checking� In Proc� of IFM� LNCS ����� �����

�� R� Cleaveland� Tableu �based Model checking in Propositional ��calculus� Acta
Informatica ��� ��������

�� E�M� Clarke and E�A� Emerson� Synthesis of synchronization skeletons for branch�
ing time temporal logic� In Logic of Programs
 Workshop� Yorktown Heights� NY�
May 	��	 LNCS	
	� Springer�Verlag� 	��	

	�� Clarke� E�M�� Emerson� E�A�� Sistla� A�P� Automatic Veri�cation of Finite State
Concurrent Systems using Temporal Logic Speci�cations� ACM Toplas� Vol�

No�� �� pp� ������
� 	����

		� R� De Nicola� F� W� Vaandrager� Three logics for branching bisimulation Journal
of ACM� Vol��� No���pp��������ACM� 	����

	�� E� A� Emerson and C� Lei� E�cient Model Checking in Fragments of the Proposi�
tional Mu�Calculus �Extended Abstract�� LICS 	���
 Pages �������
Using on�the��y veri�cation techniques Proceedings of Conference on Computer�
Aided Veri�cation �CAV �����
F�Mazzanti� On the �y Veri�cation of Networks Conference on Parallel and Dis�
tributed Processing

	
� S�Gnesi and F�Mazzanti� On the �y model checking of communicating UML State
Machines� Second ACIS International Conference on Software Engineering Re�
search� Management and Applications �SERA������ pp�

	�

�� �����

	�� M� Huth� R� Jagadeesan� and D� Schimidt� Modal transition systems
 A foundation
for threevalued program analysis� In LNCS� volume ����� page 	��� Springer� ���	�

	�� E� Kindler and T� Vesper� ESTL
 A temporal logic for events and states� Lecture
Notes in Computer Science� 	���

��
�
� 	����

	�� A� Knapp� S� Merz� M� Wirsing� On Re�nement of Mobile UML State Machines�
Proc� AMAST ����� LNCS volume
		� LNCS�Springer � Verlag� July �����

	�� D�Kozen� Results on the propositional ��calculus� Theoretical Computer Science�
��� pp

�
��� 	��
�

	�� I� Jacobson� � G� Booch� J� Rumbaugh� The Uni�ed Modeling Language Reference
Manual� Addison�Wesley� 	����

	�� L� Lamport� �Sometime� is Sometimes �Not Never� � On the Temporal Logic
of Programs� Seventh Annual ACM Symposium on Principles of Programming
Languages POPL� 	���	��� 	����

��� K� G� Larsen� Proof Systems for Satis�ability in Hennessy�Milner Logic with Re�
cursion� Theoretical Computer Science �� �� pp� �������� 	����

�	� D� Latella� I� Majzik� and M� Massink� Automatic veri�cation of a behavioural
subset of UML statechart diagrams using the SPIN model�checker� Formal Aspects
of Computing� The International Journal of Formal Methods� Springer� �������
pp� �
������ 	����

��� R� Milner� Communication and Concurrency� Prentice�Hall� 	����
�
� Object Management Group� Uni�ed Modeling Language Speci�cation� Version 	���

Speci� �cation� OMG� ���
�
��� R� Wieringa and J� Broersen� A minimal transition system semantics for lightweight

class and behavioral diagrams� ICSE��� Workshop on Precise Semantics for Soft�
ware Modeling Techniques� 	����

