
A Spatio-Temporal Logic
for the Specification and Refinement of Mobile Systems

Stephan Merz1, Martin Wirsing2, and J́ulia Zappe2

1 INRIA Lorraine, LORIA, Nancy
Stephan.Merz@loria.fr

2 Institut für Informatik, Ludwig-Maximilians-Universiẗat München
{wirsing,zappe}@informatik.uni-muenchen.de

Abstract. We define a variant of Lamport’s Temporal Logic of Actions, ex-
tended by spatial modalities, that is intended for the specification of mobile sys-
tems with distributed state. We discuss notions of refinement appropriate for mo-
bile systems, specifically concerning the topological structure of the system, and
show how these can be represented in the logic via quantification and implication,
ensuring transitivity and compositionality of refinements.

1 Background

The design of systems that make use of mobile code has recently found wide attention.
Advances in network technology sometimes make it more attractive to transmit code
for execution at remote sites than to rely on more conventional architectures such as
client-server systems. It has quickly become apparent that the design of mobile systems
requires specific abstractions that should be reflected in formal development methods
and in underlying calculi and logics.

Milner’s π calculus [9] has started a line of research that investigates foundational
calculi for mobile systems, e.g. [4, 5, 10, 13], emphasizing different aspects of mobility
and offering different primitives to describe the interaction of mobile components. In
particular, the Ambient Calculus due to Cardelli and Gordon introduced the notion of
(nested and dynamically reconfigurable) named administrative domains that must be
crossed by mobile code.

Some of these calculi have been complemented by logics that allow to express run-
time properties of mobile systems [2, 3, 11]. These logics typically include both spa-
tial and temporal modalities to reflect the topological system structure as well as its
evolution over time. Formulas of these logics are evaluated over process terms via an
intensionalsemantics [12] and closely reflect the syntactic structure of processes. This
close correspondence makes it difficult, if not impossible, to refine the process terms
during system development while preserving the formulas of the logic. In this regard,
such logics are inadequate for use asspecification logicsthat could underly a method
of stepwise system development based on refinement.

In the present paper we follow a different approach and define a spatio-temporal
specification logic whose semantics is based on a notion of system behaviors similar
to standard (linear-time) temporal logics, and independent of any specific operational

calculus. Our main goal in the design of the logic is to support refinement: properties es-
tablished at a higher level of abstraction should be preserved in the implementation. In
the context of reactive systems, this goal has successfully been achieved in Lamport’s
Temporal Logic of Actions [7]. We therefore follow the general philosophy of TLA,
but add spatial modalities to express the topology of configurations. We also discuss,
informally, concepts of refinement that arise in the development of mobile systems, and
how to represent those in the logic. Besides classical temporal (or operation) refine-
ment that is already supported in TLA since its formulas are invariant under stuttering
equivalence, we identify two concepts that are more specific to mobile systems, namely
spatial extensionandvirtualisation of locations. We show that these concepts can also
be represented in our logic via implication and novel forms of quantification that ex-
press hiding of local state and of agent names, respectively.

The outline of the paper is as follows: Section 2 introduces Mobile TLA (MTLA) at
the hand of a simple agent system. Section 3 gives a more formal account of the syntax
and semantics of simple MTLA, the logic that we use to specify closed mobile systems.
Section 4 studies refinement principles for mobile systems that motivate extensions of
the logic by two forms of quantification. Finally, Sect. 5 summarizes our contributions
and indicates future work.

2 Example: Joe’s Shopping Agent

The specification of a mobile system describes relevant aspects of network topology
as well as of the dynamic system behavior, including the movement and interaction of
agents. We identify all network locations by unique (or physical) names. In informal
discussions, we do not distinguish between names and the domains or agents they rep-
resent. Domains may be nested, giving rise to a tree structure of names, and mobility is
formally represented by structural changes of these trees that result from agents moving
across domain boundaries.

As our running example, we consider the specification of a simple shopping agent
that scans a network in the search of the best offer for some item. We assume a fi-
nite, fixed setNet of names that represent (immobile) network locations that the agent
may visit during its search;joe ∈ Net denotes the agent’s home location. The name
shopper /∈ Net is used to denote the mobile shopping agent itself. Its local state is de-
scribed by three state variables: the variablectl indicates the control state of the shop-
ping agent; it may assume the values“idle” and “shopping”. When state equals“shop-
ping”, the variableitem indicates the good the shopper is searching for, andfound
holds the set of offers that the agent has collected so far. For the locationsn ∈ Net
we assume the state variableoffers to represent the catalogue of goods they offer, and
the state variableid to denote a (logical) network name that is used by the agent to
remember the origin of an offer.

A high-level MTLA specification appears in Fig. 1 as formulaShopper .3 We now
informally explain its meaning; the formal definition of MTLA is postponed to Sec-

3 We adopt Lamport’s convention [6] of writing multi-line conjunctions and disjunctions as
lists whose items are labelled with the respective connective, using indentation to suppress
parentheses.

Init ≡ joe.shopper〈true〉∧ shopper .ctl = “idle”

Prepare(x) ≡ ∧ shopper〈true〉∧ cshopper〈true〉
∧ shopper .ctl = “idle”

∧ shopper .item ′ = x ∧ shopper .found ′ = /0
∧ shopper .ctl ′ = “shopping”

GetOffer ≡ ∧ shopper〈true〉∧ cshopper〈true〉
∧ shopper .ctl = “shopping”∧ shopper .item ∈ offers

∧ shopper .found ′ = shopper .found

⊕ {(id ,getOffer(offers,shopper .item))}
∧ UNCHANGED(shopper .ctl ,shopper .item)

PickOffer ≡ ∧ shopper〈true〉∧ cshopper〈true〉
∧ shopper .ctl = “shopping”∧|shopper .found | ≥ 3
∧ bestOffer ′ = pickOffer(shopper .found ,shopper .item)
∧ shopper .ctl ′ = “idle”

Moven ,m ≡ ∧ n.shopper〈true〉∧ shopper .ctl = “shopping”

∧ n.shopper �m.shopper

vars ≡ shopper .ctl ,shopper .item,shopper .found

JoeActions ≡ (∃x : Prepare(x))∨PickOffer

Shopper ≡ ∧ Init

∧ 2
∧

n ,m∈Net n〈m[false]〉
∧ 2

[
joe[JoeActions]∨

∨
n∈Net n[GetOffer]

]
vars

∧
∧

n∈Net 2
[∨

m∈Net Moven ,m
]
−n .shopper

Fig. 1.Specification of a simple shopping agent.

tion 3. The first conjunctInit of specificationShopper asserts the specifications’s ini-
tial condition. It requires the shopping agent to be at its home location and its control
state to be“idle”. We writen[F] to assert thatF holds at locationn, providedn exists.
The formulan〈F 〉 also requiresF to hold atn, but moreover asserts the existence of
locationn.

The second conjunct ofShopper describes part of the network topology: it requires
the (immobile) locationsn ∈ Net to be present at all instances of time, and not to be
nested inside one another.

The third conjunct of formulaShopper specifies the allowed changes to the shop-
ping agent’s local state. Similarly as in TLA, a formula2[A]v requires every transition
that changesv to satisfy the transition formulaA, which may refer to the post-state of
the transition via either the next-state operatordor primed state variables. Our example
allows three kinds of transitions: at locationjoe, one of thePrepare or PickOffer ac-
tions may occur, whereas transitions described byGetOffer are allowed to occur at any
locationn ∈Net (even including the shopper’s home location). For example,GetOffer
requires the shopper to be and remain at the location of evaluation, in state“shopping”,
and the target item to be among the goods offered at the current location. The agent
then inserts a pair(id ,val) into the setfound of collected offers whereid is the logical
identity of the current location andval is the offer as denoted by the (static) function
getOffer . The other transition specifications can be interpreted similarly.

a
a a aaa

a
a a aaa

a
a a aaa

�
�
�

�
�
�

B
B
B

@
@
@

�
�
�

�
�
�

B
B
B

@
@
@

�
�
�

�
�
�

B
B
B

@
@
@n2joe n1

shopper

n3

ctl = “idle”

n2joe n1 n3

shopper ctl = “shopping”

n2joe n1 n3

shopper ctl = “shopping”

Fig. 2.Prefix of a run.

The final conjunct of specificationShopper describes the shopper’s movements
about the network. A formula2[A]−n asserts that every transition such thatn〈true〉
is true before and false after the transition has to satisfyA. In our example, we require
actionMoven,m to be performed, for some locationm ∈ Net , whenever the shopper
leaves domainn. The conjunctn.shopper � m.shopper that appears in the descrip-
tion of Moven,m requires the subtree denoted byshopper located below the domainn
to move to the domainm without changing the agent’s local state.

A more complete specification of the shopping agent would also include fairness
and liveness properties which we have omitted because they do not play an important
role for the remainder of this paper.

Besides system specifications, MTLA formulas can also express system properties,
including invariants. For example, the shopping agent described by the specification in
Fig. 1 is always located beneath some network node, and therefore the implication

Shopper ⇒2
∨

n∈Net

n.shopper〈true〉

is valid. Similarly, the implication

Shopper ⇒2(shopper .ctl = “idle”⇒ joe.shopper〈true〉)

asserts that the shopping agent can be in its idle state only if it is at its home location.

3 Simple Mobile TLA

We describe the topological structure of a mobile system at any given instant as a finite
tree t whose edges are labelled with unique (“physical”) namesn drawn from a de-
numerably infinite setN, as depicted in Fig. 2. Equivalently, instead of labelling edges
we often consider the labels to be attached to the target nodes, such that every node of
t except for the root carries a unique label. Moreover, with every node of the tree we
associate a local state.

Technically, aconfigurationis a pair(t ,λ): the treet is given by a prefix-closed
set t ⊆ N∗ such that for anyαn,βm ∈ t we haven = m only if α = β; the empty
word ε denotes the root of the tree. For every nodeα ∈ t , the local stateλ(α) is a
valuation of the state variables as explained below. Arun of a system is represented as
anω-sequenceσ = (t0,λ0)(t1,λ1) . . . of configurations, cf. Fig. 2. For technical reasons
we require thatti 6= /0 for all i ∈ N. Transitions may change the local state at some
nodes, but also modify the tree structure; structural changes represent the movement of

agents across administrative domains or the creation or destruction of agents. For a run
σ = (t0,λ0)(t1,λ1) . . . andi ∈ N, we denote byσ|i the suffix(ti ,λi)(ti+1,λi+1),

A tree t induces a partial order on the names that it contains. More precisely, we
write m �t n for m,n ∈N and say thatm is belown in t iff αnβ∈ t for someα,β∈N∗

such thatαnβ ends inm. For a treet and a namen ∈ N, we write

t↓n = {β ∈ N∗ | αnβ ∈ t for someα ∈ N∗}

for the subtree oft rooted at the (unique) node labelled byn. If no such node exists,
t↓n denotes the empty tree/0. This notation is extended to sequencesα∈N∗ by defining
t↓ε = t andt↓αn = (t↓α)↓n. For a namen that occurs in a treet , i.e. such thatt↓n 6= /0,
we write π(t ,n) for the unique pathαn ∈ t ending in namen. By N+ we denote the
setN∪{ε} (we assume thatε /∈ N). We extend some of our notation toN+ by letting
π(t ,ε) = ε if t 6= /0 and definingn �t ε (wheren ∈ N+) iff t↓n 6= /0, andε�t n to hold
for no n ∈ N. We writem ≺t n if m �t n andm 6= n.

The connectives of MTLA extend classical first-order logic by spatial and temporal
modalities. We also add an operator to describe structural modifications of trees during
transitions. Formally, we define (pure) formulas and terms as well as “impure” ones;
the latter generalize the transition formulas of TLA [7]. We assume given a signature
(consisting of function and predicate symbols) of first-order logic with equality and de-
numerable setsVr andVf of rigid and flexible individual variables. The semantics of
MTLA assumes a first-order interpretationI (defining a non-empty universe|I | and in-
terpretations of the function and predicate symbols). Terms and formulas are interpreted
with respect to a run whose valuations interpret the flexible variables, an indexn ∈ N+

that indicates the “location of evaluation”, and a valuation of the rigid variables. In the
following inductive definition, clauses 1–8 as well as 11, 12, and 14 are standard [7, 8]
whereas clauses 9, 10, 13, and 15 introduce the spatial extensions of MTLA.

Definition 1. Assume a fixed first-order interpretationI , a run σ = (t0,λ0)(t1,λ1) . . .
with λi : ti → (Vf → |I |), and a valuationξ : Vr → |I |. We define the terms and for-
mulas of MTLA and their semantics, for arbitraryn ∈ N+.

1. Every variablex ∈Vr ∪Vf is a (pure) term. For a rigid variablex ∈Vr , we define
σ(n,ξ)(x) = ξ(x). For a state variablex ∈ Vf , we letσ(n,ξ)(x) = λ0(π(t0,n))(x)
be the value assigned tox by the local interpretation associated with noden of
the initial configuration inσ, provided thatt0↓n 6= /0; otherwiseσ(n,ξ)(x) is an
arbitrary but fixed elementa ∈ |I |.

2. If t1, . . . , tk are (im)pure terms andf is a k -ary function symbol thenf (t1, . . . , tk)
is again an (im)pure term whose interpretation is given byσ(n,ξ)(f (t1, . . . , tk)) =
I (f)(σ(n,ξ)(t1), . . . ,σ(n,ξ)(tk)).

3. If A is an (im)pure formula andx ∈ Vr then εx : A is an (im)pure term where
σ(n,ξ)(εx : A) is some valuea ∈ |I | such thatσ,n,ξ[x := a] |= A if some such
value exists, otherwiseσ(n,ξ)(εx : A) is some arbitrary but fixed valuea ∈ |I |.

4. Every pure term or formula is also an impure term or formula.
5. If P is ak -ary predicate symbol andt1, . . . , tk are (im)pure terms thenP(t1, . . . , tk)

is an (im)pure formula. We defineσ,n,ξ |= P(t1, . . . , tk) and say thatP(t1, . . . , tk)
holds at locationn in σ, iff (σ(n,ξ)(t1), . . . ,σ(n,ξ)(tk)) ∈ I (P).

6. false is a pure formula that holds nowhere:σ,n,ξ 6|= false.
7. If A,B are (im)pure formulas then so isA⇒ B . We defineσ,n,ξ |= A⇒ B iff

σ,n,ξ 6|= A or σ,n,ξ |= B .
8. If A is an (im)pure formula andx ∈ Vr then∃x : A is again an (im)pure formula,

andσ,n,ξ |= ∃x : A iff σ,n,ξ[x := a] |= A for somea ∈ |I |.
9. If A is an (im)pure formula andm ∈ N thenm[A] is again an (im)pure formula

whose interpretation is given byσ,n,ξ |= m[A] iff m ≺t0 n impliesσ,m,ξ |= A.
10. If A is an (im)pure formula then2A (“everywhereA”) is again an (im)pure for-

mula, andσ,n,ξ |= 2A iff σ,m,ξ |= A for all m ∈ N+ such thatm �t0 n.
11. If F is a pure formula then2F (“always F ”) is a pure formula with semantics

σ,n,ξ |= 2F iff for all i ∈ N, tj↓n = /0 for somej ≤ i or σ|i ,n,ξ |= F .
12. If F is a pure formula thendF (“next-timeF ”) is an impure formula, and we define

σ,n,ξ |= dF iff t1↓n = /0 or σ|1,n,ξ |= F .
13. For m ∈ N and α,β ∈ N∗, α.m � β.m is an impure formula whose semantics is

defined byσ,n,ξ |= α.m � β.m iff both t0↓nαm = t1↓nβm andλ0(π(t0,m)γ) =
λ1(π(t1,m)γ) for all γ ∈ t0↓nαm.

14. If A is an impure formula andt is a pure term then2[A]t is a pure formula, and

σ,n,ξ |= 2[A]t iff for all i ∈ N, tj↓n = /0 for somej ≤ i or σ|(n,ξ)
i (t) = σ|(n,ξ)

i+1 (t)
or σ|i ,n,ξ |= A.

15. If A is an impure formula andS is a non-temporal formula, i.e., built only using
rules 1–10, then2[A]S is a pure formula with semanticsσ,n,ξ |= 2[A]S iff for all
i ∈N, tj↓n = /0 for somej ≤ i or σ|i ,n,ξ |= S iff σ|i+1,n,ξ |= S or σ|i ,n,ξ |= A.

We say thatF holds ofσ, written σ,ξ |= F iff σ,ε,ξ |= F . FormulaF is valid, written
|= F , iff σ,ξ |= F holds for all runsσ and valuationsξ.

Like TLA, MTLA is a linear-time temporal logic: formulas are interpreted over
linear sequences of states. However, terms and formulas of MTLA are evaluated relative
to a location, identified by a namen. Intuitively, the point of evaluation “follows” the
movements ofn in the tree. Because names may be created and deleted, the temporal
operators of MTLA are effectively restricted to the possibly finite life-spans of a name,
which ends when the name disappears from a tree. In particular, we consider a possible
reappearance of a name in a later tree to represent a new domain that happens to reuse
the same physical name.

The spatial modalitiesm[] and2 shift the spatial focus of evaluation. A formula
m[F] is “weak” in the sense that it holds trivially if the namem does not occur below
the current point of evaluation. Moreover, note that the operatorm[] “looks arbitrarily
far inside” the tree; as we will argue in Sect. 4.2, this is important if we want to refine a
single domain by a hierarchy of domains. The “everywhere” operator refers to all nodes
of the subtree rooted at the current point of evaluation.

The distinction between pure and impure formulas in the definition of a variant of
TLA was introduced in [8] where it was shown that such a mutually recursive definition
(compared to a tier of temporal formulas on top of a tier of transition formulas as in
TLA) makes the logic more expressive while simplifying its axiomatization. “Impure-
ness” is introduced by the next-time operatordof linear-time temporal logic or by the
“move” operator�; impure formulas must be guarded by the2[]t or 2[]S operators

to produce a pure formula. This syntactic restriction ensures that all pure MTLA formu-
las are invariant under finite stuttering. Refinements are therefore allowed to introduce
low-level steps that are invisible at the level of the original specification. Whereas for-
mulas2[A]t specify the allowed changes of local states, formulas2[A]S are used to
describe structural modifications of trees.

The formulaα.m � β.m describes the movement of an agentm, including all
enclosed sub-locations and their local states, from subdomainα to subdomainβ, which
would be impossible to specify using just formulas of the formn[F] that refer only to
single locations, not to entire subtrees. If the pathαm does not exist below the current
location, the definition ofα.m � β.m requiresm not to occur belowβ in the subtree
after the transition.

When writing MTLA specifications we use many derived operators, beyond the
standard abbreviationstrue, ∧, ∨, and∀. For a pure termt , we define the impure term
t ′ ≡ εx : d(t = x) to denote the value oft at the next instant. Similarly, for an (im)pure
term t and a namen ∈ N, n.t denotes the (im)pure termεx : n[x = t] that denotes the
value oft at sublocationn, provided such a location exists. For pure termst1, . . . , tn we
write UNCHANGED(t1, . . . , tn) to denote the impure formulat ′1 = t1∧ . . .∧ t ′n = tn .

The formulan〈F 〉 ≡ ¬n[¬F] is defined as the dual ofn[F]; it requires the exis-
tence of a sublocationn such thatF holds atn. To reduce the number of brackets, we
sometimes writen (for a namen ∈ N) instead ofn〈true〉, asserting the existence of a
location namedn in the current tree, and writen1. · · · .nk [F] andn1. · · · .nk 〈F 〉 instead
of n1[· · ·nk [F] · · ·] andn1〈· · ·nk 〈F 〉 · · ·〉.

The formula3P (“somewhereP ”) is defined as¬2¬P and holds ofσ if P holds
at some sublocation. Similarly,3F (“eventuallyP ”) is defined as the dual of2F ; it re-
quiresF to hold eventually (within the life span of the current name). We write3〈A〉t
for ¬2[¬A]t , and similarly for3〈A〉S ; these formulas hold if eventuallyt (resp.,S)
change value during a transition satisfyingA. The formulas2[A]−S and2[A]+S ab-
breviate2[S ⇒ A]S and2[¬S ⇒ A]S ; these formulas assert thatA holds whenever
the spatial formulaS becomes false (resp., true) during a transition. Finally, the for-
mula2[A]u1,...,un (where theui may be pure terms or pure spatial formulas) denotes
2[A]u1 ∧ . . .∧2[A]un ; it holds of σ provided every transition that changes someui

satisfiesA.
Although we will mostly argue semantically, we list a few axioms of MTLA. It is

easy to see that implication distributes over all operators of “rectangular shape”:

|=�(A⇒ B)⇒ (�A⇒�B) for � ∈ {n[],2,2,2[]u}

The “everywhere” operator quantifies over all paths, so we have

|= 2F ⇒ F and |= 2F ⇒ n[F] for all n ∈ N

Finally, we have axioms that correspond to the assumed uniqueness of names and that
express a form of “absorption” for the modalitiesn[], which look arbitrarily deep into
the tree. More precisely,

|= n[F]⇔2n[F] and |= m.n〈true〉 ⇒ (m.n[F]⇔ n[F])

4 Refinement of Mobile Systems

The general idea behind refinement concepts is to allow a high-level description of a
system to be replaced by a lower-level implementation while preserving the proper-
ties established at the higher level of abstraction. Concerning the refinement of mobile
systems, we identify three basic principles of refinement that should be supported:

1. Operation refinementis a classical principle that is well-known from sequential and
reactive systems. In particular, operations can be made more deterministic, and they
can be decomposed into sequences of finer-grained actions.

2. Spatial extensioncan be used to decompose a single, high-level locationn into a
tree of sub-locations that collectively implement the behavior required ofn, and
whose root is again namedn. In general, the local state originally associated with
noden will be distributed among the locations of the implementation; it should
then be hidden from the interface of the abstract specification.

3. Virtualisation of locationsallows to replace a location of the abstract specification
by a structurally different location hierarchy, with a different name. This form of
refinement requires the name of the “virtualised” location to be hidden from the
high-level interface.

A single refinement step may combine several of these principles. For example,
we will see that a combination of operation refinement and virtualisation allows an
atomic high-level move action to be implemented as a sequence of lower-level moves.
We now consider each of the basic principles in more detail, motivating corresponding
extensions of Simple MTLA, and illustrate them at the hand of our running example.
Again, we follow the lead of TLA where refinement of a high-level specificationAbs
with internal variablesaux by a low-level specificationConc is expressed by validity
of the implication

|= Conc⇒∃∃∃∃∃∃aux : Abs

4.1 Operation refinement

Figure 3 shows a specification of the shopping agent whose move actions have been
restrained in two ways: first, moves from locationn to another shopm are allowed only
if the offers made atn (if any) have been entered in the agent’s records and ifm has not
been visited before (i.e., itsid does not appear in the agent’s records). Second, moves
to the home location are allowed only if the agent has recorded the offers made atn
and if it has collected at least three offers. The restrained shopping agent’s specification
RestrShopper is identical to formulaShopper except for the fourth conjunct. It follows
immediately from the definitions that both

MoveHomen ⇒Moven,joe and VisitShopn,m ⇒Moven,m

are valid. Propositional logic and the monotonicity of the operator2[]S imply

|= RestrShopper ⇒ Shopper

VisitShopn ,m ≡ ∧ n.shopper〈true〉∧ shopper .ctl = “shopping”

∧ shopper .item /∈ n.offers ∨n.id ∈ dom(shopper .found)
∧m.id /∈ dom(shopper .found)
∧ n.shopper �m.shopper

MoveHomen ≡ ∧ n.shopper〈true〉∧ shopper .ctl = “shopping”

∧ shopper .item /∈ n.offers ∨n.id ∈ dom(shopper .found)
∧ |shopper .found | ≥ 3
∧ n.shopper � joe.shopper

RestrShopper ≡ ∧ . . .
∧
∧

n∈Net 2
[
MoveHomen ∨

∨
m∈Net\{Joe}VisitShopn ,m

]
−n .shopper

Fig. 3.Restraining the movement of the shopping agent.

reflecting the fact that the specification of Fig. 3 is a possible refinement of the original
specification shown in Fig. 1.

As in TLA, operation refinement based on the decomposition of a high-level action
into sequences of implementation actions is also formally expressed by validity of im-
plication. This is a consequence of the invariance of MTLA formulas under stuttering.
We now turn to refinement principles that are specific to mobile systems because they
change the topological structure of configurations.

4.2 Spatial extension without distribution of state

During system development, one may choose to implement a single location of the
high-level specification by a hierarchy of locations. Semantically, this is reflected in a
situation as illustrated in Fig. 4 where a single locationn1 is refined into a tree with root
n1 and new sub-locationsin, out , anddock . Sublocations of the original location may
be assigned to different sub-trees of the implementation. However, the spatial relations
between the locations that are visible in the high-level specification are preserved.

In the context of the “shopping agent” example, let us assume that every network
node is equipped with a designated “dock” location to hold visiting agents, and that in-
coming and outgoing agents are placed into “in” and “out” communication buffers. Fig-
ure 5 contains a specification of a corresponding version of the (original) shopping agent
example. FormulaDockedMoven,m describes a transition where the shopping agent is

a
a a aaa
�
�
�

�
�
�

B
B
B

@
@
@n2joe n1 n3

shopper ctl = “shopping”

a
a a aaaa aa

�
�
�

�
�
�

B
B
B

@
@
@

�
�
@
@

n2joe n1 n3

outindock

shopper ctl = “shopping”

Fig. 4.Spatial extension of noden1.

DockedInit ≡ joe.dockjoe .shopper〈true〉∧ shopper .ctl = “idle”

SendShoppern ≡ ∧ n.dockn .shopper〈true〉∧ shopper .ctl = “shopping”

∧ n.dockn .shopper � n.outn .shopper

DockedMoven ,m ≡ ∧ n.outn .shopper〈true〉
∧ n.outn .shopper �m.inm .shopper

RcvShoppern ≡ ∧ n.inn .shopper〈true〉
∧ n.inn .shopper � n.dockn .shopper

DockedShopper ≡ ∧ DockedInit

∧ . . .
∧
∧

n∈Net ∧ 2[SendShoppern]−dockn .shopper

∧ 2[RcvShoppern]−inn .shopper

∧ 2
[∨

m∈Net DockedMoven ,m
]
−outn .shopper

Fig. 5.Network nodes with agent docks.

taken out of theoutn buffer associated with locationn and migrates to theinm buffer
of locationm. The formulasSendShoppern andRcvShoppern specify the movements
between theinn and outn buffers and thedockn location where the agent is hosted
during its visit. (A more complete elaboration of this refinement would strengthen the
preconditions of the other transition to assert that the agent is actually “in dock” and
would describe any necessary packing, unpacking, and security checks before actually
placing the agent in the dock.)

SpecificationDockedShopper is a refinement ofShopper , and in fact, the implica-
tion

DockedShopper ⇒ Shopper

is valid. The proof relies on the invariant that the shopper can only be placed in the
“out” buffer when it is in state“shopping”, formally expressed by the invariant

DockedShopper ⇒
∧

n∈Net

2(outn .shopper〈true〉 ⇒ shopper .ctl = “shopping”)

which is easily seen to follow from the definition of formulaSendShoppern . Observe
also that the moves between the dock and the communication buffers correspond to in-
visible, “stuttering” transitions of the original specification because the shopping agent
stays within the respective network domain. Therefore, these actions are allowed by
formulaShopper .

For spatial extension to be an admissible refinement principle, it is important that
formulasn[F] be interpreted as referring not just to a sublocationn immediately be-
neath the current location but to locations arbitrarily deep in the subtree.

4.3 Spatial extension with distribution of state

In the case of specificationDockedShopper , we were able to represent spatial exten-
sion simply by implication because the “dock”, “in”, and “out” sub-locations did not

introduce any local state. In general, spatial extension will be accompanied with a distri-
bution of the state variables associated with the high-level locationn among the lower-
level locations. Intuitively, such a distribution of local state is permissible provided that
no other component attempts to directly access the local state at locationn. In other
words, state variables that are not part of the external “interface” of a specification may
be distributed in the implementation. Because we do not wish to impose a fixed set of
visibility rules, the specifier has to explicitly designate the interface in the specification
by indicating which state variables should be hidden from the interface.

Logically, hiding local state components corresponds to existential quantification
over flexible variables at certain locations. We therefore extend the syntax of MTLA
formulas.

Definition 2. The definition of MTLA formulas is extended by the following clause.

16. If F is a pure formula,m ∈ N is a name, andv ∈ Vf is a flexible variable then
∃∃∃∃∃∃m.v : F is again a pure formula.

As in TLA [7], the semantics of quantification over flexible variables is somewhat
complicated in order to preserve invariance under finite stuttering. We formally define
stuttering equivalenceas the smallest equivalence relation' on runs that identifies runs
that differ by insertion or removal of duplicate configurations(ti ,λi):

. . .(ti ,λi)(ti+1,λi+1) . . . ' . . .(ti ,λi)(ti ,λi)(ti+1,λi+1) . . .

It is straightforward to show that pure formulas of Simple MTLA are invariant w.r.t.
stuttering equivalence, that is, for any MTLA formulaF we haveσ,ξ |= F iff τ,ξ |= F
wheneverσ' τ.

We say that runsσ = (s0,λ0)(s1,λ1) . . . andτ = (t0,µ0)(t1,µ1) . . . areequal up to
v ∈ Vf at m ∈ N, written σ =m.v τ iff si = ti for all i ∈ N andλi(α)(x) = µi(α)(x)
except possibly whenx ≡ v andα ≡ β.m for someβ ∈ N∗. In other words, the tree
structures of the configurations inσ andτ have to be identical, and the local valuations
may differ at most in the valuation assigned to variablev at nodes labelledm.

Finally, we definesimilarity up tov at m as the smallest equivalence relation≈m.v

that contains both' and=m.v . We define the semantics of existential quantification
over flexible variables by

σ,n,ξ |= ∃∃∃∃∃∃m.v : F iff τ,n,ξ |= F for someτ≈m.v σ

This definition clearly ensures that MTLA formulas of the form∃∃∃∃∃∃m.v : F are again
invariant w.r.t. stuttering equivalence.

As an example, we present another spatial extension of the shopping agent specifi-
cation where we assume the databases containing the offers to reside in a sub-location
dbn of each network noden. Its specification appears as formulaDBShopper in Fig. 6.
The formulaGetOffer has been changed to access the databaseoffers hosted at the
sub-locationdbn instead of directly at locationn. The new specification is a refinement
of the original one when the variableoffers of each noden ∈ Net is hidden from the
interface; formally, the implication

DBShopper ⇒∃∃∃∃∃∃n1.offers, . . . ,nk .offers : Shopper

DBGetOffern ≡ ∧ shopper〈true〉∧ cshopper〈true〉
∧ shopper .ctl = “shopping”∧ shopper .item ∈ dbn .offers

∧ shopper .found ′ = shopper .found

⊕ {(id 7→ getOffer(dbn .offers,shopper .item))}
∧ UNCHANGED(shopper .ctl ,shopper .item)

DBShopper ≡ ∧ Init

∧ 2
∧

m ,n∈Net n〈dbn 〈true〉∧m[false]〉
∧ 2

[
joe[JoeActions]∨

∨
n∈Net n[DBGetOffern]

]
vars

∧
∧

n∈Net 2
[∨

m∈Net Moven ,m
]
−n .shopper

Fig. 6.Network nodes with sub-location hosting the database.

is valid, assumingNet = {n1, . . . ,nk}. Proofs of such refinements can be based on the
following variant of the “refinement mapping” rule of TLA:

F [t/m.v]⇒∃∃∃∃∃∃m.v : F provided all occurrences ofv in subformulas2G of F
are in the scope of some subformulaa[H] of G

wheret is a pure term andF [t/m.v] denotes the formulaF where all top-level occur-
rences ofv in any subformulam[A] (i.e., those occurrences that are not in the scope of
any further spatial operator) are replaced byt . For example, refinement ofShopper by
DBShopper can be shown by the above rule by observing the validity of

DBShopper ⇒ Shopper [dbn1.offers/n1.offers, . . . ,dbnk
.offers/nk .offers]

4.4 Virtualisation of locations

As the final and most general of our refinement principles for mobile systems, we con-
sider the replacement of some locationn in the abstract specification by a structurally
different hierarchy of locations such that the externally observable behavior of the sys-
tem is preserved. Unlike in the previous case of structural refinement with possible
distribution of local state, this new case allows for implementations that do not con-
tain an agent namedn, implying thatn itself, and not just its state components, should
be hidden from the interface of the high-level specification. This motivates a second
extension of the syntax of MTLA.

Definition 3. The definition of MTLA is extended by quantification over names.

17. If F is a pure formula andm ∈ N is a name then∃∃∃∃∃∃m : F is again a pure formula.

Intuitively, a runσ satisfies a formula∃∃∃∃∃∃m : F if at every configuration a subtree may
be identified that “plays the role ofm” as described by formulaF . Formally, we require
the existence of some sequence of configurations that differ from those inσ by inserting
a new node that behaves as required at appropriate places of every configuration, and
explicitly ensure closure under stuttering equivalence.

aa
a
J
J
J
ed

a
a a
aa

a
a
aa

aa
a

J
J
J

J
J
J

J
J
J

ba

fc

ba

fc

ed

m
<m

Fig. 7. Illustration of tree extension.

For finite trees (with unique labellings)s andt and a namem ∈ N we define the
relations <m t to hold iff s results fromt by removing the node labelled bym (if any);
formally,

s <m t iff there existsα ∈ N∗ such thats = {β ∈ t : αm 6v β}∪{αβ : αmβ ∈ t}

(see Fig. 7 for an illustration of this definition, choosingα = a). The relation<m is
extended to configurations in the canonical way by requiring that the local state associ-
ated with any node ins be that of the corresponding node int , and arbitrary at the new
nodem:

(s,λ)<m (t ,µ) iff s <m t and for allγ ∈ s,

λ(γ) =
{

µ(γ) if γ ∈ t
µ(αmβ) if γ = αβ whereαmβ ∈ t ,β 6= ε

Finally, the relation<m is extended to entire runs by

(s0,λ0)(s1,λ1) . . . <m (t0,µ0)(t1,µ1) . . . iff (si ,λi)<m (ti ,µi) for all i ∈ N.

The semantics of quantification over names is now defined by

σ,n,ξ |= ∃∃∃∃∃∃m : F iff there exist runsρ,τ such thatσ' ρ, ρ<l τ, and
τ,n,ξ |= F [l/m] for a namel that does not occur inσ or F

We illustrate this refinement principle by an implementation that combines virtual-
isation and operation refinement to non-atomically move the shopping agent between
network nodes via an intermediary locationtransit /∈ Net . (A subsequent application
of spatial extension would allow that location to be refined into sub-locations to model
movement across several network hops.)

Figure 8 contains the specification of a shopping agent that, starting at any location
n ∈ Net , first moves to the intermediary locationtransit before moving on to some
other locationm ∈Net . Observe that the implication

SlowShopper ⇒ Shopper

is not valid becauseSlowShopper does not satisfy the invariant that the shopping agent
is always located at some locationn ∈Net . However, we do have

|= SlowShopper ⇒∃∃∃∃∃∃shopper : Shopper

StartMoven ≡ ∧ n.shopper〈true〉∧ shopper .ctl = “shopping”

∧ n.shopper � transit .shopper

EndMovem ≡ ∧ transit .shopper〈true〉
∧ transit .shopper �m.shopper

SlowShopper ≡ ∧ Init

∧ 2
∧

m ,n∈Net∪{transit}n〈m[false]〉
∧ 2

[
joe[JoeActions]∨

∨
n∈Net n[GetOffer]

]
vars

∧
∧

n∈Net 2[StartMoven]−n .shopper

∧ 2
[∨

m∈Net EndMovem
]
−transit .shopper

Fig. 8.Shopping agent with non-atomic moves.

To see why that implication is valid, consider any runσ of SlowShopper . We have to
extend the configurations ofσ by a new location, sayvirtual , that indicates the cur-
rent location of theshopper agent of the original specification. Whenever the low-
level shopper agent is located at some noden ∈ Net , the same should be true of
virtual . Whenshopper is located attransit in between transitionsStartMoven and
EndMovem , the locationvirtual should remain below locationn, effectively delaying
the high-level move action until the slow shopper arrives at its destination. At every
configuration, the local state at locationvirtual should be that of the slow shopper.

Proofs of refinements by virtualisation can be based on the rule

F [n/m]⇒∃∃∃∃∃∃m : F wheren does not occur inF

However, this “refinement mapping” rule would have to be complemented by a rule
for introducing “spatial history variables” [1] in order to prove that the specification
Shopper is refined bySlowShopper , since the location of the shopper prior to the last
StartMove transition has to be remembered in order to compute the location of the
witnessvirtual .

Refinement by virtualisation allows more radical refinements than that ofShopper
by SlowShopper . For example, the formulaShopper , which employs a mobile agent,
could be refined by a client-server solution that replaces mobility by communication.
The proof idea would then be to place the virtual shopping agent at the node from which
an offer is received, and to enforce additional stuttering transitions to simulate theMove
actions. On the other hand, an implementation might use a swarm of agents instead of
a single one.

5 Conclusion

We have defined an extension MTLA of Lamport’s TLA by spatial modalities. The
logic is intended for the specification of systems that exhibit mobility of agents across
hierarchical domains. We have also considered different principles of refinement of
mobile systems, focussing on refinements that change the spatial structure of the origi-
nal specification. We have demonstrated that all these principles can be represented in
MTLA by implication, possibly after appropriate hiding of state components or entire

agent hierarchies from the interface of the specification. In particular, transitivity and
compositionality of refinement, expressed by the rules

S1⇒∃∃∃∃∃∃x : S2 S2⇒∃∃∃∃∃∃y : S3

S1⇒∃∃∃∃∃∃x ,y : S3

S1⇒∃∃∃∃∃∃x : S2

S1∧S3⇒ (∃∃∃∃∃∃x : S2)∧S3

are immediate consequences of standard propositional and quantifier rules that hold for
MTLA. This should make MTLA a sound basis for the stepwise and compositional
development of mobile systems.

More generally, we believe that “extensional” semantics such as ours provide a
useful complement to existing “intensional” formalisms for mobile systems. Obviously,
our definitions will have to be complemented by deductive verification rules to allow
formal, syntactic verification of the properties and refinements that we have claimed of
our examples. We also want to study the decidability of the model checking problem
for our logic, applied to finite-state systems.

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.Theoretical Com-
puter Science, 81(2):253–284, May 1991.

2. Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). InTheoretical
Aspects of Computer Software, Lecture Notes in Computer Science, pages 1–37. Springer-
Verlag, 2001. Revised version to appear in Information and Computation.

3. Luca Cardelli and Andrew Gordon. Anytime, anywhere. Modal logics for mobile ambi-
ents. InProceedings of the 27th ACM Symposium on Principles of Programming Languages,
pages 365–377. ACM Press, 2000.

4. Luca Cardelli and Andrew Gordon. Mobile ambients.Theoretical Computer Science,
240:177–213, 2000.

5. Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the
Join-calculus. InProceedings of the 23rd ACM Symposium on Principles of Programming
Languages, pages 372–385, St. Petersburg Beach, Florida, January 1996. ACM.

6. Leslie Lamport. How to write a long formula. Research Report 119, Digital Equipment
Corporation, Systems Research Center, December 1993.

7. Leslie Lamport. The Temporal Logic of Actions.ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

8. Stephan Merz. A more complete TLA. In J.M. Wing, J. Woodcock, and J. Davies, editors,
FM’99: World Congress on Formal Methods, volume 1709 ofLecture Notes in Computer
Science, pages 1226–1244, Toulouse, September 1999. Springer-Verlag.

9. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, September 1992.

10. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents interaction
and mobility. IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

11. R. De Nicola and M. Loreti. A modal logic for Klaim. In T. Rus, editor,Proc. Algebraic
Methodology and Software Technology (AMAST 2000), volume 1816 ofLecture Notes in
Computer Science, pages 339–354, Iowa, 2000. Springer-Verlag.

12. Davide Sangiorgi. Extensionality and intensionality of the ambient logic. InProc. of the 28th
Intl. Conf. on Principles of Programming Languages (POPL’01), pages 4–17. ACM Press,
2001.

13. Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computations. In
ICCL Workshop: Internet Programming Languages, pages 47–77, 1998.

